Finger orthosis

Information

  • Patent Grant
  • 8038637
  • Patent Number
    8,038,637
  • Date Filed
    Tuesday, July 29, 2008
    16 years ago
  • Date Issued
    Tuesday, October 18, 2011
    13 years ago
Abstract
The same orthosis can be used to sequentially move joints of different fingers of a hand. A hand cuff of the orthosis is mounted on the hand. Mechanisms operable to move the joints are connected to the hand cuff at locations aligned with the fingers. The mechanisms are connected with the fingers. The joints of the fingers are moved by operating the mechanisms. The joints and first and second portions of the fingers define on one side of the joints outer sectors which decrease in angle as the joints are extended. Force is applied to the first and second portions of the fingers to move the joints by providing relative rotation between internally and externally threaded members disposed in the outer sectors. Actuator members connected with the internally or externally threaded members are moved along paths that extend through the joints.
Description
BACKGROUND OF THE INVENTION

The present invention relates to new and improved method for moving joints of fingers.


A known splint for supporting and injuring hand is disclosed in U.S. Pat. No. 4,765,320. The splint disclosed in this patent allows movement of the fingers of the hand and urges the fingers toward an extended condition under the influence of elastic bands.


A known joint extension splint is disclosed in U.S. Pat. No. 5,681,269. The splint disclosed in this patent has an adjustable finger support for a joint of the finger. Support sections of the support are connected to portions of the finger on opposite sides of the joint. A screw jack operates with hinged attachments to the undersides of the support sections to provide controlled extension of the finger.


SUMMARY OF THE INVENTION

The present invention provides a new and improved method for using an orthosis to sequentially move different fingers of a hand. The method includes mounting a hand cuff of the orthosis on the hand. Mechanisms operable to move joints of the fingers are connected to the hand cuff at locations aligned with the fingers. The mechanisms are connected with the fingers. The joints of the fingers are moved by operating the mechanisms.


The joints and first and second portions of the fingers define, on one side of the joints, outer sectors which decrease in angle as the joints are extended. Force is applied to the first and second portions of the fingers to move the joints by providing relative rotation between internally and externally threaded members disposed in the outer sectors. Actuator members connected with the internally or externally threaded members are moved along paths that extend through the joints.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of the invention will become more apparent upon consideration of the following description taken in connection with the accompanying drawings, wherein:



FIG. 1 is an illustration of an orthosis constructed in accordance with the present invention and mounted on a hand with a mechanism which can be operated to move a finger of the hand;



FIG. 2 is a schematic side view of the orthosis of FIG. 1 depicting the manner in which the orthosis of FIG. 1 is operated to bend the finger in flexion;



FIG. 3 is a schematic side view, generally similar to FIG. 2, of the orthosis depicting the manner in which the orthosis of FIG. 1 is operated to bend the finger in extension;



FIG. 4 is an enlarged sectional view of a portion of the orthosis of FIG. 1 depicting the manner in which the orthosis is operated to move the finger in flexion;



FIG. 5 is an enlarged sectional view of the portion of the orthosis, generally similar to FIG. 4, depicting the manner in which the orthosis is operated to move the finger in extension.





DESCRIPTION OF THE INVENTION

Orthosis—General Description


An orthosis 10 (FIG. 1) can be used to sequentially move different fingers of the same hand. The orthosis 10 includes a hand cuff 12 which is connected with a hand 14 of a person. A bending mechanism 16, operable to move a joint of a finger, can be connected to an index finger 18, a middle finger 20, a ring finger 22, or a little finger 24 of the hand 14. The bending mechanism 16 is shown connected to the index finger 18 in FIG. 1. Furthermore, more than one bending mechanism 16 may be connected to more than one of the fingers 18-24.


A first finger cuff 26 of the bending mechanism 16 is connected with a first portion 28 of the index finger 18 connected to a joint 30 of the index finger. A second finger cuff 32 of the bending mechanism 16 is connected to a second portion 34 of the finger 18 connected to the joint 30. The cuffs 12, 26, and 32 may have any desired construction as long as they are effective to engage the hand 14 and the first and second portions 28 and 34 of the finger 18.


A first cuff arm 36 is connected with the first finger cuff 26. A second cuff arm 38 is connected with the second finger cuff 32. A connecting portion 40 of the bending mechanism 16 is connected with the hand cuff 12. The connecting portion 40 is pivotally connected to the second cuff arm 38. The connecting portion 40 connects the bending mechanism 16 to the hand cuff 12 in alignment with the finger 18.


End portions 42 and 44 (FIGS. 1-3) of the cuff arms 36 and 38 are spaced apart and interconnected by a base link or actuator member 46. The first cuff arm 38 is pivotally connected to the actuator member 46 at a pivot connection 48. The pivot connection 48 is offset from the joint 30 on a side of the joint toward a tip of the finger 18. The second cuff arm 38 is pivotally connected to the actuator member 46 at a pivot connection 50. The pivot connection 50 is offset from the joint 30 on a side of the joint away from the tip of the finger 18. The cuff arms 36 and 38 are pivotal about spaced apart parallel axes at the pivot connections 48 and 50.


An actuator mechanism 54 transmits force to simultaneously pivot the cuff arms 36 and 38 about the pivot connections 48 and 50 and to move the finger cuffs 26 and 32 along the cuff arms. The actuator mechanism 54 transmits force from an input member which, in the illustrated embodiment of the orthosis 10, is a manually rotatable knob 56. Force is transmitted from the knob 56 through the actuator mechanism 54 to the actuator member 46. Force is transmitted from the actuator member 46 to pivot the cuff arms 36 and 38 about the pivot connections 48 and 50. In addition, force is transmitted from the knob 56 to move the finger cuffs 26 and 32 along the cuff arms 36 and 38 as the cuff arms are pivoted about the pivot connections 48 and 50.


The actuator mechanism 54 is operable to move the cuff arms 36 and 38 from an initial position, such as the one shown in FIG. 1, to actuated positions, such as those shown in FIGS. 2 and 3. Operation of the actuator mechanism 54 moves the actuator member 46 along a path extending through the joint 30 of the finger 18. As this occurs, the cuff arms 36 and 38 are pivoted about parallel spaced apart axes which extend through the pivot connections 48 and 50 and are perpendicular to the longitudinal central axes of the cuff arms 36 and 38.


As the inner end portions 42 and 44 of the cuff arms 36 and 38 are moved, the finger cuffs 26 and 32 move along the cuff arms. The movement of the finger cuffs 26 and 32 reduces the amount of distraction applied to the finger 18. This enables the finger 18 to be moved without being distracted or compressed. Although it is advantageous to move the finger 18 without either compressing or distracting the soft tissue in the finger, there is a slight controlled distraction of the soft tissue in order to be certain that compression of the finger is avoided.


