1. Technical Field
The present invention—involving finishing and bookbinding devices for collating and stacking, as well as binding into booklets, sheets onto which images have been formed by an imaging device—relates to improvements in mechanisms for perforating sheets with binder holes, and collating and stacking the sheets, as well as binding them into booklets.
2. Description of the Related Art
Widely known among finishing devices (finishers) as well as bookbinding devices (bookbinders) of this type are in general devices that sequentially stow into a storage stacker sheets fed from a printer, scanner, or like imaging device, as well as devices that collate sheets into bundles and bind them into booklets. With the former—finishing devices—incorporating a built-in mechanism for punching holes into sheets, later provided to binders, in the course of the sheets being conveyed out is known. Meanwhile, in the latter—bookbinding devices—mechanisms for applying adhesive, or adding on adhesive tape, to the spine-portion endface of collated and stacked sheet bundles, and binding them together are known.
For example, Japanese Unexamined Pat. App. Pub. No. 2007-276967 (FIG. 1) proposes: a bookbinder in which sheets from an imaging device are collated and stacked, and adhesive is applied to the sheets and they are bound together with a coversheet; and a system apparatus wherein, in a finisher provided in association with the bookbinder, punch holes are perforated in sheets from the imaging device, and the sheets are stored in a storage stacker.
The device as cited above (JP 2007-276967) is a system in which the bookbinder, which is disposed at a downstream side of the imaging device, and the finisher, which is disposed at a downstream side thereof, are linked. In a bookbinding mode, the sheets fed to a carry-in path are bound in a booklet by the bookbinder while in a finishing mode, the sheets fed to the carry-in path are forwarded to the finisher, where holes are punched, seals or stamps are applied, and a jog segmentation is also done. The sheets are then stored in a storage stacker.
After that, the spine-portion endface of the sheet bundle collated and stacked in the bookbinder is applied adhesive (or an adhesive tape) so as to bind together the sheets. In this case, roughening the spine-portion endface of the sheet bundle in an uneven shape (milling process) is known. By roughening the spine endface, this process causes the adhesive to permeate, in order to prevent sheets from coming loose.
Examples of a mechanism include that proposed in FIG. 9 and FIG. 11 of Japanese Unexamined Pat. App. Pub. No. 2007-062145, which provides a saw-toothed punching blade in a transport path of the sheets and roughens the edge of the sheets with the punching blade, at the time of applying a milling process to the sheets sequentially fed from the imaging device. In the mechanism as cited above (JP 2007-062145), the sheets moved along the transport path are roughened by pushing a punching blade by a driving cam. The sheets are roughened one by one or several sheets are roughened by piling them on top of one another.
As mentioned above, it is well known that at the time of binding the sheets transported from an imaging device, etc., into a booklet, the roughened notched grooves are formed on the spine-closure edge, and the sheets are bound together by the adhesive, etc. In particular, in the patent reference cited earlier (JP 2007-062145), there is proposed the formation of the roughened punch holes in one or several pages of sheets at the stage prior to collating and stacking the sheets.
In the mechanism proposed in the patent reference (JP 2007-062145), the saw-toothed punching blade is moved up and down by using a clank arm. When milling grooves are formed on the spine-closure edge on the transport path of the sheets in this way, the mechanism becomes simplified and compact, providing an affordable milling process. However, in this type of conventionally known milling mechanism, the punching blade is saw-tooth shaped. Due to this shape, a punching blade in a round blade shape generally used for file binders, for example, cannot be diverted for this milling mechanism. This necessitates expensive manufacturing of the punching blade, and if some defects, such as a blade is chipped, develop in the blade during usage, the entire blade has to be replaced.
In the device or the system configuration in which the finishing function of punching holes for a binder is combined with the bookbinding function of punching holes for milling, as cited in the above patent reference (JP 2007-276967), a punch unit for file binders and that for milling have to be provided separately. This necessitates a large device, which increases a cost for the punch unit. As a result, its maintenance also becomes complicated, which are shortcomings.
Therefore, the inventor has conceived the idea of selectively perforating for file binders and cutting milling grooves by the punching blade in a round blade shape.
A first object of the present invention is to provide a finisher capable of surely binding together sheets at the time of binding them into a booklet with a simple structure by perforating for file binders and cutting milling grooves by single perforating means, and also capable of providing binding holes at predetermined positions for file-binder situations.
