The present invention generally relates to the field of image processing. More specifically, the present invention relates to a machine representation of fingerprints based on geometric and photometric invariant properties of triangular images. Further, the present invention relates to intentionally distorting the machine representation of fingerprints based on triangles and then using the distorted representation in secure and privacy-preserving transaction processing.
A biometric is a physical or behavioral characteristic of a person that can be used to determine or authenticate a person's identity. Biometrics such as fingerprint impressions have been used in law enforcement agencies for decades to identify criminals. More recently other biometrics such as face, iris and signature are starting to be used to identify persons in many types of transactions, such as check cashing and ATM use. An automated biometrics identification system analyzes a biometrics signal using pattern recognition techniques and arrives at a decision whether the query biometrics signal is already present in the database. An authentication system tests whether the query biometrics is equal, or similar, to the stored biometrics associated with the claimed identity. A generic automated biometrics system has three stages: (i) signal acquisition; (ii) signal representation and (iii) pattern matching.
Biometrics can be used for automatic authentication or identification of a (human) subject. Typically, the subject is enrolled by offering a sample biometric when opening, e.g., a bank account or subscribing to an internet service. From this sample biometric, a template is derived that is stored and used for matching purposes at the time the user wishes to access the account or service. A biometric more or less uniquely determines a person's identity. That is, given a biometric signal, the signal is either associated with one unique person or significantly narrows down the list of people with whom this biometric might be associated. Fingerprints are excellent biometrics, since two people with the same fingerprints have never been found. On the other hand, biometric signals such as weight or shoe size are poor biometrics since these physical characteristics obviously have little discriminatory value.
Biometrics can be divided up into behavioral biometrics and physiological biometrics. Behavioral biometrics include signatures 110 and voice prints 120 (see
Referring now to
The biometric signal 210 that is input to the system can be acquired either locally with the matching application on the client, or remotely with the matching application running on some server. Hence, architecture of system 200 applies to both networked and non-networked applications.
The following article describes examples of the state of the prior art: Ratha et al., “Adaptive Flow Orientation Based Feature Extraction in Fingerprint Images”, Pattern Recognition, Vol. 28, No. 11, pp. 1657-1672, November 1995, the disclosure of which is incorporated by reference herein in its entirety.
Referring now to
Automated biometrics in essence amounts to signal processing of a biometrics signal 210 to extract features 215. A biometrics signal is some nearly unique characteristic of a person. A feature is a subcharacteristic of the overall signal, such as a ridge bifurcation in a fingerprint or the appearance of the left eye in a face image. Based on these features, a more compact template representation is typically constructed 220. Such templates are used for matching or comparing 225 with other similarly acquired and processed biometric signals. As described below, it is the process of obtaining templates from biometrics signals that is slightly different when privacy preserving, revocable biometrics are used.
A specific signal representation of a fingerprint in terms of triangles formed by triples of minutiae is disclosed in U.S. Pat. No. 6,041,133, entitled “Method and Apparatus for Fingerprint Matching Using Transformation Parameter Clustering Based on Local Feature Correspondences”, issued on Mar. 21, 2000, commonly assigned to the assignee herein, and incorporated by reference herein in its entirety.
Invariant geometric properties of triangles are computed and stored in hash tables pointing to lists of enrolled fingerprints during the registration (enrollment) stage. At authentication time, again invariant geometric properties of triangles are extracted from a fingerprint image and these triangles are used to vote for possible matches. This allows for fast searching of large fingerprint databases. This system is designed for large-scale one-to-many searching.
One of the impediments in advancing the use of biometric authentication in commercial transaction systems is the public's perception of invasion of privacy. Beyond private information such as name, date of birth and other similar parametric data, the user is asked to give images of their body parts, such as fingers, face, and iris. These images, or other biometrics signals, will be stored in digital form in databases in many cases. With this digital technology, it may be very easy to copy biometrics signals and use the data for other purposes. For example, hackers could snoop on communication channels and intercept biometrics signals and reuse them without the knowledge of the proper owner of the biometrics. Another concern is the possible sharing of databases of biometrics signals with law enforcement agencies, or sharing of these databases among commercial organizations. The latter, of course, is a concern for any data gathered about customers. These privacy concerns can be summarized as follows. First, much data about customers and customer behavior is stored. The public is concerned about every bit of additional information that is known about them. Second, the public is, in general, suspicious of the central storage of information that is associated with individuals. This type of data ranges from medical records to biometrics. These databases can be used and misused for all sorts of purposes, and the databases can be shared among organizations. Third, the public is, rightfully or wrongfully so, worried about giving out biometrics because these could be used for matching against databases used by law enforcement agencies. They could be, for example, matched against the FBI or INS fingerprint databases to obtain criminal records.
Hence, the transmission and storage of biometrics coupled with other personal parametric data is a concern. The potential use of these biometrics for searching other databases is a further concern.
Many of these concerns are aggravated by the fact that a biometric cannot be changed. One of the properties that make biometrics so attractive for authentication purposes, their invariance over time, is also one of the liabilities of biometrics. When a credit card number is somehow compromised, the issuing bank can assign the customer a new credit card number. In general, when using artificial means, such an authentication problem can be easily fixed by revoking (canceling) the compromised token and reissuing a new token to the user. When a biometric is compromised, however, the user has very few options. In the case of fingerprints, the user has nine other options (his other fingers), but in the case of face or iris, the alternatives are quickly exhausted or nonexistent.
