The present patent application claims the priority benefit of French patent application FR15/53921 which is herein incorporated by reference.
The present application relates to fingerprint or palmprint sensors, and more generally to sensors of prints of skin portions.
Various types of sensors have been provided to perform an electronic acquisition of a fingerprint and/or of a palmprint, that is, to provide an image of the pattern formed by the ridges and valleys (or depressions) of the skin of a finger, of a plurality of fingers, and/or of the palm of the hand. Optical sensors, capacitive sensors, thermal sensors, ultrasound sensors, and electric field sensors have in particular been provided.
Capacitive, thermal, and/or optical print sensors formed in TFT (“Thin Film Transistor”) technology, that is, comprising, on a dielectric support substrate, one or a plurality of elementary acquisition cells, each elementary cell (or pixel) comprising a photoelectric, pyroelectric, and/or capacitive acquisition element, and one or a plurality of TFTs enabling to control this element, are here particularly considered. TFT here designates transistors formed by successive depositions of conductive, insulating, and semiconductor layers on the support substrate. In particular, in a TFT, the semiconductor channel-forming region of the transistor is formed by deposition of a layer of a semiconductor material, for example, hydrogenated amorphous silicon, polysilicon (silicon which is made polycrystalline after an anneal, for example), or also a material of IGZO (“Indium Gallium Zinc Oxide”) type, where such a deposition may be preceded or followed by the deposition of a conductive layer used to form a gate, source, or drain electrode of the transistor. Print sensors made in TFT technology have the advantage of having a relatively low cost, particularly due to the use of a support substrate made of a low-cost material such as glass (instead of a single-crystal silicon substrate generally used to form transistors) and of being easily integrable in many types of electronic devices, and in particular in devices already using the TFT technology to carry out other functions, for example, to form display screens. The TFT technology is particularly advantageous in the field of print sensors where the sensor surface is substantially identical to the surface of the print to be acquired, that is, where no optical focusing system (or lens) is placed between the sensor and the object having its image desired to be acquired. Indeed, such sensors generally have relatively large surface areas, particularly when the print to be acquired involves a plurality of fingers and/or on the palm of the hand, and thus take advantage of the low cost of TFT technology. Embodiments will be described hereafter in relation with illustrative examples of implementation in TFT technology. The described embodiments are however not limited to TFT technology.
It would be desirable to be able to improve at least certain aspects of existing thermal, optical, and/or capacitive print sensors.
To achieve this, an embodiment provides a print sensor comprising, on a support substrate, a plurality of elementary acquisition cells, each cell comprising: a sense node; a first photoelectric or pyroelectric conversion element having a first electrode connected to the sense node and a second electrode connected to a control node of the cell; and a third electrode connected to the sense node, the third electrode being coated with a dielectric layer and being intended to form a capacitor with a user's skin, wherein, in each cell, the control node is capable of receiving a control signal enabling to implement the reading out, from the sense node, of a value representative of the capacitance formed between the third electrode and the user's skin.
According to an embodiment, in each cell, the first element is a photoelectric conversion element.
According to an embodiment, in each cell, the first element is a photodiode having its anode connected to the control node and having its cathode connected to the sense node.
According to an embodiment, each cell further comprises a pyroelectric conversion element connected between the control node and the sense node, in parallel with the first element.
According to an embodiment, in each cell, the first element is a pyroelectric conversion element.
According to an embodiment, each cell further comprises a photoelectric conversion element coupled to the sense node via a selection transistor.
According to an embodiment, the control signal is a square voltage wave.
According to an embodiment, the sensor further comprises a light source and/or a heat source.
According to an embodiment, in each cell, the sense node is coupled to a node of application of a reset potential via a reset transistor.
According to an embodiment, in each cell, the sense node is coupled to an output track of the cell via a transistor assembled as a follower source and a readout transistor.
