This invention generally relates to jewelry and, in particular relates to finger rings.
A typical finger ring comprises a generally circular band, a setting attached to the band and a gemstone held by the setting. Gemstones exist in many different colors, such as diamonds, rubies, emeralds, sapphires, etc. The utility of such ornamental jewelry would be greatly enhanced if the color of the gemstone could be changed periodically and easily.
There is a need for an improved ring that would allow the color of the gemstone to be easily changed.
The present invention is a ring capable of holding interchangeable gemstones of different colors. This has the advantage of allowing a ring wearer to select the gemstone color that matches the color of his/her attire. It also creates the illusion that the wearer owns a multitude of rings.
One aspect of the invention is a ring comprising a loop made of spring wire, the loop comprising first and second end portions that are movable relative to each when the loop is flexed; a first half-setting mounted to the first end portion; and a second half-setting mounted to the second end portion, the first and second half-settings being movable between open and closed positions during flexure of the loop, the first and second half-settings in the closed positions forming a setting capable of securely holding a gemstone and in the open positions being incapable of securely holding the same gemstone.
Another aspect of the invention is a ring comprising: a loop made of spring wire, the loop comprising first and second end portions that are movable relative to each when the loop is flexed; and a setting for a gemstone comprising first and second sets of prongs, the first prong set being mounted on the first end portion of the loop, and the second prong set being mounted on the second end portion of the loop, wherein the first and second sets of prongs have a first state when the loop is flexed due to application of pressure on both sides thereof to overcome resistance to bending of the spring wire and a second state when no pressure is applied to either side of the loop, the first and second sets of prongs being capable of securely holding a gemstone in the second state but not in the first state.
A further aspect of the invention is a kit comprising a ring and first and second gemstones, wherein the first and second gemstones have the same maximum width, and the ring comprises: a loop made of spring wire, the loop comprising first and second end portions that are movable relative to each when the loop is flexed; and a setting comprising first and second sets of prongs, the first prong set being mounted on the first end portion of the loop, and the second prong set being mounted on the second end portion of the loop, wherein the first and second sets of prongs have a first state when the loop is flexed due to application of pressure on both sides thereof to overcome resistance to bending of the spring wire and a second state when no pressure is applied to either side of the loop, the first and second sets of prongs being capable of securely holding either of the first and second gemstones in the second state but being incapable of securely holding either of the first and second gemstones in the first state.
Other aspects of the invention are disclosed and claimed below.
Reference will now be made to the drawings in which similar elements in different drawings bear the same reference numerals.
Although the embodiments disclosed herein are finger rings, the structure and principle of operation of the invention also has application in pendants and earrings.
As used herein, the word “spring” should be given its ordinary meaning as understood by persons skilled in the art of mechanics, such as “the quality of a material that will cause it to return quickly to its original position after being moved” [taken from Academic Press Dictionary of Science and Technology, Harcourt Brace Jovanovich, 1992]. Therefore, the term “spring wire” refers to wire that has the foregoing property. In particular, when a loop of such spring wire is squeezed with sufficient force, the end portions of the loop move away from each other while the portions on opposite sides of the loop, where the forces are being applied, move toward each other; and when the compressive force is removed, the loop will spring back to its original state.
The half-settings 4 and 6 comprise respective sets of prongs 12a-12c and 14a-14c, which hold the large gemstone securely in place when the half-settings are in their respective closed positions. This state is referred to herein as “the setting is closed”. It should be appreciated, however, that the half-settings may be separated at opposite ends thereof by small gaps when the setting is closed. These gaps become larger when the ring loop is squeezed together. The setting is held in the closed position by the spring bias of the ring loop 2.
The half-settings further comprise multiple claws 16 which hold the small gemstones 10 securely in place in a well-known manner.
To separate the half-settings 4 and 6 so that the gemstone 8 will be released, the resistance to bending of the spring wire must be overcome. This is accomplished by applying sufficient compressive force or pressure on the sides of the ring, e.g., by squeezing the sides of the ring using a thumb and a forefinger, as shown in
Referring back to
When the sides of the single spring wire of loop 2′ are squeezed together with sufficient force, the half-settings 4 and 6 will separate to release the gemstone 8′. After the gemstone 8′ has been released, a gemstone similar in size and shape but different in color may be installed. The fact that the ring loop 2′ is not a closed circular band and is made of spring wire makes it possible to open the gemstone setting at will. One ring (with the large gemstone removed) and two or more interchangeable large gemstones can be sold as a kit.
The spring wire material used to form the ring loop may be any suitable metal alloy, such as silver alloy.
While the invention has been described with reference to various embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation to the teachings of the invention without departing from the essential scope thereof. Therefore it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention. In particular, the structure claimed hereinafter is not limited to use in finger rings, but can also be incorporated in pendants or earrings.