A further inconvenience of biometrics is that the same biometrics may be used for several, unrelated applications. That is, the user may enroll for several different services using the same biometrics: for building access, for computer login, for ATM use, and so on. If the biometrics is compromised in one application, the biometrics is essentially compromised for all of them and somehow would need to be changed.
Some prior art methods propose revoking keys and other authentication tokens. Since the keys and certificates are machine generated, they are easy to revoke conceptually.
A prior art image morphing technique that creates intermediate images to be viewed serially to make a source object metamorphose into a different object is disclosed in U.S. Pat. No. 5,590,261 (hereinafter the “'261 Patent”), entitled “Finite-element Method for Image Alignment and Morphing”, issued on Dec. 31, 1996, the disclosure of which is herein incorporated by reference in its entirely.
The '261 Patent describes a finite element-based method to determine the intermediate images based on motion modes of embedded nodal points in the source and the target image. Embedded nodal points that correspond to feature points in the images are represented by a generalized feature vector. Correspondence of feature points in the source and target image are determined by closeness of points in the feature vector space. This technique is applied to the field of video production not biometrics, and focuses on a correspondence assignment technique that reduces the degree to which human intervention is required in morphing. Furthermore, for this technique to be applicable, the source and the target images must be known.
The following patents also are incorporated by reference herein in their entirety: U.S. Pat. No. 5,793,868 (hereinafter the “'868 Patent”), entitled “Certificate Revocation System”, issued on Aug. 11, 1998; U.S. Pat. No. 5,666,416 (hereinafter the “'416 Patent”), entitled “Certificate Revocation System”, issued on Sep. 9, 1997; and U.S. Pat. No. 5,717,758 (hereinafter the “'758 Patent”), entitled “Witness-based Certificate Revocation System”, issued on Feb. 10, 1998.
The '868 Patent discloses certificate management involving a certification authority (CA). Often, when the key in a public key infrastructure has been compromised, or the user is no longer a client of a particular CA, the certificate has to be revoked. The CA periodically issues a certificate revocation list (CRL) which is very long and needs to be broadcast to all. The disclosure proposes to generate a hash of at least a part of the certificate. Minimal data identifying the certificate is added to the CRL if the data items are shared by two or more revoked certificates. The proposed method thus optimizes the size of the CRL, hence, lessening transmission time. The '868 Patent deals with machine generated certificates, not signals of body parts. Furthermore, it is concerned with making the revocation process more efficient rather than with making it possible at all.
The '416 Patent deals with public key management without explicitly providing any list of revoked certificates. A user can receive an individual piece of information about any public key certificate. Methods are described to provide positive information about the validity status of each not-yet expired certificate. In the proposed method, the CA will provide certificate validity information without requiring a trusted directory. In addition, it also describes schemes to prove that a certificate was never issued or even existed in a CA. The techniques described here are only applicable to machine generated keys that are easily canceled, not to biometrics.
The '758 Patent further deals with a public key infrastructure. In the proposed scheme, an intermediary provides certificate information by receiving authenticated certificate information, then processing a portion of the authenticated information to obtain the deduced information. If the deduced information is consistent with the authentication information, a witness constructs the deduced information and authenticates the deduced information. The main novelty of the disclosure is that it avoids transmission of a long certificate revocation list (CRL) to all users and the handling of non-standard CRL is left to the intermediary. The method addresses issues relevant to machine generated keys and their management, but not to biometric signals. Again, the focus is on the privacy of certificates and the efficiency of revocation, not on making revocation possible in the first place.
The following patent is incorporated by reference in its entirety: Perlman et al., “Method of Issuance and Revocation of Certificate of Authenticity Used in Public Key Networks and Other Systems”, U.S. Pat. No. 5,261,002 (hereinafter the “'002 Patent”), November 1993, the disclosure of which is herein incorporated by reference in its entirely.
The '002 Patent describes a technique to issue and revoke user certificates containing no expiration dates. The lack of expiration dates minimizes overhead associated with routine renewals. The proposed method issues a signed list of invalid certificates (referred to as a blacklist) containing a blacklist start date, a blacklist expiration date, and an entry for each user whose certificate was issued after the black list start date but is now invalid. The method describes revocation and issuance of machine generated certificates, but does not address the special properties of biometrics.
Standard cryptographic methods and biometric images or signals are combined in the following patent, which is incorporated by reference in its entirety: U.S. Pat. No. 4,993,068 (hereinafter the “'068 Patent”), entitled “Unforgeable Personal Identification System”, issued on Feb. 12, 1991, the disclosure of which is herein incorporated by reference in its entirely.
The '068 Patent deals with combining standard cryptographic methods and biometric images or signals. The proposed scheme encrypts a set of physically immutable identification credentials (e.g., biometrics) of a user and stores them on a portable memory device. It uses modern public key or one-way cryptographic techniques to make the set of credentials unforgeable. These credentials are stored in a credit-card sized portable memory device for privacy. At a remote site, the user presents the physical biometrics (i.e., himself or his body parts) and the portable memory card for comparison by a server. This technique, though useful, is susceptible to standard attacks on the encryption scheme and can potentially expose the biometrics if the encryption is broken. Furthermore, after decryption, the true biometrics signals are available to the server for possible comparison with other databases thus lessening personal privacy.