A second object of the present invention is to provide a bookbinder capable of surely bonding the sheets by a lesser number of uneven grooves formed on the spine-closure edge at the time of binding the sheets into a booklet.
To attain the aforementioned objects, the present invention is configured to comprise perforating means for forming circular punch holes (round holes) in a transport path of sheets is arranged, and control means for controlling perforating positions and/or the number of holes by the perforating means. The control means includes (1) a first operation mode for perforating a predetermined number of punch holes on the edge of the sheet and (2) a second operation mode for perforating a predetermined number of uneven grooves on the edge of the sheet. Thereby, in the first operation mode, punch holes for a binder are perforated, and in the second operation mode, roughening grooves for binding a booklet are perforated. The main configurations will be explained below.
In one aspect, the present invention is equipped with: a convey-in path for sequentially moving sheets; stacking means for collating the sheets from the convey-in path into bundles; and adhesive-layer forming means for adding an adhesive layer to a spine-closure edge of the sheet bundle from the stacking means; and further equipped with: perforating means disposed between the convey-in path or the stacking means, and the adhesive-layer forming means, for forming circular punch holes at one or a plurality of locations on the sheet; control means arranged in the perforating means, for controlling a perforating position and/or the number of perforations; and the control means including a first operation mode for perforating punch holes for a binder on the end of the sheet and a second operation mode for perforating crenellated notch-holes on the edge of the sheet.
The perforating means is disposed along the convey-in path, the convey-in path is installed consecutively to a bookbinding process path and a sheet-discharge process path, which are separated from the convey-in path, and at a downstream side of the bookbinding process path, the stacking means is disposed, and at a downstream side of the sheet-discharge process path, a storage stacker for stacking and storing the sheets is disposed, respectively. The control means is configured to move a perforated sheet along the sheet-discharge process path in the first operation mode and move the perforated sheet along the bookbinding process path in the second operation mode.
In another aspect, the present invention is equipped with: a convey-in path for sequentially conveying sheets; stacking means for collating the sheets from the convey-in path into bundles; adhesive-layer forming means for adding an adhesive layer to a spine-closure edge of the sheet bundle from the stacking means; cover binding means for binding together the sheet bundle from the adhesive-layer forming means and a coversheet; and a cover feed path for feeding the coversheet to the cover binding means, and further equipped with perforating means disposed between the convey-in path or the stacking means, and the adhesive-layer forming means, for forming punch holes at one or a plurality of locations on the sheet; control means arranged in the perforating means, for controlling a perforating position and/or the number of perforations; and the control means including a first operation mode for perforating punch holes for a binder on the end of the sheet and a second operation mode for perforating crenellated notch-holes on the edge of the sheet.
The convey-in path is connected to an inner-leaf transport path along which the sheet is moved to the stacking means, and the cover feed path, which are separated from the convey-in path, and a storage stacker for stacking and storing the sheets is disposed at a downstream side of the cover feed path. In the first operation mode, the control means is so configured that punch holes are perforate on the ends of a coversheet and an inner leaf supplied to the convey-in path, and the sheets are moved from the cover feed path to the storage stacker, and in the second operation mode, the control means is so configured that crenellated notch-holes are perforated on the edge of the inner leaf fed to the convey-in path and the inner leaf is moved to the inner-leaf transport path.
At the time of moving the sheet from the convey-in path to the stacking means, the control means is so configured that sheets to be perforated and those not to be perforated in the second operation mode are selectively fed.
The perforating means and the sheet fed to a perforating position of the convey-in path are configured to move relative to a transport direction position, and the control means is configured to adjust the size of notch holes perforated on the edge of the sheet in the second operation mode, in the second operation mode.
Positioning means for setting the sheet to a predetermined perforating position is arranged along the convey-in path, the positioning means is configured by regulating means for regulating the end of the sheets by pushing against the sheets, and roller means for transporting the sheets from the regulating means by a predetermined amount, and the control means adjusts the size of the notch holes perforated on the edge of the sheets by a transport amount of the roller means, in the second operation mode.
The control means is configured to set large or small of the size of the notch holes perforated on the edge of the sheet based on sheet information such as a sheet material quality, a sheet size, a sheet basis weight (grammage), and the number of sheets to be collated, in the second operation mode.