The foregoing and other features and advantages will be discussed in detail in the following non-limiting description of specific embodiments in connection with the accompanying drawings, among which:
For clarity, the same elements have been designated with the same reference numerals in the different drawings. Further, only those elements which are useful to the understanding of the described embodiments have been detailed. In particular, the peripheral control circuits of the elementary cells of the described TFT print sensors have not been detailed, the forming of such circuits being within the abilities of those skilled in the art on reading of the present description. It should further be noted that in the present description, when architectures of elementary cells, of elementary cell arrays, or of print sensors are described, term “connected” is used to designate a direct electric connection, with no intermediate electronic component, for example, by means of a conductive track, and term “coupled” is used to designate an electronic connection which may be direct or via intermediate components, for example, via a transistor. Further, in the following description, when reference is made to terms qualifying absolute positions, such as terms “front”, “rear”, “top”, “bottom”, “left”, “right”, etc., or relative positions, such as terms “above”, “under”, “upper”, “lower”, etc., or to terms qualifying directions, such as terms “horizontal”, “vertical”, etc., it is referred to the orientation of the drawings.
Output track CL of cell 111 is connected to an output stage 113 of the sensor. In this example, output stage 113 comprises an amplifier 115 having an input coupled to track CL and having its output coupled to an analog-to-digital converter 117 (ADC). Amplifier 115 is optional, and may in particular be omitted if the potential level of track CL is compatible with the input of analog-to-digital converter 117.
Sensor 110 further comprises an illumination light source, not shown. As an example, the illumination source is arranged on the side of the substrate surface opposite to cells 111, which will be called hereafter by convention lower surface of the substrate.
Sensor 110 operates as follows. The user places one finger (or a plurality of fingers and/or the palm) on or above the upper surface of the sensor (on the side of cells 111). The backlighting light source, arranged on the substrate side opposite to the cells, illuminates the finger through transparent areas of the assembly formed by the support substrate and cells 111. The light is then backscattered by the finger towards photodetectors PS with, at the level of each cell 111, a variable attenuation according to whether the finger portion located above the cell corresponds to a ridge or to a valley (or a depression) of the finger skin. As a variation, the light source may be placed above or next to the finger, the light being then transmitted by the finger towards photodetectors PS of the sensor, with a variable attenuation according to whether the finger portion located above the cell corresponds to a ridge or to a valley of the finger skin. In this last embodiment, a red or infrared illumination is for example selected, so that the quantity of light transmitted through the finger is significant.
During a phase of acquisition of an image point of a print by a cell 111, photodetector PS of the cell is first reset via transistor RT of the cell. Transistor RT is then made non-conductive and, during an integration period, photogenerated charges (generally negative) accumulate on sense node SN of the cell. At the end of the integration, the potential of sense node SN is transferred onto output track CL of the cell via transistors SF and RD. To achieve this, transistor RD of the cell is made conductive. The potential of output track CL is then read by the output stage 113 associated with output track CL. As an example, the potential of the sense node may also be read after the resetting and before the beginning of the integration, the output value of the pixel then being the difference between the reference value read before the integration and the value read after the integration.
As an example, a plurality of elementary cells 111 may be connected to a same output track CL and share a same output stage 113 of the sensor. Cells 111 are for example arranged in an array of rows and columns, the cells of a same column being connected to a same output track CL and to a same output stage 113, and the cells of different columns being connected to different output tracks CL and to different output stages 113. As an example, cells 111 are simultaneously controllable row by row, that is, the cells 111 of a same row have their nodes VGRT, respectively VGRD, connected to a same control track and the cells 111 of different rows have their nodes VGRT, respectively VGRD, connected to different control tracks.
GND.
Sensor 120 further differs from sensor 110 of
Sensor 120 operates as follows. The user having placed one (or a plurality of) finger(s) on or above the upper surface of the sensor (on the side of cells 121), the heat source of the sensor is turned on and heats pyroelectric conversion elements PYR which accordingly generate electric charges on sense nodes SN of the corresponding cells 121. The quantity of heat received by each pyroelectric conversion element PYR when the heat source is turned on is greater when the corresponding cell is topped with a skin valley than when it is topped with a ridge. Indeed, when the cell is topped with a ridge, the skin (which is a relatively good heat conductor) absorbs a more significant part of the heat emitted by the source than when the cell is topped with a valley. Thus, when a cell is topped with a skin valley, the quantity of electric charges generated on its sense node SN is greater than when the cell is topped with a ridge.