The following patent is incorporated by reference in its entirety: U.S. Pat. No. 5,434,917 (hereinafter the “'917 Patent”), entitled “Unforgeable Identification Device, Identification Device Reader and Method of Identification”, issued on Jul. 18, 1995.
The '917 Patent deals with designing an unforgeable memory card at an affordable price without the need to have a processor on the card. The plastic support of the card is manufactured with randomly distributed ferrite particles. This unique distribution of particles is combined with standard user identification information to create a secure digital signature. The digital signature along with the owner ID is then stored on the card (by use of a magnetic strip or similar means). The reader authenticates the user by reading the ID and also sensing the ferrite particle distribution. It then checks that the stored digital signature is the same signature as would be formed by combining the given ID and the observed particle distribution. The unforgeable part of the technique is related to the random distribution of ferrite particles in the plastic substrate during fabrication process. The identification details of the owner are not related to biometrics.
A software system called “Stirmark” that is directed to evaluating the robustness of data hiding techniques is described by Petitcolas et al., in “Evaluation of Copyright Marking Systems”, Proc. IEEE Multimedia Systems 99, Vol. 1, pp. 7-11 and 574-579, June 1999.
The Stirmark system applies minor, unnoticeable geometric distortions in terms of slight stretches, shears, shifts, bends, and rotations. Stirmark also introduces high frequency displacements, a modulated low frequency deviation, and smoothly distributed error into samples for testing data hiding techniques. This disclosure is concerned with testing if a watermark hidden in the signal can be recovered even after these unnoticeable distortions. This system does not intentionally distort a signal in order to enhance privacy or to allow for revocation of authorization.
Both approaches are referred to as revocable biometrics because, from the application viewpoint, it makes no difference how the revocability is introduced. The important point in both implementations is that different encodings can be chosen for different people, or for the same person at different times and applications. Furthermore, it is important that these encodings are reproducible so that a similar result is obtained each time the biometrics signal from the same person is processed. In the discussion to follow, specific methods for 310 and 380 are described for obtaining suitably encoded biometric signals and biometric templates.
The following patent application is incorporated by reference in its entirety: Bolle et al., “System and Method for Distorting a Biometric for Transactions with Enhanced Security and Privacy,” U.S. patent application Ser. No. 09/595935 (hereinafter the “'935 Patent Application”), filed Jun. 16, 2000.
The '935 Patent Application proposes distortion of either the biometric template or the biometric signal for various biometric identifiers (images and signals). The '935 Patent Application does not propose practical fingerprint representations in terms of triangles; it does not propose practical revocable fingerprint representations in terms of transforming triangles. The image data is not transformed specifically by warping triangular image data to fit it into transformed triangles or to transform triangles from 1-dimensional or m-dimensional descriptions to transformed 1-dimensional or m-dimensional descriptions.
These and other drawbacks and disadvantages of the prior art are addressed by the present invention, which is directed to fingerprint biometric machine representations based on triangles.
According to an aspect of the present invention, there is provided an apparatus for representing biometrics. The apparatus includes a biometric feature extractor and a transformer. The biometric feature extractor is for extracting features corresponding to a biometric depicted in an image, and for defining at least one set of at least one geometric shape by at least some of the features. Each of the at least one geometric shape has at least one geometric feature that is invariant with respect to a first set of transforms applied to at least a portion of the image. The transformer is for applying the first set of transforms to the at least a portion of the image to obtain at least one feature representation that includes at least one of the at least one geometric feature, and for applying a second set of transforms to the at least one feature representation to obtain at least one transformed feature representation.
According to another aspect of the present invention, there is provided a method for representing biometrics. Features are extracted that correspond to a biometric depicted in an image. At least one set of at least one geometric shape is defined by at least some of the features. Each of the at least one geometric shape has at least one geometric feature that is invariant with respect to a first set of transforms applied to at least a portion of the image. The first set of transforms are applied to the at least a portion of the image to obtain at least one feature representation that includes at least one of the at least one geometric feature. The second set of transforms are applied to the at least one feature representation to obtain at least one transformed feature representation.
These and other aspects, features and advantages of the present invention will become apparent from the following detailed description of exemplary embodiments, which is to be read in connection with the accompanying drawings.
The present invention may be better understood in accordance with the following exemplary figures, in which:
For many applications, user authentication is an important and essential component. Automated biometrics can provide accurate and non-repudiable authentication methods. In the digital world, the same advantage comes with several serious disadvantages. The digital representation of a biometrics signal can be used for many applications unbeknownst to the owner. Secondly, the signal can be easily transmitted to law enforcement agencies thus violating the users' privacy. The present invention provides methods to overcome these problems employing transformations of fingerprint representations based on triangles to intentionally distort the original fingerprint representation so that no two installations share the same resulting fingerprint representation.