When the finger cuffs 26 and 32 (FIGS. 2 and 3) are connected with the finger 18, the cuff arms 36 and 38 are disposed at a back side of the finger 18 opposite the palm of the hand 14. Thus, the cuff arms 36 and 38 are disposed in an outer sector having a center at the finger joint 30 and radians which are coincident with longitudinal central axes of the portions 28 and 34 of the finger 18. The longitudinal central axis of the portion 28 of the finger 18 has been indicated at 60 and the longitudinal central axis of the portion 34 of the finger has been indicated at 62. The axes 60 and 62 intersect at a center 64 of the joint 30. The outer sector includes the are indicated by arrows 66 and 68 indicated in FIGS. 2 and 3. The outer sector decreases in angle as the joint 30 is moved in extension from either of the positions in FIGS. 1 and 2 to the position shown in FIG. 3. The inner sector includes the are indicated by the arrows 70 and 72 in FIGS. 2 and 3. The inner sector decreases in angle as the joint 30 is moved in flexion from either of the positions shown in FIGS. 1 and 3 to the position shown in FIG. 2.


The bending mechanism 16 is connected with the back of the finger 18. Accordingly, the actuator mechanism 54 and the pivot connections 48 and 50 are disposed adjacent to the back of the finger 18. Thus, the bending mechanism 16, the actuator mechanism 54 and the pivot connections 48 and 50 are disposed in the outer sector indicated by the arrows 66 and 68.


Moving Finger in Flexion


When the input knob 56 is manually rotated in the direction of arrow 80 in FIG. 1, the actuator mechanism 54 is operated. Operation of the actuator mechanism 54 transmits force from the knob 56 to the actuator member 46. The actuator member 46 pivots the cuff arms 36 and 38 from the orientation shown in FIG. 1 toward the orientation shown in FIG. 2 to move the joint 30 in flexion.


Operation of the actuator mechanism 54 moves the inner end portions 42 and 44 of the cuff arms 36 and 38 away from the finger 18. This pivots the first cuff arm 38 in a counterclockwise direction (as viewed in FIG. 2) about the pivot connection 48. Simultaneously therewith, the second cuff arm 38 pivots in a clockwise direction (as viewed in FIG. 2) about the pivot connection 50. As the cuff arms 36 and 38 are pivoted in opposite directions about the pivot connections 48 and 50 toward the orientation shown in FIG. 2, the joint 30 of the finger 18 is moved in flexion.


During pivotal movement of the cuff arms 36 and 38 and movement of the finger 18 in flexion, the actuator mechanism 54 transmits force to the finger cuffs 26 and 32. The cuffs 26 and 32 move along the cuff arms 36 and 38 away from the joint 30 and the pivot connections 48 and 50. Moving the finger cuffs 26 and 32 away from the joint 30 and the pivot connections 48 and 50 as the joint is moved in flexion greatly reduces the distractive forces applied to the soft tissue in the finger 18.


In the illustrated embodiment of the invention, the cuff arms 36 and 38 are moved by the actuator mechanism 54 through a range of movement from positions in which the cuff arms are positioned relative to each other as shown in FIG. 1 to a condition of maximum flexion in which the longitudinal axes of the cuff arms are disposed at an angle of approximately 70° C. relative to each other, as shown in FIG. 2. As the orthosis 10 is operated to move the finger 18 in flexion, the size of the inner sector, indicated by the arrows 70 and 72 is decreased and the size of the outer sector, indicated by the arrows 66 and 68 is increased. It should be understood that the foregoing specific range of movement of the orthosis 10 has been set forth herein for purposes of clarity of description and that it is contemplated that specific embodiments of the orthosis 10 will have finger cuffs 26 and 32 which move through different distances relative to each other and are movable to different angular orientations relative to each other.


It is contemplated that the specific procedure which is followed to move the finger 18 in flexion will vary depending upon the conditions of the finger and the desires of a surgeon or therapist supervising the use of the orthosis 10. However, it is believed that it may be preferred to use a static progressive stretch procedure during movement of the finger 18. This procedure is implemented by operating the actuator mechanism 54 to move the finger 18 in flexion to a limit of tolerance of the finger without severe pain. This position of the finger 18 is held for a period of time, for example, five minutes, to allow the tissue in the finger to relax. As the tissue relaxes, stress decreases. After the period of time has elapsed, the input member 56 is manually rotated to again stretch the soft tissue in the finger 18 to the limit of tolerance. This condition is again held for a period of time, for example, five minutes, to allow the tissue in the finger 18 to again relax. The process is repeated for the duration of a therapy session which, may be approximately 30 minutes long.


The input knob 56 may be manually rotated by either the patient, that is, the person having the hand 14 on which the orthosis 10 is mounted, or by a supervisory personnel, such as the therapist. However, it is believed that it will be desired to have the patient actuate the orthosis 10 to affect movement of the finger 18. The patient can feel when the tissue has tightened and the finger 18 has been moved to the limit of its tolerance, without severe pain. The patient can also feel when the tissue has relaxed and further actuation of the orthosis 10 to further move the finger 18 in flexion can be undertaken.


Although the foregoing description of moving a finger 18 in flexion with the orthosis 10 has been in conjunction with the movement of the index finger, it should be understood that the orthosis can be equally as well used to move any finger 18-24 of the hand 14 in flexion. Thus, the finger cuffs 26 and 32 are designed to enable them to be used to connect any of the fingers 18-24 of the hand 14 with the cuff arms 36 and 38. The hand cuff 14 is designed to enable the bending mechanism 16 to be connected with the hand cuff in alignment with any of the fingers 18-24. Furthermore, it is contemplated that bending mechanisms 16 can be connected with more than one of the fingers 18-24 at the same time to be used to sequentially move the fingers.


Moving Finger in Extension


When the finger 18 is to be moved in extension, the input knob 56 is manually rotated, in the direction of arrow 84 in FIG. 1, to operate the actuator mechanism 54. Operation of the actuator mechanism 54 transmits force from the input knob 56 to the actuator member 46. As the input knob 56 is manually rotated, the actuator mechanism 54 moves the actuator member 46 toward the finger 18. Thus, the end portions 42 and 44 of the cuff arms 36 and 38 are moved from the position shown in FIG. 1 toward the position shown in FIG. 3 as the input knob 56 is manually rotated.


As the end portions 42 and 44 of the cuff arms 36 and 38 are moved toward the finger 18, the cuff arms are pivoted in opposite directions about axes extending through the pivot connections 48 and 50. Thus, the cuff arm 38 is pivoted in a clockwise direction (as viewed in FIG. 3) about the pivot connection 48. The cuff arm 38 is pivoted in a counterclockwise direction about the pivot connection 50.


As the cuff arms 36 and 38 are pivoted about the pivot connections 48 and 50, the finger 18 is moved in extension from the initial condition shown in FIG. 1 toward the condition shown in FIG. 3. As this occurs, the outer sector, indicated by the arrows 66 and 68, decreases in size, and the inner sector, indicated by the arrows 70 and 72, increases in size. The cuff arms 36 and 38 are pivoted toward the actuator mechanism 54 in the outer sector.