The perforating means is equipped with a plurality of perforating cutters for simultaneously perforating a plurality of punch holes in a sheet width direction, the plurality of perforating cutters are so configured that the number of punch holes can be selected, and the control means is configured to select the number of crenellated notch-holes formed on the edge of the sheet in the second operation mode.
The control means is configured to select the number of the notch holes perforated on the edge of the sheet based on sheet information such as a sheet material quality, a sheet size, a sheet basis weight, and the number of sheets to be collated, in the second operation mode.
In the second operation mode, the control means is configured to selectively perforate the notch holes in the sheets moved to the inner-leaf transport path.
In the second operation mode, the control means perforates the notch holes perforated in at least one set of two successive sheets so that (1) the number of holes, and/or (2) the size of the holes, and/or (3) hole position are differed, when perforating the notch holes in the sheets moved to the inner-leaf transport path.
An imaging system according to the present invention is configured by: an imaging device for sequentially imaging on sheets; and a bookbinder for collating sheets from the imaging device into a bundle and wrapping the collated sheets with a coversheet to form a booklet. The bookbinder is equipped with the aforementioned configuration.
The present invention is that which is so configured that along the transport path for the sheets to be fed toward the adhesive-layer forming (applying) means for binding sheets into a booklet, the perforating means for forming the circular punch holes is arranged, and the control means for controlling the perforating positions and/or the number of perforations by the perforating means is configured to control by: (1) the first operation mode for perforating a predetermined number of punch holes on the edge of the sheet; and (2) the second operation mode for forming a predetermined number of uneven grooves on the end of the sheet. Thus, the following remarkable effects are provided.
The punch holes for a binder and the uneven grooves for binding a booklet can be selectively formed by the circular punching blades, respectively, according to finishing conditions. Therefore, unlike in the conventional art where a perforating mechanism for the binder holes and that for binding a booklet need to be individually incorporated within the device, the device can be configured small and compact.
That is, when forming the punch holes at the time of stacking and storing the sheets forwarded along the convey-in path in the storage stacker, the binder holes can be formed by perforating a predetermined number of punch holes on edge of the distal end or the rear end of the sheet along the convey-in path. Also when binding the sheets from the convey-in path in a booklet, roughened uneven grooves are formed on the spine-closure edge by forming the notch holes in an uneven shape on the edge of the distal end or the rear end of the sheets along the convey-in path, and by the adhesive flown between the grooves, the sheets can be surely stitched together.
In particular, in the present invention, the crenellated notch-holes are formed by the perforating cutters for forming the circular punch holes on the spine-closure edge of the sheets when binding the sheets into a booklet, and thus, the positions of the perforating cutters relative to the sheet edge can be adjusted to change the size of the notch holes, e.g., a small size or a large size. Therefore, when the thickness of sheets to be bound into a booklet is large, e.g., sheet of 100 pages are bound into a booklet, the notch holes can be set large according to the specification of the device. This enables accurate bonding in which sheets do not come loose.
Further, in the present invention, the perforating means is configured to form a plurality of punch holes simultaneously, and in the aforementioned second operation mode, the size, the number, positions of the notch holes are changed according to a sheet material quality, a sheet size, a sheet basis weight, and the number of sheets to be collated. This enables the accurate binding of a sheet bundle into a booklet with a relatively lesser number of grooves.
Also, in the present invention, the sheets sequentially fed along the convey-in path are formed with the crenellated notch-holes so as to bind the sheets into a booklet. Thus, the number and positions of holes can be changed for each sheet to be collated. Thereby, the adhesive can be surely permeated through the sheets, which enables the more accurate binding of a sheet bundle into a booklet.
The present invention will now be explained in detail based on the preferred embodiment provided below.
As shown in
Imaging Device Configuration
Initially, the imaging device A can employ a variety of structures, such as a copier, printer or printing machine, but in
A static-electric drum 10 is arranged in the printing section 3. A print head 9, a developer 11, and a transfer charger 12, etc., are disposed around this static-electric drum 10. The print head 9 is composed of a laser emitter, for example. A latent image is formed on the static-electric drum 10; the developer 11 adheres toner ink to the latent image; the image is printed onto the sheet by the transfer charger 12. The image is fixed to the printed sheet by a fuser 13, and is then conveyed out to a sheet-discharge path 17. A sheet-discharge outlet 14 formed in the casing 1 and a sheet-discharge roller 15 are disposed in the sheet-discharge section 4. Note that the symbol 16 in the drawing is a cycling path. Printed sheets from the sheet-discharge path 17 are turned over from front to back at a switchback path, then fed again to the registration roller 7 so that images can be formed on the backside of the printed sheet. In this way, sheets printed with images on the front side or on both sides can be conveyed out from the sheet-discharge outlet 14 by the sheet-discharge roller 15.