The present invention describes revocable fingerprint representations, specific instances of revocable biometric representations, also referred to herein as “anonymous” biometrics”. Unlike traditional biometric representations, these biometric representations can be changed when they are somehow compromised. A revocable biometric representation is a transformation of the original biometric representation which results in an intentional encoded biometric representation of the same format as the original representation. This distortion is repeatable in the sense that, irrespective of variations in recording conditions of the real-world biometric, it generates the same (or very similar) encoded biometric representations each time. If the encoding is non-invertible, the original biometric representation can never be derived from the revocable biometric, thus ensuring extra privacy for the user. More specifically, a focus is made on fingerprint representations in terms of encoded triangles. However, it is to be appreciated that the present invention is not limited solely to fingerprints and, thus, other biometrics may be readily employed by the present invention while maintaining the spirit of the present invention.
Fingerprint image compression could be considered to be revocable fingerprint representations, however, the present invention is different from these prior art techniques. In compression, there exist lossy methods which do not preserve all the details of the original signal. Such transforms are indeed noninvertable. Depending on the exact method of compression, there are even some image processing operations that can be performed directly on the compressed data. In general, however, the data is decompressed before being used. Moreover, unlike encryption, the method for doing this is usually widely known and thus can be applied by any party. Moreover, the decompressed signal is, by construction, very close to the original signal. Thus, it can often be used directly in place of the original signal so there is no security benefit to be gained by this transformation. Furthermore, altering the parameters of the compression engine (to cancel a previous distortion) will result in a decompressed signal which is still very similar to the original.
While fingerprint encryption also could be considered to be a revocable fingerprint representation, the present invention is different from these prior art techniques. In encryption, the transmitted signal is not useful in its raw form; it must be decrypted at the receiving end to make sense. Furthermore, all encryption systems are, by design, based on invertable transforms and will not work with noninvertable functions. With encryption systems, it would still be possible to share the signal with other agencies without the knowledge of the owner. Revocable fingerprint representations are encodings of fingerprints that can be matched in the encoded domain. Unlike encrypted fingerprint representations, no decryption key is needed for matching two fingerprints.
Traditional biometrics, such as fingerprints, have been used for (automatic) authentication and identification purposes for several decades. Signatures have been accepted as a legally binding proof of identity and automated signature authentication/verification methods have been available for at least 20 years.
One preferred embodiment of the present invention is the use of triangles to represent fingerprints. Therefore, without loss of generality, a description will now be given regarding applying triangles to fingerprints. Note that other geometric shapes can be used with other non-fingerprint biometrics. For example, face images can be represented by quadrilaterals made of four spatially adjacent landmark face feature points (e.g., corner of lips, nostrils, corner of eyes, etc.). Moreover, the present invention may include, but is not limited to, the following geometric shapes: a chain-code, a polyline, a polygon, a normalized polygon, a square, a normalized square, a rectangle, a normalized rectangle, a triangle, and a normalized triangle.
Further, it is to be appreciated that while the present invention is primarily described with respect to a fingerprint image, the present invention may be applied to images that correspond to, but are not limited to, the following: a complete biometric, a partial biometric, a feature, a feature position, a feature property, a relation between at least two of the features, a subregion of another image, a fingerprint image, a partial fingerprint image, an iris image, a retina image, an ear image, a hand geometry image, a face image, a gait measurement, a pattern of subdermal blood vessels, a spoken phrase, and a signature.
Referring to
In some preferred acquisition modes, for one or more triangular representations of fingerprint images, subsets (triplets) of the feature points for a given fingerprint image are generated in a deterministic fashion. One or more of the subsets (triplets) of feature points for the given fingerprint image is selected. For each selected subset (triplet), data is generated that characterizes the fingerprint geometry in the vicinity of the selected subset (triplet). The data corresponding to the selected subset (triplet) is used to form a key (or index). The key is used to store and retrieve entries from a multi-map, which is a form of associative memory which permits more than one entry stored in the memory to be associated with the same key. An entry is generated that preferably includes an identifier that identifies the fingerprint image which generated this key and information (or pointers to such information) concerning the subset (triplet) of feature points which generated this key. The entry labeled by this key is then stored in the multi-map.
In some preferred recognition modes, a query (triangular representation) fingerprint image is supplied to the system. Similar to the acquisition mode, subsets (triplets, e.g., A, B, and C) of feature points of the query fingerprint image are generated in a preferably, consistent (e.g., similar) fashion. One or more of the subsets (triplets) of the feature points of the query fingerprint image is selected. For each selected subset (triplet), data is generated that characterizes the query fingerprint in the vicinity of the selected subset (triplet). The data corresponding to the selected subset is used to form a key. All entries in the multi-map that are associated with this key are retrieved. As described above, the entries includes an identifier that identifies the referenced fingerprint image. For each item retrieved, a hypothesized match between the query fingerprint image and the reference fingerprint image is constructed. This hypothesized match is labeled by the identifier of the reference fingerprint image and optionally, parameters of the coordinate transformation which bring the subset (triplet) of features in the query fingerprint image into closest correspondence with the subset (triplet) of features in the reference fingerprint image. Hypothesized matches are accumulated in a vote table. The vote table is an associative memory keyed by the reference fingerprint image identifier and the transformation parameters (if used). The vote table stores a score associated with the corresponding reference fingerprint image identifier and transformation parameters (if used). When a newly retrieved item generates a hypothesis that already exists in the associative memory, the score corresponding to the retrieved item is updated, for example by incrementing the score by one. Finally, all the hypotheses stored in the vote table are sorted by their scores. This list of hypotheses and scores is preferably used to determine whether a match to the query fingerprint image is stored by the system. Alternatively, this list of hypotheses and scores may be used as an input to another mechanism for matching the query fingerprint image. Thus, for example, in one illustrative embodiment of the present invention, a similarity between an enrolled image and the query image is ascertained by a number of indices common in the query template and an enrollment template respectively corresponding thereto. In another illustrative embodiment of the present invention, a similarity between an enrolled image and a query image is ascertained by a number of selected geometric shapes that index to common indices in the query template and an enrollment template respectively corresponding thereto. In yet another embodiment of the present invention, a similarity between an enrolled image and a query image is ascertained by pairs of selected enrolled and query geometric shapes that index to common indices in the query template and an enrollment template respectively corresponding thereto and that are related to each other by a common similarity transform. Similarity may be determined based on, but not limited to, the following: a hamming distance, a vector comparison, a closeness algorithm, a straight number to number comparison. It is to be appreciated that the preceding approaches for determining similarity between an enrolled image and a query image are merely illustrative and, given the teachings of the present invention provided herein, one of ordinary skill in the related art will contemplate these and various other approaches for determining similarity between an enrolled image and a query image while maintaining the spirit of the present invention.