As the cuff arms 36 and 38 (FIG. 3) are pivoted under the influence of force transmitted from the actuator mechanism 54 through the actuator member 46, the finger cuffs 26 and 32 are moved along the cuff arms 36 and 38. Thus, force is transmitted from the actuator mechanism 54 to the finger cuffs 26 and 32 to move the finger cuff along the cuff arms 36 and 38 toward the joint 30 and the pivot connections 48 and 50. The finger cuff 26 is moved along the cuff arm 38 toward the joint 30 and the pivot connection 48 as the cuff arm 38 is pivoted in a clockwise direction about the pivot connection 48. Similarly, the finger cuff 32 is moved along the cuff arm 38 toward the joint 30 and the pivot connection 50 as the cuff arm 38 is pivoted in a counterclockwise direction about the pivot connection 50. Moving the finger cuffs 26 and 32 toward the joint 30 and the pivot connections 48 and 50 minimizes the extent of distraction of the joint while ensuring that there is no compression of the finger 18.


It is believed that a static progressive stretch procedure may be preferred for moving the finger 18 in extension. Thus, the input knob or member 56 is manually rotated to operate the actuator mechanism 54 and effect pivoting of the cuff arms 36 and 38 to move the finger 18 in extension until the patient feels tissue tightness, but not severe pain. The orthosis 10 is maintained in that position for a period of time, which may be five minutes. When the tissue relaxes, the input member or knob 56 is again rotated to stretch the tissue. The steps of operating the orthosis 10 to stretch the tissue, interrupting operation of the orthosis to allow the tissue to relax and then again operating the orthosis to again stretch the tissue is repeated for the duration of a therapy session.


As was previously mentioned, the knob or input member 56 may be manually rotated by a therapist or surgeon. However, it is believed that it will be preferred to have the patient manually rotate the knob 56. Thus, the person having the hand 14 and finger 18 will rotate the knob 56 until he or she feels the tissue tighten and will further rotate the knob to further move the finger when he or she feels the tissue relax.


Although the foregoing description has been in conjunction with the moving of an index finger 18 in extension, it should be understood that the orthosis 10 may be used to move any of the fingers 18-24 of the hand 14 in extension. In the example of moving the finger 18 in extension illustrated in FIGS. 1 and 3, the finger is moved from an initial condition illustrated in FIG. 1. However, it is believed that, under certain circumstances, the finger 18 may initially be in the flex condition shown in FIG. 2 and moved in extension from the flex condition to the condition shown in FIG. 1. When this is to be done, the orthosis 10 is operated to move the finger 18 in extension toward the condition illustrated in FIG. 1.


Actuator Mechanism


The actuator mechanism 54 (FIGS. 2-5) is supported on the actuator member 46. The actuator mechanism 54 includes an externally threaded member or screw 100 which is rotatably supported within a frame 102. A central axis of the screw 100 extends through the center of the actuator member or base link 46 and through the center of the joint 30 with which the bending mechanism 16 is connected. A central axis of the screw 100 extends midway between and is perpendicular to parallel axes extending through the pivot connections 48 and 50.


The manually rotatable knob 56 is fixedly connected to the upper (as viewed in FIG. 1) end of screw 100. The frame 102 (FIGS. 2-5) has internal thread convolutions which engage with external thread convolutions on the screw 100. In the illustrated embodiment of the invention, the screw 100 is movable relative to the frame 102. However, the frame 102 could be movable relative to the screw 100. If this was done, the base link 46 would be connected with the frame 102.


Upon rotation of the input member or knob 56, the screw 100 is moved relative to the frame 102. As this occurs, the base link 46 pivots the cuff arms 36 and 38 about the pivot connections 48 and 50. Of course, pivotal movement of the cuff arms 36 and 38 moves the joint 30 of the finger 18 with which the orthosis 10 is connected. Movement of the screw 100 toward the joint 30 moves the joint in extension. Movement of the screw 100 away from the finger 18 moves the joint 30 in flexion.


The screw 100 and the base link 46 are moved from the initial condition shown in FIG. 1 to one of the actuated conditions shown in FIGS. 2 and 3. The screw 100 and base link 46 move along a linear path which extends perpendicular to the parallel axes through the pivot connections 48 and 50. The path along which the screw 100 and actuator member 46 move has a longitudinal central axis which is coincident to the central axis of the screw 100 and extends between the end portions 42 and 44 of the cuff arms 36 and 38.


In the illustrated embodiment of the invention, the screw 100 has a right-hand thread so that the knob 56 is manually rotated in a clockwise direction, as indicated by arrow 84 in FIG. 1, to move the screw 100 and base link 46 toward the finger 18. When the knob 56 is manually rotated in a counterclockwise direction, the screw 100 and the actuator member 46 move away from the finger 18. It should be understood that an input member other than the knob 56 could be used to operate the actuator mechanism 54 if desired.


The frame 102 (FIGS. 2-5) has a first end 110 pivotally connected with the cuff arm 38 at a pivot connection 112. The end 110 of the frame 102 is also pivotally connected to the finger cuff 26 and the cuff arm 38 at a pivot connection 114. The end 110 of the frame 102 extends between side walls 116 (FIGS. 4 and 5) of the cuff arm 38. The frame 102 has a second end 118 pivotally connected with the cuff arm 38 and the finger cuff 32 at a pivot connection 120. The end 118 of the frame 102 extends between side walls 122 of the cuff arm 38.


The cuff arm 36 has slots 124 (FIGS. 4 and 5) in the side walls 116. A pin 126 extends through the slots 124 and the end 110 of the frame 102. The pin 126 connects the end 110 of the frame 102 with the cuff arm 38 at the pivot connection 112. The pin 126 is movable relative to the cuff arm 36 along the slot 124.


The cuff arm 36 also has slots 132 in the side walls 116 which extend at angles to the slots 124. The finger cuff 26 has slots 134 in side walls 136 that extend perpendicular to the slots 124 and at an angle to the slots 132. A pin 138 extends through the slots 132 and 134 and the end 110 of the frame 102. The pin 138 connects the end 110 of the frame 102 with the cuff arm 38 and the cuff 26 at the pivot connection 114. The pin 138 is movable relative to the slots 132 in the cuff arm 38 and the slots 134 in the finger cuff 26.


The finger cuff 26 has slots 140 in the side walls 136 extending perpendicular to the slots 134 and parallel to the slots 124. A pin 142 extends through the cuff arm 38 and the slots 140 to guide movement of the cuff 26 relative to the cuff arm 36. The pin 142 is movable along the slots 140 relative to the finger cuff 26.


The cuff arm 36 (FIGS. 4 and 5) extends between the side walls 136 of the cuff 26. The side walls 136 of the cuff 26 engage the side, walls 116 of the cuff arm 36. The side walls 116 of the cuff arm 36 guide movement of the cuff 26 relative to the cuff arm 36.


The cuff arm 38 (FIGS. 4 and 5) has slots 146 in the side walls 122. A pin 148 extends through the slots 146, the cuff 32 and the end 118 of the frame 102. The pin 148 connects the finger cuff 32 with the cuff arm 38 and the frame 102 at the pivot connection 120. The pin 148 extends through side walls 150 of the cuff 32. The pin 148 is movable along the slots 146 to guide movement of the cuff 32 relative to the cuff arm 38.


The side walls 150 of the cuff 32 have openings 152 and 154 on opposite sides of the pin 148. The pin 148 could extend through the openings 152 or 154 instead of extending through the cuff 32 at the location between the openings. Accordingly, the pin 148 can connect the finger cuff 32 to the cuff arm 38 and the end 118 of the frame 102 at any of three locations.