Note that the symbol 20 in the drawings represents a scanner unit. This optically reads images on an original to be printed by print head 9. The structure is widely known to be composed of a platen 23 where an original sheet is placed; a carriage 21 that travels along the platen 23 to scan the images on an original; and an optical reading means (such as a CCD device) 22 that photo-electrically converts the optical image from the carriage 21. In the drawing, a document feeder 25 that automatically feeds original sheets to the platen is installed above the platen 23.
Bookbinder Configuration
The following will now explain the bookbinder B that is attached to the imaging device A based on
Transport Path Configurations
The following will explain each sheet transport path. In the casing 30, a convey-in path 31 having a convey-in inlet 31a connected to the sheet-discharge outlet 14 of the imaging device A is arranged from the convey-in path 31, and a cover feed path 34 and an inner-leaf transport path 32 are linked via path switching flapper 36. Also, the inner-leaf transport path 32 is installed consecutively to a bookbinding path (inner-leaf feed path; hereinafter, the same shall apply) 33 via the stacking unit 40, and the cover feed path 34 is linked with a finishing path 38. The bookbinding path 33 is disposed in a direction that traverses the device substantially vertically, and the cover feed path 34 is arranged in a direction that transects the device substantially horizontally.
The bookbinding path 33 and the cover feed path 34 intersect (perpendicular) to each other, and a process stage (cover binding position) F mentioned later is disposed in that intersection section. The convey-in path 31 configured as described above is connected to the sheet-discharge outlet 14 of the imaging device A to receive printed sheets from the imaging device A. In this case, printed sheets (inner leaves) Sn that are printed with content information and printed sheets (coversheet) Sh that are to be used as a front cover and printed with a title, etc., are conveyed out from the imaging device A. In this way, the carry-in path 31 is separated into the inner-leaf transport path 32 and the cover feed path 34; these are interposed by a path switching flapper 36. This selects the path to transport each printed sheet.
An inserter unit 26 is linked to the above-mentioned carry-in path 31. This is configured to separate the coversheets Sh one by one that will not be printed at the imaging device A from a paper-feeding tray means 26a and supply it to the convey-in path 31. A kick roller 26k and separating means 26s are disposed in this paper-feeding tray means 26a. Sheets on the tray are kicked out and fed by the kick roller 26k after which they are separated by the separating means 26s and conveyed out one by one in the downstream side. A sheet feeding path 27 that continues to the carry-in path 31 is arranged at a downstream side of the separating means 26s.
A transport roller 31b is disposed along the carry-in path 31 whereas a transport roller 32a is disposed along the inner-leaf transport path 32. Gripping transport means 47, bundle posture-reorienting means 64 that is described later, and a sheet-discharge roller (sheet-discharge means) 66 are disposed along the bookbinding path 33. A transport roller 34a and a transport roller 38a are disposed along the cover feed path 34 and the finishing path 38, respectively. They are also respectively linked to driving motors.
Carry-In Path Configuration
Along the carry-in path 31, an aligning mechanism (positioning means: hereinafter, the same shall apply) 35 for aligning the sheets from the carry-in inlet 31a, and a punch unit 80 are disposed.
The aligning mechanism 35 is arranged along the carry-in path 31. This mechanism is configured by; a nipping claw (regulating means: hereinafter, the same shall apply) 35a that locks the rear end of the coversheet Sh; an aligning member 35b that offsets the coversheet Sh held by the nipping claws 35a in a transport-orthogonal direction; and a forward and reverse rotating roller (roller means) 35r which is switched back so as to push against the coversheet Sh sent to the cover feed path 34 by the nipping claw 35a. The forward and reverse rotating roller 35r is configured such that it can elevate from the coversheet Sh to a waiting position evacuated in the upward direction.