The feature points of a fingerprint image are preferably extracted from a gray scale image of the fingerprint acquired by digitizing an inked card, by direct live-scanning of a finger using frustrated total internal reflection imaging, by 3-dimensional range-finding techniques, or by other technologies.
The feature points of a fingerprint image are preferably determined from singularities in the ridge pattern of the fingerprint. As shown in
Geometric features to which the present invention may be applied or may employ include, but are not limited to, a line length, a side length, a side direction, a line crossing, a line crossing count, a statistic, an image, an angle, a vertex angle, an outside angle, an area bounded by the at least one geometric shape, a portion of the area bounded by the at least one geometric shape, an eccentricity of the at least one geometric shape, an Euler number of the at least one geometric shape, compactness of the at least one geometric shape, a slope density function of the at least one geometric shape, a signature of the at least one geometric shape, a structural description of the at least one geometric shape, a concavity of the at least one geometric shape, a convex shape enclosing the at least one geometric shape, a shape number describing the at least one geometric shape.
In the acquisition mode and recognition mode described in detail below, subsets (triplets) of feature points (e.g., minutiae) of a given fingerprint image are selected and, for each selected subset (triplet), data is generated that characterizes the fingerprint image in the vicinity of the selected subset of feature points. Preferably, such data includes geometric data like a distance S associated with each pair of feature points that make up the selected subset, and a local direction (θ) of the ridge at coordinates (x,y) of each feature point in the selected subset. More specifically, the distance S associated with a given pair of feature points preferably represents the distance of a line drawn between the corresponding feature points. In addition, the local direction (θ) associated with a given feature point preferably represents the direction of the ridge at the given feature point with respect to a line drawn from the given feature point to another feature point in the selected subset. For example, for the triplet of feature points A,B,C illustrated in
In addition, the data characterizing the fingerprint image in the vicinity of the selected subset of feature points preferably includes a ridge count associated with the pairs of feature points that make up the selected subset. More specifically, the ridge count RC associated with a given pair of feature points preferably represents the number of ridges crossed by a line drawn between the corresponding feature points. For example, for the triplet of feature points A, B,C illustrated in
There are many different implementations for extracting invariant features and the associated data, all of which may be used by the present invention. For example, the feature points and associated data may be extracted automatically by image processing techniques as described in “Advances in Fingerprint Technology”, Edited by Lee et al., CRC Press, Ann Arbor, Mich., Ratha et al., “Adaptive Flow Orientation Based Texture Extraction in Fingerprint Images”, Journal of Pattern Recognition, Vol. 28, No. 1, pp. 1657-1672, November, 1995.
In particular, fingerprint invariant feature extraction techniques that may be used are described in the following United States Patents, which are commonly assigned to the assignee herein, and which are incorporated by reference herein in their entireties: U.S. Pat. No. 6,072,895, entitled “System and Method Using Minutiae Pruning for Fingerprint Image Processing”, issued on Jun. 6, 2000; and U.S. Pat. No. 6,266,433, entitled “System and Method for Determining Ridge Counts in Fingerprint Image Processing”, issued Jul. 24, 2001.
A typical “dab” impression will have approximately forty feature points which are recognized by the feature extraction software, but the number of feature points can vary from zero to over one hundred depending on the morphology of the finger and imaging conditions.
A more detailed description of the derivation of feature points and associated data, the acquisition mode, and the recognition mode wherein the structure to represent the database is a hash table are described U.S. Pat. No. 6,041,133, entitled “Method and Apparatus for Fingerprint Matching Using Transformation Parameter Clustering Based on Local Feature Correspondences”, issued on Mar. 21, 2000, commonly assigned to the assignee herein, and incorporated by reference herein in its entirety.