The cuff arm 38 extends between the side walls 150 of the cuff 32. The side walls 150 of the cuff 32 engage the side walls 122 of the cuff arm 38. The side walls 122 of the cuff arm 38 guide movement of the cuff 32 relative to the cuff arm 38.


Upon manual rotation of the input member or knob 56 in a clockwise direction, the screw 100 is rotated to move the base link 46 toward the finger 18 (FIG. 3). As this occurs, the cuff arm 38 is pivoted in a clockwise direction about the pivot connection 48 and transmits force to the pivot connections 112 and 114. The force transmitted from the base link 46 to the pivot connections 112 and 114 pivots the cuff arm 38 and cuff 26 in a clockwise direction about axes extending through the pivot connections 112 and 114. This results in the cuff arm 38 pivoting from the initial position shown in FIG. 1 to the actuated position shown in FIG. 3 as the screw 100 moves relative to the frame 102.


As the cuff arm 38 (FIG. 5) pivots about the pivot connections 112 and 114, the pin 126 moves along the slots 124 toward the right, as viewed in FIG. 5. The pin 138 moves toward the right as viewed in FIG. 5, along the slots 132. The pin 138 also moves downward, as viewed in FIG. 5, along the slots 134. This results in the finger cuff 26 moving relative to the cuff arm 38 toward the joint 30.


As the screw 100 and base link 46 move toward the finger 18, the cuff arm 38 is pivoted in a counterclockwise direction relative to the base link 46 and force is transmitted to the pivot connection 120. The force transmitted to the pivot connection 120 pivots the cuff arm 38 relative to the second end 118 of the frame 102. As the cuff arm 38 pivots about the pivot connection 120 relative to the second end 118 of the frame 102, the pin 148 moves toward the left, as viewed in FIG. 5, along the slots 146 and the finger cuff 32 moves relative to the cuff arm 38.


Upon manual rotation of the input member or knob 56 in a counterclockwise direction, the screw 100 is rotated to move away from the finger 18 (FIGS. 2 and 4). As this occurs, the cuff arm 36 is pivoted in a counterclockwise direction about the pivot connection 48 and force is transmitted to the pivot connections 112 and 114 between the cuff arm 36 and the first end 110 of the frame 102. The force transmitted to the pivot connections 112 and 114 pivots the cuff arm 36 in a counterclockwise direction about the pivot connections 112 and 114. This results in the pin 126 moving downward, as viewed in FIG. 4, along the slots 124. The pin 138 moves downward as viewed in FIG. 4, along the slots 132. The pin 138 also moves toward the left, as viewed in FIG. 4, along the slots 134. The pin 142 moves upward along the slots 140 as the finger cuff 26 moves away from the joint 30.


As the input member or knob 56 is rotated in the counterclockwise direction, the cuff arm 38 is pivoted in a clockwise direction about the pivot connection so and force is transmitted to the pivot connection 120 between the first end 118 of the frame 102 and the cuff arm 38. The force transmitted to the pivot connection 120 pivots the cuff arm 38 in a clockwise direction about the pivot connection 120. This results in the pin 148 moving toward the right, as viewed in FIG. 4, along the slots 146 and the finger cuff 32 moving away from the joint 30.


Cuff Adaptors


The finger cuff 26 (FIGS. 4 and 5) includes a channel-shaped portion 160 for receiving the cuff arm 36. The channel-shaped portion 160 is defined by the parallel side walls 136 extending perpendicular to a base 164. The base 164 can be placed in engagement with a back of the portion 28 of the finger 18. Suitable straps 168 and 170 extend through retainers 172 extending from the base 164 to secure the finger cuff 26 with the finger 18, as seen in FIG. 1.


The finger cuff 32 (FIGS. 4 and 5) has a channel-shaped portion 180 which receives the cuff arm 38. The channel-shaped portion 180 is defined by the side walls 150 extending perpendicular to a base 184. The base 184 is placed in engagement with a back of the portion 34 of the finger 18. A suitable strap 186 extends through a retainer portion 190 extending from the base 184 to secure the finger cuff 32 with the finger 18, as seen in FIG. 1.


The hand cuff 12 has a first plate 200 (FIGS. 1-3) with padding 202 which is mounted on a palm of the hand 14. A second plate 204 with padding 206 is mounted on the back of the hand 14 opposite from the palm. Four cylindrical members 210 are fixedly connected with the second plate 204. Each of the cylindrical members 210 is aligned with one of the fingers 18-24 of the hand 14. The cylindrical members 210 have axially extending openings 212 for receiving the connecting portion 40 of the bending mechanism 16. Threaded openings 214 in the cylindrical members 210 extend transverse to the axis of the cylindrical members. A set screw 216 threadably engages the opening 214 in the cylindrical member 210 to clamp the connecting portion 40 to the cylindrical member.


A suitable strap 222 is fixedly connected to the plate 204 by rivets 224. Another strap 226 extends around the plates 200 and 204 adjacent the heel of the hand 14. The straps 222 and 226 secure the plates 200 and 204 to the hand 14 using hook and loop connectors.


CONCLUSION

The present invention provides a new and improved method for using an orthosis 10 to sequentially move different fingers of a hand. When the orthosis 10 is to be used to move a finger of the hand, a bending mechanism 16 is connected with a back of the finger. The bending mechanism 16 is operated to move a joint of the finger. An actuator member 46 of the bending mechanism 16 is moved along a path extending through the joint to move the joint. The bending mechanism 16 can be connected with another finger of the hand to move the other finger or a second bending mechanism can be connected with the other finger to move the other finger.


From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.