The above-mentioned forward and reverse rotating roller 35r is configured by the roller means for moving the sheets to the punch unit 80 disposed at a downstream side of the aligning mechanism 35. Accordingly, after the rear end position of the sheet is regulated by the aligning mechanism 35, positions at which the punch holes are perforated are set by a transfer amount of the roller 35r. That is, the transfer amount of the forward and reverse rotating roller 35r determines whether holes are to be perforated from the rear end of the sheet in predetermined binder-holes positions or whether crenellated notch-holes (concave grooves) are to be perforated on the rear edge of the sheets.
After the rear end of the coversheet Sh conveyed along the carry-in path 31 passes through the aligning mechanism 35, it is switched back and then transported by the reverse rotation of the forward and reverse rotating roller 35r. When this happens, the rear end of the sheet is pushed against the nipping claw 35a, and it undergoes skew (oblique) correction. In this state, the nipping claw 35a holds the rear end of the sheet and the aligning member 35b on which the nipping claw 35a is mounted is pulled over in the transport-orthogonal direction. The coversheet Sh undergoes skew correction in the back-and-forth transport directions, and the position in the width direction (transport-orthogonal direction) is to be corrected (lateral-edge position is corrected). Thus, the coversheet Sh that has undergone the aligning correction is set to be transported by the forward and reverse rotating roller 35r to a process stage F at a downstream side. The setting and feeding to the process stage F is done by transporting a predetermined amount of coversheets Sh from the aligning position. Moreover, in a case of the coversheet Sh, holes are not perforated by the punch unit 80 at a downstream side of the aligning mechanism 35.
Punch Unit Configuration (Cf.
The configuration of the punch unit 80 is described based on
A punch driving motor MP and a driving axis 86 that is linked to the punch driving motor MP are disposed on the upper frame 84, as shown in
The punch member 81 is formed of SUS steel, etc., and a perforating cutter 81X is formed at the front end. A guard flange 87 is provided on the axis of the punch member 81, and a reversion spring 88 is disposed on the guard flange 87. As shown in
A first cam face 85X is formed in one location in the first and fourth driving cams 85a and 85d, respectively. The first cam face 85X and a second cam face 85Y are each formed in two locations in the second and third driving cams 85b and 85c, respectively. For each of the driving cams 85a to 85d, the first cam face 85X is substantially simultaneously engaged with heads of the first to fourth punch members 81a to 81d, in the driving axis 86. Accurately speaking, these perforating positions are engaged after waiting for a very small time difference (phase difference) in the order of the first punch member 81a, the second punch member 81b, the third punch member 81c, and the fourth punch member 81d. This is for lessening the perforation load exerted on the punch driving motor MP.
If the driving axis 86 is rotated clockwise at a predetermined angle (e.g., 90 degrees) from a home position as shown in
Stacking Unit Configuration
A stacking tray 41 disposed in the sheet-discharge outlet 32b of the above-mentioned inner-leaf transport path 32 stacks and stores the sheets from the sheet-discharge outlet 32b in a bundle. As shown in
Sheet-bundle-thickness identifying means not shown is disposed in the above-mentioned stacking tray 41 so that the thickness of the sheet bundle stacked on the tray is detected. In this configuration, for example, a paper contact segment that contacts the topmost sheet is arranged on the tray so that a position of the paper contact segment is detected by a sensor, thereby identifying the thickness of the sheet bundle. Another example of the sheet-bundle-thickness identifying means includes that in which the sheets discharged onto the stacking tray are detected from a sheet-discharge sensor Se3, for example, a counter for counting the signals from the sheet-discharge sensor Se3 is arranged, and the average sheet thickness is multiplied by the total number of sheets counted by a job ending signal from the imaging device A.
Sheet-Bundle Transport Means Configuration
Along the bookbinding path 33, gripping transport means 47 for moving the sheets from the stacking tray 41 to an adhesive-layer forming position E at the downstream side is disposed. The gripping transport means 47 reorients the sheet bundle stacked in the stacking tray 41 as shown in
Adhesive Application Section Configuration
Adhesive application means (adhesive-layer forming means; hereinafter, the same shall apply) 55 is disposed in the adhesive-layer forming position along the bookbinding path 33. As shown in
The glue container 56 thus configured is reciprocated along the sheet bundle.