According to one embodiment of the present invention, triangles (and in general polygons) can be utilized to represent fingerprints (or other images). Moreover, the present invention provides methods to develop machine representations of polygons (especially triangles) of (fingerprint) image data. These representations are invariant to a certain amount of fingerprint image noise and fingerprint image distortions from print to print and there exists a finite, countable number of those triangles/polygons. In addition to the geometric information related to the point features (e.g., side of the triangle), the prior art uses image information in the immediate spatial neighborhood of the image point features (e.g., direction of ridge near minutiae) or the narrow linear strip of image in the neighborhood of the line joining point features (e.g., ridge count between minutiae, length). These types of information are collectively referred to herein as geometric features. Not only is invariant geometric information about the triangles/polygons used, but as a novel aspect, invariant features of the photometric data obtained from the image region near (preferably inside) the triangles/polygons itself is used. That is, the fingerprint representation is hybrid in that both geometric data and fingerprint image (e.g., photometric) data is used. It is to be noted that “photometric” data as described herein includes sensed image measurement including, but not limited to, depth, reflectance, dielectric properties, sonar properties, humidity measurements, magnetic properties, and so forth. It is to be further noted that photometric data as referred to herein refers to image information corresponding to a region associated with the polygons (e.g., triangles) constituting image point features.
Step 1004 inputs geometric features of a triplet of minutiae (in this embodiment). That is, a triplet is a combination of three minutiae that are selected from the set of minutiae as computed from a fingerprint image. In this embodiment, these features are associated with the geometric ridge structure inside and surrounding the polygon/triangle such as the ones shown in
It is to be appreciated that any other geometric features computed from the geometric shape may also be utilized with respect to the present invention including, but not limited to, eccentricity of the geometric shape, an Euler number of the geometric shape, compactness of the geometric shape, slope density function of the geometric shape, a signature of the geometric shape, a structural description of the geometric shape, a concavity of the geometric shape, a convex shape enclosing the geometric shape, a shape number describing the geometric shape. The computation of these shape geometric features is taught in the following reference, the disclosure of which is incorporated by reference herein in its entirety: Computer Vision, Ballard et al., Prentice Hall, New Jersey. pages 254-259.
Step 1004 further selects geometric features of the triangle that are invariant to rotation and translation (i.e., rigid transformations) of the triangle in image or two-space. In addition, very specific invariant fingerprint features (RC1, RC2, RC3) are included. Alternatively, step 1004 selects geometric features of the triangle that are invariant to rotation, translation, and scaling (i.e., similarity transformations) of the triangle in two-space.
Optional step 1008 inputs invariant photometric features as computed from the fingerprint gray-scale image region. These features are associated with the fingerprint image profile around the triangle/polygon within a region, preferably within the polygons/triangles, such as the ones of,
By a way of illustration, photometric features may include, but are not limited to, the following: an intensity, a pixel intensity, a normal vector, a color, an intensity variation, an orientation of ridges, a variation of image data, a statistic of at least one region of the image, a transform of the at least one region of the image, a transform of at least one subregion of the image, a statistic of the statistic or transform of the two or more subregions of the image. The statistic may include, but is not limited to, the following: mean, variance, histogram, moment, correlogram, and pixel value density function. Photometric features also include transform features of the image region such as Gabor transform, Fourier Transform, Discrete Cosine Transform, Hadamard Transform, Wavelet Transform of the image region. Further, if the given image region is partitioned into two or more image subregions and means or variances of each such region can constitute the photometric features. When more than one photometric feature is computed by partitioning a given image region into two or more subregions, a statistic of such photometric features is also a photometric feature. Similarly, when more than one photometric feature is computed by partitioning a given image region into two or more subregions, a spatial gradient of such photometric features is also a photometric feature. The ways of computing different photometric features, ways of decomposing a region into subregions, ways of computing statistics and transforms of the image regions, and combining and composing more image photometric features from already computed photometric features are well known to those of ordinary skill in the related art and such methods are intended to be encompassed within the scope of the present invention. The following reference relating to image retrieval and image features is incorporated by reference herein in its entirety: Image Retrieval: Current Techniques, Promising Directions And Open Issues, Rui et al., Journal of Visual Communication and Image Representation, Vol. 10, No. 4, pp. 39-62, April 1999.
Example photometric features include, but are not limited to, statistics such as mean, variance, gradient, mean gradient, variance gradient, etc., of preferably, the circular image region 726 shown in
The photometric features are extracted and selected using known means of feature selection. For example, feature selection is described in the following reference, the disclosure of which is incorporated by reference herein in its entirety: Pattern Classification (2nd Edition), Duda et al., Wiley-Interscience, 2000.
For example, a large number of known photometric features extracted from a representative fingerprint image data set (also called training data) and one or more of these features are selected that result in best matching performance for the training data with known ground truth (i.e., which pairs of fingerprints should match is known a priori).
Step 1012 encodes/transforms the features from steps 1004 and 1008. Two exemplary approaches to performing step 1012 are described herein. However, it is to be appreciated that other approaches may also be employed while maintaining the spirit of the present invention.
In the first approach, vectors X1 and X2 are concatenated X =(S1, S2, S3, θ1, θ2, θ3, RC1, RC2, RC3, a1, a2, a3, . . .) and a vector Y is constructed as follows:
Y=K X,
with Y=(y1, y2, y3, . . .). See below for a description of K.
In the second approach, two separate vectors Y1 and Y2 are constructed as follows:
Y1=K1X1 and Y2=K2 X2,
where, preferably, K2=I (the identity matrix) and Y2=X2.