Claims
  • 1. A method of moving a joint between first and second portions of a finger with a first cuff and a second cuff of an orthosis, said method comprising: contacting the first cuff to the first portion of the finger and the second cuff to the second portion of the finger;applying force to an actuator member, the actuator member rotationally coupled to the first and second cuffs; androtating the first and second cuffs with respect to the actuator member to move the first and second portions of the finger, wherein rotating the first and second cuffs comprises effecting relative rotation between the first and second cuffs about an axis extending through the joint.
  • 2. A method as set forth in claim 1 wherein applying force to an actuator member comprises moving the actuator member along an axis which extends through the joint.
  • 3. A method as set forth in claim 1 wherein applying force to an actuator member comprises manually moving the actuator member connected with at least one of the first and second cuffs.
  • 4. A method as set forth in claim 1 wherein applying force to an actuator member comprises applying a force by the person having the finger.
  • 5. A method as set forth in claim 1 further comprising connecting the first cuff of the orthosis with the first portion of the finger and connecting the second cuff of the orthosis with the second portion of the finger.
  • 6. A method as set forth in claim 5, wherein connecting the first cuff of the orthosis with the first portion of the finger and connecting the second cuff of the orthosis with the second portion of the finger comprises connecting the first cuff and the second cuff such that the orthosis does not extend adjacent to lateral sides of the joint between the first cuff and the second cuff.
  • 7. A method as set forth in claim 1 further comprising: connecting the first cuff and a first cuff arm of the orthosis with the first portion of the finger and connecting the second cuff and a second cuff arm of the orthosis with a second portion of the finger; andmoving one of the first and second cuffs along one of the first and second cuff arms.
  • 8. A method as set forth in claim 7 wherein moving one of the first and second cuffs along one of the first and second cuff arms comprises transmitting force from the actuator member to at least one of the first and second cuffs to move the at least one of the first and second cuffs along at least one of the first and second cuff arms under the influence of force transmitted from the actuator member to the at least one of the first and second cuffs while moving the joint.
  • 9. A method as set forth in claim 7 wherein moving one of the first and second cuffs along one of the first and second cuff arms comprises moving the first cuff along the first cuff arm and simultaneously moving the second cuff along the second cuff arm while moving the joint.
  • 10. A method as set forth in claim 9 wherein moving the first cuff along the first cuff arm and simultaneously moving the second cuff along the second cuff arm while moving the joint comprises simultaneously moving the first and second cuffs toward the joint under the influence of force transmitted to the first and second cuffs from the actuator member.
  • 11. A method as set forth in claim 1 further comprising: connecting the first cuff and a first cuff arm of an orthosis with the first portion of the finger and connecting the second cuff and a second cuff arm of the orthosis with the second portion of the finger; andtransmitting force from the actuator member to the first cuff arm to pivot the first cuff arm about an axis which is offset distally from the joint, the actuator member supported by a frame connected to the first and second arm cuffs.
  • 12. A method as set forth in claim 1 wherein rotating the first and second cuffs comprises moving the joint in a direction away from an initial condition of the joint, interrupting relative rotation between the first and second cuffs for a period of time, and, thereafter, resuming rotating the first and second cuffs to move the joint in the direction away from the initial condition.
  • 13. A method as set forth in claim 1 further comprising mounting a first plate of a hand cuff on a palm of a hand having the finger and mounting a second plate of the hand cuff on a back of the hand opposite from the palm.
  • 14. A method as set forth in claim 13 further comprising connecting a mechanism operable to apply force to the first and second portions of the finger to the second plate mounted on the back of the hand at a location aligned with the finger.
  • 15. A method as set forth in claim 14 wherein connecting the mechanism to the second plate comprises connecting the mechanism to the second plate at one of a plurality of locations on the second plate.
  • 16. A method as set forth in claim 15 wherein connecting the mechanism to the second plate comprises clamping a connecting portion of the mechanism to the second plate.
  • 17. A method as set forth in claim 16 wherein connecting the mechanism to the second plate comprises extending the connecting portion of the mechanism into one of a plurality of cylindrical members connected to the second plate, and clamping the connecting portion of the mechanism to the second plate comprises threadably engaging a set screw with the one of the plurality of cylindrical members to clamp the connecting portion of the mechanism with the one of the plurality of cylindrical members.
  • 18. A method as set forth in claim 1, wherein applying force to an actuating member comprises applying a first force to cause flexion of the joint followed by applying a second force to cause extension of the joint, the first force being generally opposite the second force.
  • 19. A method of moving a joint between first and second portions of a finger, wherein the joint and first and second portions of the finger define on a first side of the joint an outer sector which decreases in angle as the joint is extended, said method comprising: operatively coupling a first cuff arm of an orthosis with the first portion of the finger and operatively coupling a second cuff arm of the orthosis with the second portion of the finger; andproviding relative rotation of the first and second cuff arms by an actuator member in the outer sector to transmit force to the first cuff arm to pivot the first cuff arm about a first axis which is offset distally from the joint and to transmit force to the second cuff arm to pivot the second cuff arm about a second axis which is offset proximally from the joint.
  • 20. A method as set forth in claim 19 wherein providing relative rotation of the first and second cuff arms comprises transmitting force from a frame of the actuator member to a first cuff and a second cuff to simultaneously move the first and second cuffs along the first and second cuff arms.
  • 21. A method of moving a joint between first and second portions of a finger, said method comprising: coupling an orthosis including a first cuff and a second cuff to the finger including the joint; andproviding relative rotation between the first and second portions of the finger connected to the orthosis along a path which extends through the jointby transmitting a force to the first and second cuffs.
  • 22. A method as set forth in claim 21 wherein the joint and first and second portions of the finger define on a first side of the joint an inner sector which decreases in angle as the joint is flexed and define on an opposite second side of the joint an outer sector which decreases in angle as the joint is extended, said method further comprising positioning an input member in the outer sector.
  • 23. A method as set forth in claim 21 wherein providing relative rotation between the first and second portions of the finger comprises effecting relative rotation between the internally and externally threaded members along an axis extending through the joint.
  • 24. A method as set forth in claim 21 wherein providing relative rotation between the first and second portions of the finger comprises manually moving an input member connected with one of the internally and externally threaded members.
  • 25. A method as set forth in claim 21 wherein providing relative rotation between first and second portions of the finger comprises providing relative rotation between the first and second portions of the finger by the person having the finger.
  • 26. A method of moving a joint between first and second portions of a finger, wherein the joint and first and second portions of the finger define on a first side of the joint an outer sector which decreases in angle as the joint is extended, said method comprising: connecting a first cuff to a first cuff arm of an orthosis with the first portion of the finger connected to the first cuff and connecting a second cuff to a second cuff arm of the orthosis with a second portion of the finger connected to the second cuff;providing relative rotation between the first and second portions of the finger;transmitting force from an actuator member to the first and second portions of the finger, wherein actuating the actuator member in a first direction causes flexion of the joint and actuating the actuator member in a second direction causes extension of the joint; andmoving one of the first and second cuffs along one of the first and second cuff arms.
  • 27. A method as set forth in claim 26, wherein transmitting force comprises moving the actuator member along a path which extends through the joint.
  • 28. A method as set forth in claim 26, wherein providing relative rotation between the first and second portions of the finger comprises effecting relative rotation between the first and second portions of the finger about an axis extending through the joint.
  • 29. A method as set forth in claim 26, wherein providing relative rotation between the first and second portions of the finger comprises manually moving the actuator member.
  • 30. A method as set forth in claim 26, wherein providing relative rotation between the first and second portions of the finger is performed by the person having the finger.
  • 31. A method as set forth in claim 26, further comprising connecting a first cuff of an orthosis with the first portion of the finger and connecting a second cuff of the orthosis with the second portion of the finger.
