The present invention generally relates to a finer-type peristaltic infusion pump comprising a ribbed anvil rigidly accepting a flexible infusion tube when it is pressed by a pressing-finger
This invention relates to a design using ribs on the pumping substrate of a peristaltic pump. At present peristaltic pumps find use in medical settings to add nutrients to blood, to force blood through filters to clean it as in dialysis, or to move blood through the body and lungs during open heart surgery. They are advantageous in these situations since the pump elements do not contact the pumped fluid, eliminating any possibility of contamination. Additionally the pumping action is gentle enough that blood cells are not damaged. Further uses include pumping aggressive chemicals, high solids slurries and other materials where isolation of the product from the environment, and the environment from the product, are critical. As the operation of such a pump can be critical for life support, they are generally provided with battery back up. The efficiency of the device thus becomes an important parameter since the length of time it can remain in operation while on battery power is limited by its efficiency.
It is thus the object of the present invention to provide a finer-type peristaltic pump (DDS) comprising a plurality of pressing-fingers, infusion-tube, and a passive interface mechanism; wherein this passive interface mechanism comprising (a) a means for accommodating said flexible infusion tube and mounting the same in a location suitable for said pressing-fingers to apply an approximated tangential force on said tube to squeeze it; (b) a ribbed anvil rigidly accepting said flexible tube when it is pressed by said finger; and further wherein said anvil comprising one or more of the following (i) a plurality of ribs facing said fingers' tip, (ii) a plurality of ribs located in between said fingers, or (iii) any combination thereof.
Another object is to provide a DDS as defined above, wherein one or more of said ribs is of a different height as compared with others ribs (reference ribs), so as the squeezed volume of the infused fluid per pumping cycle provided by said one or more ribs is either bigger or smaller height as compared with squeezed volume provided by said reference ribs.
Another object is to provide a DDS as defined above, wherein one or more of said ribs is of a different width as compared with others ribs (reference ribs), so as less pressing force is required by a given finger for shutting off said infusion tube against narrower ribs as compared with reference ribs, and vice versa, more pressing force is required by a given finger for shutting off said infusion tube against wider ribs as compared with reference ribs.
Another object is to provide a DDS as defined above, especially adapted to provide optimization means for calibrating each finger's force requirements per single pumping cycle by widening or narrowing adjacent rib's width.
Another object is to provide a DDS as defined above, wherein one or more of said ribs is of a different specifications: namely width and/or profile characteristics as compared with others ribs (reference ribs), in the manner that less pressing force is required by a given finger for shutting off said infusion tube against said ribs as compared with said reference ribs, so as minimized tube's degradation is provided due to continuous shutting off of the flexible tube by said fingers pressing tips.
Another object is to provide a method of obtaining a predetermined flow capacity, comprising of obtaining a DDS as defined in any of the above; and adjusting the specifications one or more of said ribs, namely altering its width and/or profile characteristics, hence accepting a respectively wide range of infusion-tubes types, flexibility, conditions and diameters, with no requirement of controlling pump's pumping parameters
In order to understand the invention and to see how it may be implemented in practice, a plurality of preferred embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawing, in which
The following description is provided, alongside all chapters of the present invention, so as to enable any person skilled in the art to make use of said invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, will remain apparent to those skilled in the art, since the generic principles of the present invention have been defined specifically to provide a finer-type peristaltic pump comprising a ribbed anvil rigidly accepting a flexible infusion tube when it is pressed by a pressing-finger.
The term ‘plurality’ refers hereinafter to any integer number equal or higher 1, e.g., 2 to 10, especially 2 to 4.
The present invention pertains to finger-type peristaltic pump (DDS) that utilizes a passive mechanical interface adapted to incorporate a set of infusion tubing with a pumping mechanism and various sensors, wherein the back portion of the mechanical interface is provided as an anvil accepting those M pressing fingers.