During a phase of acquisition of an image point of a print by a cell 121, sense node SN of the cell is first reset via transistor RT. During an integration period (transistor RT off), charges generated by pyroelectric conversion element PYR accumulate on sense node SN of the cell. At the end of the integration, the potential of sense node SN is transferred onto output track CL of the cell via transistors SF and RD. To achieve this, transistor RD of the cell is turned on. The potential of output track CL is then read by the output stage 113 associated with output track CL. As an example, the potential of the sense node may also be read after the resetting and before the beginning of the integration, the output value of the pixel then being the difference between the reference value read before the integration and the value read after the integration.
Preferably, during an acquisition, the heat source is controlled to generate a heat pulse, and the cells are read from some time after the beginning of the pulse, and/or little after the end of this pulse, to do away with thermalization phenomena causing, over time, the uniformization of the charge levels accumulated on the sense nodes SN of the different cells.
As in the example of
Sensor 130 operates as follows. The user places one (or a plurality of) finger(s) on or above the upper surface of the sensor (on the side of electrodes EL). On acquisition of an image point of the print by a cell 131, sense node SN of the cell is first reset via transistor RT of the cell. Transistor RT is then turned off, and then a control signal, for example, a square or stepped voltage, is applied to control node CMD of the cell by a control circuit, not shown. A reference value may be read from node SN after the resetting and before the application of the square voltage pulse. Reference capacitor CREF and the capacitor formed between electrode EL and the finger skin form a capacitive dividing bridge. A potential depending on the capacitance obtained between electrode EL and the skin is then established on sense node SN of the cell. The value of this potential is different according to whether electrode EL is topped with a ridge or with a valley of the user's skin (since the capacitance obtained between electrode EL and the skin is different according to whether electrode EL is topped with a ridge or with a valley of the skin). The potential of node SN is transferred onto output track CL of the cell via transistors SF and RD, after which the potential of output track CL is read out by the output stage 113 associated with output track CL. The step applied to node CMD can then be taken back to its initial value.
According to an aspect of the described embodiments, a print sensor formed in TFT technology is provided, the sensor comprising, on a transparent insulating support substrate, for example, made of glass, a plurality of elementary acquisition cells, each cell comprising a photoelectric or pyroelectric conversion element, enabling to acquire an optical or thermal image of a print, and an element for reading out a capacitive image of the print.
An advantage of such a sensor is that the two images are acquired by means of acquisition elements based on phenomena (optical and capacitive, or thermal and capacitive) which have, offhand, no physical relation. This enables to solve, to a certain extent, the difficulties encountered in the acquisition of so-called “difficult” fingerprints, that is, certain types of fingers for which usual sensors do not succeed in satisfactorily discriminating skin ridges from skin valleys. The inventors have indeed observed that a print which is difficult to acquire in the optical or thermal field is sometimes easier to acquire in the capacitive field and, conversely, that a print which is difficult to acquire in the capacitive field is easier to acquire in the optical or thermal field.
The fact of integrating the photoelectric or pyroelectric conversion element and the capacitive element in a same elementary cell enables to share control TFTs and thus to limit the bulk, the complexity, and the cost of the sensor.
More particularly, each cell comprises, as in the example of
According to an aspect of the described embodiments, the cells however comprise no specific reference capacitor as in the example of
To acquire a thermal image, nodes CMD of cells 141 may be set to a same fixed reference potential, the operation of sensor 140 then being identical or similar to the operation of sensor 120 of
During an acquisition of a capacitive image, the heat source of the sensor may be kept off and, in each cell 141, after resetting of sense node SN of the cell via its transistor RT, a control signal capable of implementing a capacitive reading, for example, a square or stepped voltage, is applied to the node CMD of each cell 141 by a control circuit, not shown. The capacitor of element PYR and the capacitor formed between electrode EL and the skin form a capacitive dividing bridge, and a potential depending on the capacitance obtained between electrode EL and the skin is established on the sense node of each cell. The potential of node SN is transferred onto output track CL of the cell via transistors SF and RD, after which the potential of output track CL is read out by the output stage 113 associated with output track CL. The step applied to node CMD can then be taken back to its initial value.