  • 32. A method as set forth in claim 26, further comprising transmitting force to at least one of the first and second cuffs to move at least one of the first and second cuffs along the first and second cuff arms under the influence of force transmitted from the actuator member.
  • 33. A method as set forth in claim 26, wherein moving at least one of the first and second cuffs along one of the first and second cuff arms comprises moving the first cuff along the first cuff arm and simultaneously moving the second cuff along the second cuff arm while moving the joint.
  • 34. A method as set forth in claim 33, wherein moving the first cuff along the first cuff arm and simultaneously moving the second cuff along the second cuff arm while moving the joint comprises simultaneously moving the first and second cuffs toward the joint under the influence of force transmitted to the first and second cuffs from the actuating member.
  • 35. A method as set forth in claim 26, further comprising: transmitting force from the actuator member to the first cuff arm to pivot the first cuff arm about an axis which is offset distally from the joint.
  • 36. A method as set forth in claim 26, wherein providing relative rotation between the first and second portions of the finger comprises rotating the a first cuff and a second cuff relative to each other to move the joint in a direction away from an initial condition of the joint, interrupting relative rotation between the first and second cuffs for a period of time, and, thereafter, resuming relative rotation between the first and second cuffs to further move the joint in the direction away from the initial condition.
  • 37. A method of moving a joint of a finger, said method comprising: connecting an orthosis including a first cuff and a second cuff to the finger including the joint; andmoving the joint using the first and second cuffs while allowing the joint to rotate about an instantaneous axis of rotation, wherein at least one of an orientation and a position of the instantaneous axis of rotation changes during the moving operation.
  • 38. A method as set forth in claim 37, wherein allowing the joint to rotate about the instantaneous axis of rotation comprises allowing self-centering of the orthosis on the joint.
  • 39. A method as set forth in claim 38, wherein allowing the joint to rotate about the instantaneous axis of rotation comprises allowing the orthosis to remain substantially aligned with a joint plane that varies as the joint is rotated.
  • 40. A method as set forth in claim 37, wherein the finger includes a first portion and a second portion interposed by the joint; wherein the first portion and the second portion define on a first side of the joint an inner sector which decreases in angle as the joint is flexed and define on an opposite second side of the joint an outer sector which decreases in angle as the joint is extended; andwherein moving the joint using the orthosis comprises operating an actuator mechanism to apply force to the first portion and the second portion.
  • 41. A method as set forth in claim 40, wherein operating the actuator mechanism comprises providing relative rotation between a screw and an internally threaded frame thereby translating the screw relative to the frame; and wherein translating the screw relative to the frame translates an actuator coupled to the screw, the actuator pivotably coupled to a first cuff associated with the first portion and a second cuff associated with the second portion.
  • 42. A method as set forth in claim 37, wherein moving the joint comprises flexing the joint followed by extending the joint.
  • 43. A method as set forth in claim 37, wherein moving the joint comprises extending the joint followed by flexing the joint.
  • 44. A method of moving a joint, said method comprising: connecting an orthosis including a first cuff and a second cuff to a finger including the joint; andmoving the joint using the first and second cuffs of the orthosis, wherein the orthosis does not include one or more hinges positioned generally along an axis of rotation associated with the joint.
  • 45. A method as set forth in claim 44, wherein connecting an orthosis including a first cuff and a second cuff the a finger further comprises attaching the orthosis proximally and distally relative to the joint.
  • 46. A method as set forth in claim 44, wherein connecting an orthosis including a first cuff and a second cuff the a finger further comprises attaching the first cuff of the orthosis to a first finger portion and attaching the second cuff of the orthosis to a second finger portion,wherein the first finger portion and the second finger portion are interposed by the joint.
  • 47. A method as set forth in claim 44, wherein moving the joint comprises allowing the joint to move about an instantaneous axis of rotation; and wherein at least one of an orientation and a position of the instantaneous axis of rotation changes during the moving operation.
  • 48. A method as set forth in claim 47, wherein allowing the joint to move about the instantaneous axis of rotation comprises allowing self-centering of the orthosis on the joint such that the orthosis remains substantially aligned with a joint plane that varies as the joint is moved.
  • 49. A method of moving a joint, said method comprising: affixing a first cuff of an orthosis to a first portion of a finger and a second cuff of the orthosis to a second portion of the finger, wherein the first portion and the second portion are interposed by the finger joint; andmoving the first cuff with respect to the second cuff using the orthosis to provide one of flexion and extension of the finger joint while allowing the finger joint to move about an instantaneous axis of rotation that varies with a relative angular position of the first portion with respect to the second portion.
  • 50. A method as set forth in claim 49, wherein allowing the finger joint to move about the instantaneous axis of rotation comprises allowing the orthosis to self-center on the finger joint as the finger joint moves.
  • 51. A method as set forth in claim 49, wherein allowing the finger joint to move about the instantaneous axis of rotation comprises allowing the orthosis to remain substantially aligned with a finger joint plane associated with the finger joint; and wherein an orientation of the finger joint plane varies as the finger joint is moved.
  • 52. A method as set forth in claim 49, wherein affixing an orthosis comprises attaching a first cuff to the first portion and attaching a second cuff to the second portion.
  • 53. A method as set forth in claim 52, wherein moving the first portion with respect to the second portion using the orthosis comprises pivoting the first cuff about a first axis which is distally offset from the finger joint and pivoting the second cuff about a second axis which is proximally offset from the finger joint.
  • 54. A method as set forth in claim 53, wherein moving the first portion with respect to the second portion using the orthosis comprises operating an actuator mechanism by providing relative rotation between a screw and an internally threaded frame thereby translating the screw relative to the frame; and wherein translating the screw relative to the frame translates the actuator mechanism coupled to the screw, the actuator pivotably coupled to the first cuff and the second cuff.
  • 55. A method as set forth in claim 49, further comprising moving the first portion with respect to the second portion using the orthosis to provide the other of flexion and extension of the finger joint while allowing the finger joint to move about the instantaneous axis of rotation that varies with the relative angular position of the first portion with respect to the second portion.
  • 56. A method of stretching tissue about a joint of a finger, said method comprising: connecting a first cuff of an orthosis to a first portion of a finger and a second cuff of the orthosis to a second portion of the finger, the first portion of the finger and the second portion of the finger interposed by a joint; andmoving the first portion of the finger relative to the second portion of the finger about an instantaneous axis of rotation of the joint by applying a force in a single plane to the first cuff and the second cuff using a frame, the frame connecting the first cuff and the second cuff,wherein the instantaneous axis of rotation of the joint changes relative to an axis of rotation of the orthosis across a range of motion associated with the joint.
  • 57. A method as set forth in claim 56, wherein at least one of the first cuff and the second cuff is pivotably attached to the frame; and wherein moving the first portion of the finger relative to the second portion of the finger comprises pivoting the at least one of the first cuff and the second cuff with respect to the frame.
  • 58. A method as set forth in claim 56, wherein at least one of an orientation and a position of the instantaneous axis of rotation changes relative to the axis of rotation of the orthosis during the moving operation.
  • 59. A method of moving a joint, said method comprising: coupling an orthosis to a finger by engaging a first cuff of the orthosis with a first portion of the finger and a second cuff of the orthosis with a second portion of the finger, a joint of the finger interposing the first portion and the second portion; andmoving the joint using the orthosis by pivoting the first cuff and the second cuff about a first axis spaced apart from an instantaneous axis of rotation of the joint.
  • 60. A method as set forth in claim 59, wherein moving the joint comprises pivoting the first cuff about the first axis which is distally offset from the finger joint and pivoting the second cuff about a second axis which is proximally offset from the finger joint.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/181,238, filed Jul. 14, 2005 now U.S. Pat. No. 7,404,804, which is a continuation of U.S. patent application Ser. No. 10/329,895, filed Dec. 26, 2002 (now U.S. Pat. No. 6,921,377), which is a continuation of U.S. patent application Ser. No. 09/664,922, filed Sep. 18, 2000, now U.S. Pat. No. 6,502,577, the entire content of these applications is expressly incorporated herein by reference thereto.