The term passive interface relates to a mechanical interface of the set tubing to the DDS that has no moving parts or static members being an integral part of the aforesaid pumping mechanism of sensors thereof, e.g., pistols, hinges, cams, wheels, sealing membranes, gaskets etc. A plurality of N ribs is located inside said back-portion of the interface. A portion of the ribs (n1) is located below the fingers tips, and a portion (n2) is located in between those fingers. N and M are any integer numbers, wherein n1 is either equal or different then n2. It is acknowledged in this respect that according to one possible embodiment of the present invention, no ribs are located under the fingers. The ribs provide useful means for calibrating the flowing volume in said tube in each pumping cycle. The ribs further provide useful means for an individual calibration of the force requires by each of the pressing fingers to complete shutoff of the infusion tube. The ribs further allow optimization of the energy consumes to shutoff the tube and the energy requires allowing fluids flow in said tube. The ribs also provide useful means for minimizing degradation of the infusion tube, especially by optimizing the surfaces of the finger tips continuously pressing the tube. Moreover, the present invention also provides useful means for energy optimization. Lastly, the ribs facilitate the immobilization the infusion tube by mechanical interface of the pressing fingers, e.g., to approach a relatively wide range of tubes (diameter, elasticity, regulatory of the surface etc) so as a constant volume of fluid is pumped per a given pumping cycle.
Controlling the volume of fluid is pumped per a given pumping cycle: Reference is now made to
Optimization of Energy Requires to Shutoff the Infusion Tube vs Energy Requires to Facilitate a Fluid Flow Thorough This Tube
The pumping fingers are adapted to apply an approximately perpendicular force on the flexible infusion tube to squeeze it, so as one of its walls will bend and touch the opposite wall and fluids flow will shutoff. In theory a continues contact line between the tube walls will produce a complete shutoff, however grater force is needed to produces a pressure—on the tube walls—high enough to overcome tube's surface irregularities. It is acknowledged that smaller pressing area in the aforesaid tube's shutoff location requires less force. Upper zoomed-in scheme presents a case of the prior art whereat pressing-forces are spread upon the flexible tube, more area is to be squeezed and hence stronger forces are to be applied; wherein lower zoomed-in scheme presents a case according to one embodiment of the present invention wherein pressing forces are focused towards the rib and less force is required for complete shut off of the infusion tube.
Reference is now made to
It is in the scope of the invention wherein the capacity of the flow can be calibrated, e.g., by adjusting the width or other proportions of one or more ribs. Similarly, the force which is required to provide an optimal flow capacity can be calibrated and adjusted. The proportions of length and width of ribs under the pressing fingers, rib's profile and cross sections, as well as other dimensions of the rids in the passive interface mechanism, allow the optimization of capacity to flow ratio. The height of the ribs under the pressing fingers provides for calibration of the sealing properties of eh mechanism. A method of calibrating the fluid's flow capacity is also disclosed, and comprised of steps of adjusting the proportions of the ribs under the pressing fingers as defined above.