As an example, during the acquisition of a print, the following control sequence may be implemented:
As a variation, the order of acquisition of the capacitive and thermal images may be inverted.
In addition to the fact that it enables to obtain two images, respectively thermal and capacitive, of a same print, the sensor of
In the example of
To acquire an optical image, nodes CMD of cells 161 may be set to a same fixed reference potential, the operation of sensor 160 then being identical or similar to the operation of sensor 110 of
During an acquisition of a capacitive image, the light source of the sensor may be kept off and, in each cell 161, after resetting of sense node SN of the cell via its transistor RT, a control signal capable of implementing a capacitive reading, for example, a square or stepped voltage, is applied to the node CMD of each cell 161 by a control circuit, not shown. The capacitor of element PS and the capacitor formed between electrode EL and the skin form a capacitive dividing bridge, and a potential depending on the capacitance obtained between electrode EL and the skin is established on the sense node of each cell. The potential of node SN is transferred onto output track CL of the cell via transistors SF and RD, after which the potential of output track CL is read out by the output stage 113 associated with output track CL. The step applied to node CMD can then be taken back to its initial value.
In addition to the fact that it enables to obtain two images, respectively optical and capacitive, of a same print, the sensor of
Sensor 170 further comprises, in addition to the heat source (not shown) intended for the implementation of a thermal acquisition, an illumination light source (not shown) intended for the implementation of an optical acquisition of an image. The light source and the heat source are for example controllable, via a control circuit, not shown, in order to be alternately turned on and then turned off during a print acquisition phase. Thus, during a phase of acquisition of a thermal image of the print, the light source may be turned off, and the heat source may be turned on. As a result, only pyroelectric element PYR is capable of generating electric charges representative of the pattern of the print to be acquired. During a phase of acquisition of an optical image of the print, the light source may be turned on, and the heat source may be turned off. As a result, only photodetector PS is capable of generating electric charges representative of the pattern of the print to be acquired. During a phase of acquisition of a capacitive image, the heat source and the light source may be turned off, and sensor 170 may be controlled identically or similarly to what has been described in relation with
In sensor 180, transistors SW enable, in each elementary acquisition cell, to isolate photodetector PS from the rest of the cell, which provides additional control possibilities as compared with sensor 170 of
As a variation, in the example of
Specific embodiments have been described. Various alterations, modifications, and improvements will readily occur to those skilled in the art.
In particular, various alterations and details of implementation of sensors integrating a photoelectric conversion element and a pyroelectric conversion element in a same elementary cell are described in French patent application N° 14/59494 filed on Oct. 3, 2014, which is incorporated herein by reference. It will be within the abilities of those skilled in the art to combine the various embodiments and variations described in this prior application with the embodiments of the present application, to form an optical, thermal, and capacitive sensor, where electrode EL, intended to form a capacitor with the skin, is connected to sense node SN of the cell, and where the reference capacitance for the capacitive reading is formed by a pyroelectric conversion element and/or by a photoelectric conversion element connected to sense node SN of the cell.
Further, the described embodiments are not limited to the specific examples of architectures of elementary cells shown in the drawings. In particular, the described embodiments may be adapted to elementary cells comprising a number of TFTs different from 3.
Further, although only examples of print sensors made in TFT technology have been described hereabove, the described embodiments are not limited to this specific case. It will be within the abilities of those skilled in the art to adapt the described embodiments to other technologies, for example, to print sensors made in CMOS technology on a semiconductor substrate, for example, on a single-crystal silicon substrate.
Number | Date | Country | Kind |
---|---|---|---|
1553921 | Apr 2015 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2016/050992 | 4/27/2016 | WO | 00 |