Step 1012 preferably is achieved using the first approach. In a preferred embodiment, the transform K combines the geometric invariants and the photometric invariants of the triangles/polygons in a novel fashion. The method of KLT transform K is known to those of ordinary skill in the related art and is described, e.g., in the following pattern recognition reference, the disclosure of which is incorporated by reference herein in its entirety: Pattern Classification (2nd Edition), Duda et al., Wiley-Interscience, 2000.
KLT transform uses the training data of fingerprints and their features (X mentioned above) and simulates a transform K that transforms X into a set orthogonal vectors Y resulting in uncorrelated components y1, y2, y3. These components y1, y2, y3, . . . are also invariant to rotation, translations, (& scaling) of the triangles. The elements y1, y2, y3, . . . of training data Y are uncorrelated and if the training data describes (predicts) the user population well, the random variables y1, y2, y3, . . . will be uncorrelated.
Let us proceed with this vector X. For a given triangular/polygonal area of fingerprint image data, the vector X represents all the invariant (finger) properties that can be extracted from a region inside (shrink) or surrounding the triangle/circle. In the physical sense, by invariant properties we mean those properties of an image, preferably a fingerprint, or more preferably, those properties of an individual finger that, when scanned from paper impressions, live-scan, and so forth, remain invariant from one impression to the next. Note that because of the peculiar imaging process, these invariants may have to be coarsely quantized. Loosely invariant properties such as “the triangle lies in upper-left quadrant,” which is a binary random variable may be included as components of the vector X. Mathematically, this means that these properties are invariant to rigid transformations or similarity transformations.
As described in
If K is estimated from fingerprint training data triangles that are representative of the type of triangles found in the user population, the components Y=(y1, y2, y3, . . . , yn) are independent (or at least uncorrelated). Moreover, the energy or variance that is present in the vector X as a set of random variables, is now concentrated in the lower order components of vector Y. Optional step 1016 takes advantage of this by only selecting the first m=<n components Y′=(y1, y2, y3, . . . , yn). This vector Y′ or this set of numbers is a unique representation of fingerprint image data in and around the triangle formed by a combination of three (or more) minutiae as further depicted in
As noted above,
In accordance with the principles of the present invention, a preferred way to extract invariant image features from the triangles is shown in the bottom part of
As a last step, either the elements of Y′ are quantized and enumerated at step 1020, or the triangles are ordered and quantized 1024.
Yi=(yi1, yi2, yi3, . . . , yim)T
Each of the m components is independently quantized through some process Y→Y. First in
The coordinate system 754 of
Y=(y1, y2, y3)T→Y=(y1, y2, y3)T
takes on only a finite number of values. If the estimates of empirical distribution estimates are accurate and there are N different triangles obtained by sampling the (y1, y2, y3) space, the prior probabilities equal 1/N.
Generally, with a mapping of X to lower dimensional Y space of m dimensions Y=(y1, y2, . . . , ym)T (m is optionally smaller than n; if the components of X are independent, m=n) where the mapping is constructed as indicated above, the different components can be quantized in N1, N2, . . . , Nm levels. The prior probability then for each of the different triangles is as follows:
1/(N1.N2. . . . . Nm)=1/N
So the component values can be enumerated and therefore the number of possible triangles/polygons that can be distinguished in a fingerprint image can be determined from a set of training data. Hence, a machine representation can be constructed that describes a fingerprint as a set of unique triangles/polygons.
Next, rather than representing a triangle by a vector Y, a preferred embodiment represents a triangle by a single, scalar number, which allows the ordering, quantizing, and enumerating of step 1024 in
The physical description of this is shown on the right-hand side of
This is the mapping from an n-dimensional space to a 1-dimensional space as prescribed by the statistical KLT. There are other ways such a mapping (after quantization) of the components of =Y=(y1, y2, y3, . . . , ym)T to a scalar value are envisioned and which may be employed in accordance with the present invention while maintaining the spirit of the present invention.
A preferred method here is to construct a scalar value by rearranging the bits of the y1, y2, y3, . . . , ym. A new bit string y can be constructed as follows:
y=1(y1)1(y2) . . . 1(ym)2(y1)2(y2) . . . 2(ym-1) . . . m(y1) . . .
where the functions 1(y)2(y) . . . m(y) are the 1st, 2nd . . . , m-th bit of the quantized number y. This forms again a many-to-one mapping from the Y to the to the discrete numbers {0,1,2, . . . , N}. Other ways of mapping the bits of the m numbers into a single number are within the scope of the present invention.
Each individual fingerprint then is a real-world set of triangles/polygons and a fingerprint representation is a set of triangles. A machine representation of a fingerprint is a subset {tj} of the possible N triangles. This machine representation is, of course, as good as the triangles and their invariant properties can be extracted. The machine representation can be refined by adding additional fingerprints (hence, triangles). As in any stochastic measuring system, though, there will be spurious triangles, missing triangles, and triangles that are too distorted and therefore poorly estimated statistical invariants of the triangles. The representation of a fingerprint by triangles offers a certain amount of privacy because if the encoding scheme is unknown it is unknown what the different triangles are. However, if someone skilled in the art would obtain the encoding scheme in such machine fingerprint representation, by computationally laying out the triangles such that as many as possible fit together by coinciding the vertices, that is, the minutiae, the fingerprint can be decoded. To further encode or encrypt the fingerprint, during enrollment the triangles can be transformed. This makes decoding the original fingerprint a computational impossibility.