Number | Date | Country | Kind |
---|---|---|---|
179231 | Nov 2006 | IL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2007/001398 | 11/13/2007 | WO | 00 | 5/10/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/059492 | 5/22/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2056322 | Hoppe | Oct 1936 | A |
2743898 | King | May 1956 | A |
3443585 | Reinicke | May 1969 | A |
3982722 | Bernard | Sep 1976 | A |
3982725 | Clark | Sep 1976 | A |
4014318 | Dockum et al. | Mar 1977 | A |
4039269 | Pickering | Aug 1977 | A |
4155362 | Jess | May 1979 | A |
4236880 | Archibald | Dec 1980 | A |
4270532 | Franetzki et al. | Jun 1981 | A |
4320781 | Bouvet et al. | Mar 1982 | A |
4450375 | Siegal | May 1984 | A |
4489863 | Horchos et al. | Dec 1984 | A |
4682135 | Yamakawa | Jul 1987 | A |
4728265 | Cannon | Mar 1988 | A |
4741736 | Brown | May 1988 | A |
4893991 | Heminway et al. | Jan 1990 | A |
4978335 | Arthur, III | Dec 1990 | A |
5096385 | Georgi et al. | Mar 1992 | A |
5103211 | Daoud et al. | Apr 1992 | A |
5152680 | Okada | Oct 1992 | A |
5165874 | Sancoff et al. | Nov 1992 | A |
5213483 | Flaherty et al. | May 1993 | A |
5222946 | Kamen | Jun 1993 | A |
5257978 | Haber et al. | Nov 1993 | A |
5290158 | Okada | Mar 1994 | A |
5395320 | Padda et al. | Mar 1995 | A |
5429485 | Dodge | Jul 1995 | A |
5499969 | Beuchat et al. | Mar 1996 | A |
5509439 | Tantardini | Apr 1996 | A |
5527295 | Wing | Jun 1996 | A |
5575309 | Connell | Nov 1996 | A |
5577891 | Loughnane et al. | Nov 1996 | A |
5593134 | Steber et al. | Jan 1997 | A |
5658252 | Johnson | Aug 1997 | A |
5683233 | Moubayed et al. | Nov 1997 | A |
5782805 | Meinzer et al. | Jul 1998 | A |
5807322 | Lindsey et al. | Sep 1998 | A |
5896076 | Van Namen | Apr 1999 | A |
5996964 | Ben-Shalom | Dec 1999 | A |
6095189 | Ben-Shalom | Aug 2000 | A |
6164921 | Moubayed et al. | Dec 2000 | A |
6165874 | Powell et al. | Dec 2000 | A |
6203296 | Ray et al. | Mar 2001 | B1 |
6213739 | Phallen et al. | Apr 2001 | B1 |
6261262 | Briggs et al. | Jul 2001 | B1 |
6339410 | Milner et al. | Jan 2002 | B1 |
6371732 | Moubayed et al. | Apr 2002 | B1 |
6450773 | Upton | Sep 2002 | B1 |
6537244 | Paukovits et al. | Mar 2003 | B2 |
6692241 | Watanabe et al. | Feb 2004 | B2 |
6733476 | Christenson et al. | May 2004 | B2 |
7018361 | Gillespie, Jr. et al. | Mar 2006 | B2 |
7022075 | Grunwald et al. | Apr 2006 | B2 |
7122026 | Rogers et al. | Oct 2006 | B2 |
7163385 | Gharib et al. | Jan 2007 | B2 |
20020156402 | Woog et al. | Oct 2002 | A1 |
20020165503 | Morris et al. | Nov 2002 | A1 |
20030040700 | Hickle et al. | Feb 2003 | A1 |
20030182586 | Numano | Sep 2003 | A1 |
20040181314 | Zaleski | Sep 2004 | A1 |
20040191112 | Hill et al. | Sep 2004 | A1 |
20050088409 | Van Berkel | Apr 2005 | A1 |
20060051218 | Harttig | Mar 2006 | A1 |
20060083644 | Zumbrum et al. | Apr 2006 | A1 |
20070269324 | Goldor et al. | Nov 2007 | A1 |
20080095649 | Ben-Shalom et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
10118086 | Jul 2002 | DE |
0215249 | Mar 1987 | EP |
0225158 | Jun 1987 | EP |
2632529 | Dec 1989 | FR |
60043188 | Mar 1985 | JP |
6-169992 | Jun 1994 | JP |
2002-57738 | Feb 2002 | JP |
2004141418 | May 2004 | JP |
9116933 | Nov 1991 | WO |
03027503 | Apr 2003 | WO |
2008059493 | May 2008 | WO |
2008059494 | May 2008 | WO |
2008059495 | May 2008 | WO |
2008059496 | May 2008 | WO |
2008059498 | May 2008 | WO |
2008059499 | May 2008 | WO |
2008130644 | Oct 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090317268 A1 | Dec 2009 | US |