US Referenced Citations (279)
Number Name Date Kind
432327 Page Jul 1890 A
433227 Beacock Jul 1890 A
2191283 Longfellow Feb 1940 A
2206902 Kost Jul 1940 A
2223276 Ward Nov 1940 A
2237252 Longfellow Apr 1941 A
2246689 Kost Jun 1941 A
2250493 Milne Jul 1941 A
2590729 Scognamillo Mar 1952 A
2590739 Wahner et al. Mar 1952 A
2811154 Scholl Oct 1957 A
2820455 Hall Jan 1958 A
2829562 La Rue Apr 1958 A
2832334 Whitelaw Apr 1958 A
3083708 Gottfried Apr 1963 A
3338237 Sconce Aug 1967 A
3351055 Gottfried Nov 1967 A
3548818 Kaplan Dec 1970 A
3580248 Larson May 1971 A
3698389 Guedel Oct 1972 A
3701349 Larson Oct 1972 A
3724452 Nitschke Apr 1973 A
3760056 Rudy Sep 1973 A
3795243 Miller Mar 1974 A
3811434 Jacobson et al. May 1974 A
3814419 Bjorklund et al. Jun 1974 A
3856004 Cox Dec 1974 A
3955565 Johnson, Jr. May 1976 A
3970316 Westmoreland, Jr. Jul 1976 A
3976057 Barclay Aug 1976 A
4039183 Sakurada Aug 1977 A
4076022 Walker Feb 1978 A
4084267 Zadina Apr 1978 A
4108170 Spann Aug 1978 A
4180870 Radulovic et al. Jan 1980 A
4214577 Hoy Jul 1980 A
4229001 Roman Oct 1980 A
4237873 Terry et al. Dec 1980 A
4241731 Pauley Dec 1980 A
4273113 Hofstein Jun 1981 A
4285773 Taciuk Aug 1981 A
4320748 Racette et al. Mar 1982 A
4363481 Erickson Dec 1982 A
4370977 Mauldin et al. Feb 1983 A
4383523 Schurman May 1983 A
4417569 Brudny Nov 1983 A
4441489 Evans et al. Apr 1984 A
4454871 Mann et al. Jun 1984 A
4456001 Pescatore Jun 1984 A
4456002 Barber et al. Jun 1984 A
4502470 Kiser et al. Mar 1985 A
4502681 Blomqvist Mar 1985 A
4508111 Hepburn Apr 1985 A
4509509 Bouvet et al. Apr 1985 A
4538595 Hajianpour Sep 1985 A
4538600 Hepburn Sep 1985 A
4570619 Gamm Feb 1986 A
4576151 Carmichael et al. Mar 1986 A
4589406 Florek May 1986 A
4606542 Segal Aug 1986 A
4612919 Best Sep 1986 A
4628913 Lerman Dec 1986 A
4641639 Padilla Feb 1987 A
4653479 Maurer Mar 1987 A
4665905 Brown May 1987 A
4693239 Clover, Jr. Sep 1987 A
4716889 Saringer Jan 1988 A
4718665 Airy et al. Jan 1988 A
4727865 Hill-Byrne Mar 1988 A
4739334 Soref Apr 1988 A
4765320 Lindemann et al. Aug 1988 A
4788941 Villeneuve Dec 1988 A
4790301 Silfverskiold Dec 1988 A
4793334 McGuinness et al. Dec 1988 A
4805601 Eischen, Sr. Feb 1989 A
4807601 Wright Feb 1989 A
4809688 Aymerica del Valle et al. Mar 1989 A
4830360 Carr, Jr. May 1989 A
4834073 Bledsoe et al. May 1989 A
4844094 Grim Jul 1989 A
4844454 Rogers Jul 1989 A
4844455 Funkhouser, Jr. Jul 1989 A
4848326 Lonardo Jul 1989 A
4862877 Barber Sep 1989 A
4865024 Hensley et al. Sep 1989 A
4869267 Grim et al. Sep 1989 A
4869499 Schiraldo Sep 1989 A
4884454 Johnson Dec 1989 A
4913135 Mattingly Apr 1990 A
4913755 Grim Apr 1990 A
4930497 Saringer Jun 1990 A
4953543 Grim et al. Sep 1990 A
4955369 Bledsoe et al. Sep 1990 A
4955396 Fralick et al. Sep 1990 A
4957281 Christolear, Jr. Sep 1990 A
4964402 Grim et al. Oct 1990 A
4991234 Greenberg Feb 1991 A
4996979 Grim et al. Mar 1991 A
5005563 Veale Apr 1991 A
5018514 Grood et al. May 1991 A
5019050 Lynn et al. May 1991 A
5025782 Salerno Jun 1991 A
5027688 Suzuki et al. Jul 1991 A
5027801 Grim Jul 1991 A
5027802 Donohue Jul 1991 A
5036837 Mitchell et al. Aug 1991 A
5036838 Sherman Aug 1991 A
5052375 Stark et al. Oct 1991 A
5070866 Alexander et al. Dec 1991 A
5078128 Grim et al. Jan 1992 A
5088481 Darby Feb 1992 A
5100403 Hotchkiss et al. Mar 1992 A
5102411 Hotchkiss et al. Apr 1992 A
5116359 Moore May 1992 A
5125400 Johnson, Jr. Jun 1992 A
5135470 Reeves Aug 1992 A
5139475 Robicsek Aug 1992 A
5141489 Sereboff Aug 1992 A
5156589 Langen et al. Oct 1992 A
5163451 Grellas Nov 1992 A
5167612 Bonutti Dec 1992 A
5191903 Donohue Mar 1993 A
5197942 Brady Mar 1993 A
5201702 Mars Apr 1993 A
5201772 Maxwell Apr 1993 A
5203321 Donovan et al. Apr 1993 A
5211161 Stef May 1993 A
5213094 Bonutti May 1993 A
5213095 Dague May 1993 A
5218954 van Bemmelen Jun 1993 A
5226245 Lamont Jul 1993 A
5232435 Leibinsohn Aug 1993 A
5252101 Rosenwinkel et al. Oct 1993 A
5252102 Singer et al. Oct 1993 A
5261125 Cartwright et al. Nov 1993 A
5277695 Johnson, Jr. et al. Jan 1994 A
5285773 Bonutti et al. Feb 1994 A
5297540 Kaiser et al. Mar 1994 A
5312322 Santana May 1994 A
5316022 Schiek, Sr. May 1994 A
5323435 Baversten Jun 1994 A
RE34661 Grim Jul 1994 E
5327882 Saringer et al. Jul 1994 A
5328448 Gray, Sr. Jul 1994 A
5329705 Grim et al. Jul 1994 A
5348530 Grim et al. Sep 1994 A
5349956 Bonutti Sep 1994 A
5352216 Shiono et al. Oct 1994 A
5354260 Cook Oct 1994 A
5364323 Liu Nov 1994 A
5365947 Bonutti Nov 1994 A
5370133 Darby et al. Dec 1994 A
5372597 Hotchkiss et al. Dec 1994 A
5376091 Hotchkiss et al. Dec 1994 A
5376360 Domke et al. Dec 1994 A