Referring to
X=(S1, S2, S3, θ1, θ2, θ3, RC1, RC2, RC3, a1, a2, a3, . . .),
where S1, S2, S3, represent rigid-body geometric invariants (lengths), θ1, θ2, θ3 represent invariant angles, RC1, RC2, RC3 ridge counts, and the a1, a2, a3 represent photometric invariants.
Step 808, which involves the extraction of photometric invariants, is an optional step. The input to process 808 is transformed triangular image regions and surroundings of image data. The image data is converted by the same prescribed encoding as the geometric data. Invariant photometric features are associated with the transformed fingerprint gray-scale image data within and surrounding, e.g., a circle, polygons/triangles. These features include statistics such as mean, variance, gradient, mean gradient, variance gradient, and so forth. The features also include statistical estimates of image quality. These features further include the decomposition of transformed triangular image data into basis functions by transforming vectors of image data within the triangles, thereby describing the photometric profile of the fingerprint surrounding the triplet in terms of a small number of invariance a1, a2, a3. . . . Such decompostions include the Karhunen-Loeve Transform, and other decorrelating transforms like the Fourier transform, the Walsh-Hadamar transform, and so forth. The output of such an encoding is a vector X2 =(a1, a2, a3, . . .) but this time the photometric invariance are extracted from transformed triangles.
Next in the flowchart of
“Decrease the largest edge of the triangle by 20%;” or
“Multiply the smallest angle by a factor 1.5.”
In the case of
“Decrease the largest edge length e1 to the square root of e1;” or
“Take the smallest angle and square it.”
In both cases, this is achieved by mapping the image data within triangle 815 into the triangle 819 and resampling the data. It is immediately clear that if the input triangle is small, the mapping will be imprecise. The mapping 817 needs to be defined as a unique, one-to-one mapping.
Here, as an example, the largest edge is aligned with the x-axis, the y-axis intersects the largest edge in the middle. In general, one of the invariants is estimated and the triangle is transformed so that the invariant is placed in a canonical position.
Transformation 821 provides image data 823, positioned in the xy coordinate system 824. The transform 825, again, can be linear
(x′, y′)T=Diag (0.8 1) (x y)T,
i.e., defined as an affine transformation. In this case, we have x′=0.8 . x; y′=y, but in general the matrix does not have to be diagonal. The transform can be nonlinear, for example
x′=sqrt (x); y′=y.
Alternatively this can be achieved by mapping the triangle 815 into some canonical position in a polar coordinate system, followed by an affine transform of the polar coordinates (r, θ)—r the radial coordinate and θ the angular coordinate (often called the polar angle). The canonical position could be the alignment of the largest edge with the r axis. Essentially, any of the geometric constraints or invariants of the triangle can be used to transform a triangle to a canonical position.
The above described methods rely on transforming the triangles, essentially performing specific distortions on pieces of image data. In U.S. patent application Ser. No. 09/595,935,entitled “System and Method for Distorting a Biometric for Transactions with Enhanced Security and Privacy”, filed Jun. 16, 2000, commonly assigned to the assignee herein, and incorporated by reference herein in its entirety, these are called signal transformations. When dealing with triangular representations of fingerprints, more preferred methods to obscure identities by transforming the triangles, called template transformation, are discussed in FIGS., 8C and D.
(z1, z2, . . . , zm)T=Z=T Y=(y1, y2, . . . , ym)T
z=T y
is a one-to-one mapping from a set of N numbers to another set of N numbers. This maps a unique triangle y to a triangle 849 described by z. Preferably this one-to-one mapping is nonlinear so that the transformation has no unique one-to-one inverse transform.
Alternatively, as explained in
z=T y followed by z=Q z.
This essentially amounts to reranking, renumbering, reordering the triangles thereby privatizing representation of the fingerprint representations.
z=Ty
This is a one-to-one mapping privatizing the triangles to a scale z 868. The table Q 865 finally assigns a set of transformed triangles z870 also numbered from 0-11 (as in
In particular,
These and other features and advantages of the present invention may be readily ascertained by one of ordinary skill in the pertinent art based on the teachings herein. It is to be understood that the teachings of the present invention may be implemented in various forms of hardware, software, firmware, special purpose processors, or combinations thereof. Most preferably, the teachings of the present invention are implemented as a combination of hardware and software. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPU”), a random access memory (“RAM”), and input/output (“I/O”) interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. It is to be further understood that, because some of the constituent system components and methods depicted in the accompanying drawings are preferably implemented in software, the actual connections between the system components or the process function blocks may differ depending upon the manner in which the present invention is programmed. Given the teachings herein, one of ordinary skill in the pertinent art will be able to contemplate these and similar implementations or configurations of the present invention.
Although the illustrative embodiments have been described herein with reference to the accompanying drawings, it is to be understood that the present invention is not limited to those precise embodiments, and that various changes and modifications may be effected therein by one of ordinary skill in the pertinent art without departing from the scope or spirit of the present invention. All such changes and modifications are intended to be included within the scope of the present invention as set forth in the appended claims.