5378223 Grim et al. Jan 1995 A
5385536 Burkhead et al. Jan 1995 A
5389065 Johnson, Jr. Feb 1995 A
5391132 Greenwald Feb 1995 A
5395303 Bonutti et al. Mar 1995 A
5399152 Habermeyer et al. Mar 1995 A
5403265 Berguer et al. Apr 1995 A
5407420 Bastyr et al. Apr 1995 A
5407422 Matthijs et al. Apr 1995 A
5417643 Taylor May 1995 A
5419757 Daneshvar May 1995 A
5421874 Pearce Jun 1995 A
5435009 Schild et al. Jul 1995 A
5437611 Stern Aug 1995 A
5452205 Telepko Sep 1995 A
5453075 Bonutti et al. Sep 1995 A
5453082 Lamont Sep 1995 A
5456268 Bonutti Oct 1995 A
5456286 Warner et al. Oct 1995 A
5464385 Grim Nov 1995 A
5466213 Hogan et al. Nov 1995 A
5466250 Johnson, Jr. et al. Nov 1995 A
5472407 Schenck Dec 1995 A
5492133 McVicker Feb 1996 A
5503619 Bonutti Apr 1996 A
5503622 Wehr Apr 1996 A
5503908 Faass Apr 1996 A
5518009 Ruiz-Gonzalez May 1996 A
5520181 Kreidler et al. May 1996 A
5520628 Wehr May 1996 A
5527269 Reithofer Jun 1996 A
5531669 Varnau Jul 1996 A
5535274 Braitberg et al. Jul 1996 A
5538486 France et al. Jul 1996 A
5571077 Klearman et al. Nov 1996 A
5577998 Johnson, Jr. et al. Nov 1996 A
5605535 Lepage Feb 1997 A
5609570 Lamont Mar 1997 A
5611764 Bonutti et al. Mar 1997 A
5620411 Schumann et al. Apr 1997 A
5626537 Danyo et al. May 1997 A
5647378 Farnum Jul 1997 A
5653680 Cruz Aug 1997 A
5665059 Klearman et al. Sep 1997 A
5681269 Basaj et al. Oct 1997 A
5685830 Bonutti Nov 1997 A
5755679 Selner et al. May 1998 A
5761834 Grim et al. Jun 1998 A
5772619 Corbett Jun 1998 A
5778565 Holt et al. Jul 1998 A
5788659 Haas Aug 1998 A
5792084 Wilson et al. Aug 1998 A
5820577 Taylor Oct 1998 A
5823975 Stark et al. Oct 1998 A
5833639 Nunes et al. Nov 1998 A
5839139 Fink Nov 1998 A
5848979 Bonutti et al. Dec 1998 A
5848983 Basaj et al. Dec 1998 A
5865773 Koledin Feb 1999 A
5882320 Peterson Mar 1999 A
5882323 Belkin Mar 1999 A
5919148 Marko et al. Jul 1999 A
5929782 Stark et al. Jul 1999 A
5940992 Darby Aug 1999 A
5943705 Sink Aug 1999 A
5980435 Joutras et al. Nov 1999 A
6007500 Quintinskie, Jr. Dec 1999 A
6021780 Darby Feb 2000 A
6027468 Pick Feb 2000 A
6053169 Hunt Apr 2000 A
6059576 Brann May 2000 A
6093162 Fairleigh et al. Jul 2000 A
6099489 Herzberg et al. Aug 2000 A
6113562 Bonutti et al. Sep 2000 A
6142964 Gilmour Nov 2000 A
6142965 Mathewson Nov 2000 A
6155994 Hubbard et al. Dec 2000 A
6179747 Kelley Jan 2001 B1
6179800 Torrens Jan 2001 B1
6184797 Stark et al. Feb 2001 B1
6228044 Jensen et al. May 2001 B1
6267742 Krivosha et al. Jul 2001 B1
6296595 Stark et al. Oct 2001 B1
6371123 Stark et al. Apr 2002 B1
6384755 Hayden May 2002 B1
6409691 Dakin et al. Jun 2002 B1
6436058 Krahner et al. Aug 2002 B1
6485447 Lavery et al. Nov 2002 B1
6502577 Bonutti Jan 2003 B1
6503213 Bonutti Jan 2003 B2
6509659 Carroll et al. Jan 2003 B1
6572571 Lowe Jun 2003 B2
6575926 Bonutti Jun 2003 B2
6599255 Zhang Jul 2003 B2
6599263 Bonutti et al. Jul 2003 B1
6637429 Mundrick et al. Oct 2003 B2
6682497 Jensen et al. Jan 2004 B2
6743187 Solomon Jun 2004 B2
6770047 Bonutti Aug 2004 B2
6890285 Rahman et al. May 2005 B2
6921377 Bonutti Jul 2005 B2
6929616 Bonutti et al. Aug 2005 B2
6958048 Bonutti Oct 2005 B2
6974431 Jensen Dec 2005 B2
7112179 Bonutti et al. Sep 2006 B2
7182738 Bonutti et al. Feb 2007 B2
7204814 Peles Apr 2007 B2
7306573 Bonutti Dec 2007 B2
7404804 Bonutti Jul 2008 B2
20010047209 Solomon Nov 2001 A1
20020029784 Stark Mar 2002 A1
20020183655 Zhang Dec 2002 A1
20040153010 Bonutti Aug 2004 A1
20040215120 Jensen Oct 2004 A1
20060036205 Bonutti Feb 2006 A1
20070038161 Bonutti et al. Feb 2007 A1
20070055190 Bonutti et al. Mar 2007 A1
20070100267 Bonutti et al. May 2007 A1
20070135738 Bonutti et al. Jun 2007 A1
20070197605 Glombik et al. Aug 2007 A1
20070219475 Bonutti et al. Sep 2007 A1
20070219476 Bonutti et al. Sep 2007 A1
20080091132 Bonutti Apr 2008 A1
20080188356 Bonutti Aug 2008 A1
Foreign Referenced Citations (21)
Number Date Country
2066151 Oct 1992 CA
2065669 Oct 1993 CA
405327 Oct 1924 DE
2829562 Jan 1980 DE
8806231.7 May 1988 DE
0181668 May 1986 EP
0181688 May 1986 EP
0380060 Jan 1990 EP
0510840 Oct 1992 EP
2661333 Apr 1990 FR
4261657 Sep 1992 JP
2001 087296 Apr 2001 JP
1158195 May 1985 SU
1426580 Sep 1988 SU
1671296 Aug 1991 SU
WO 8804543 Jun 1988 WO
WO 2004073143 Jan 2004 WO
WO 2005086741 Sep 2005 WO
WO 2007051168 May 2007 WO
WO 2007109638 Sep 2007 WO
WO 2008036895 Aug 2008 WO
Related Publications (1)
Number Date Country
20090036814 A1 Feb 2009 US
Continuations (3)
Number Date Country
Parent 11181238 Jul 2005 US
Child 12181520 US
Parent 10329895 Dec 2002 US
Child 11181238 US
Parent 09664922 Sep 2000 US
Child 10329895 US