The glue container 56 is reciprocated between the home position HP and the return position RP (from which the return operation is started along the sheet bundle) by means of the driving motor MS. Each position is set according to the positional relationship shown in
Cover Binding Means Configuration
The cover binding means 60 is disposed in a process stage F of the above-mentioned bookbinding path 33. As shown in
Bundle Posture-Reorienting Means Configuration
Subsequently, the finishing process of the sheet bundle bound into a booklet (as mentioned above) will now be explained. This finishing process involves trimming 3 sides for alignment excluding the spine of the sheet bundle that has been made into a booklet. Due to this, the bundle posture-reorienting means 64 that reorients the vertical direction of the sheet bundle and trimming means 65 that trims the edges of the sheet bundle are disposed in a trimming position G positioned at a downstream side of the folding roll 63. The bundle posture-reorienting means 64 reorients the sheet bundle of which the cover is provided from a cover binding position F in a predetermined direction (posture) and feeds it to the trimming means 65 or a storage stacker 67 at a downstream side. This trimming means 65 trims and aligns the edges of the sheet bundle. Due to this, the bundle posture-reorienting means 64 is equipped with rotation tables 64a and 64b for holding and rotating the sheet bundle forwarded from the folding roll 63. As shown in
Trimming Means Configuration
Trimming means 65 is disposed at a downstream side of the bundle posture-reorienting means 64. As shown in
The sheet-discharge roller (sheet-discharge means) 66 and the storage stacker 67 are disposed at a downstream side of the trimming position G. This storage stacker 67 stores the sheet bundle in an upright posture, as shown in
Finisher Configuration
The finisher C is disposed in the bookbinder B, and the finishing path 38 that continues to the cover feed path 34 is provided in this finisher C. Finishers such as a staple unit and a stamp unit are disposed in the finishing path 38. Printed sheets from the imaging device A are received via the cover feed path 34, and they are conveyed out to the paper-discharge tray 37 after staples, and stamps and seals are applied to the printed sheets. It is also possible to not apply any finishing process on printed sheets and to store them in the sheet-discharge tray 37 directly from the imaging device A.
Control Means Configuration
Next, based on
This control CPU 75 receives a finishing mode instruction signal, a job end signal, sheet size information, and other information and command signals required in the bookbinding process from the control CPU 70 of the imaging device A. Sheet sensors Se1 to Se6 for detecting the sheets (sheet bundle) to be transported are disposed in the carry-in path 31, the bookbinding path 33, and the cover feed path 34, respectively, at the positions illustrated in
In the aforementioned device configuration and the control configuration of the present invention, holes are punched in the sheets conveyed from the imaging device A to the carry-in path 31 in a subsequent first operation mode and second operation mode.
Perforation Control Means Configuration (Cf.
The aforementioned punch unit 80 is controlled in the following first operation mode and second operation mode.
First Operation Mode
This operation mode is used for perforating the punch holes for a binder in the sheets from the carry-in path 31. The punch holes for a binder are perforated in the rear end of the sheets on which images are formed. For this, when a “binder-holes perforating mode” is selected by the mode setting means 72, the perforation control means 78 controls the forward and reverse rotating roller 35r so that the rear end of the sheets conveyed to the carry-in path 31 is positioned at the rear end position by the aligning mechanism 35. These sheets are moved from a positioning position Pa to a punch position Pb (shown in
The transport length L1 is set in advance according to the binder file standard, etc. As
Second Operation Mode
This operation mode is used for forming crenellated notch-holes (roughening grooves: hereinafter referred to as a milling process) on the edge of the sheets from the carry-in path 31. For this, when a “bookbinding processing mode” is selected by the mode setting means 72, the perforation control means 78 controls the forward and reverse rotating roller 35r so that the rear end position of the sheets conveyed to the carry-in path 31 is positioned by the aligning mechanism 35. These sheets are moved from the positioning position Pa to the punch position Pb by a predetermined length (L2 or L3). In this movement control, the number of power source pulses supplied to the driving motor (PWM control) that rotates the forward and reverse rotating roller 35r is controlled so as to set a transport length L1. The transport length L2 or L3 in the first operation mode is set in advance and stored in the RAM 78a. The perforation control means 78 rotates the driving cam 85 that elevates the punch member 81 in a counterclockwise direction (
The aforementioned transport length L2 or L3, a distance d2 and a distance d3 shown in
As described above, after the notch holes (milling holes) H2 are perforated in the sheets conveyed to the carry-in path 31, the control CPU 75 feeds these sheets to the inner-leaf transport path 34 by the flapper 36. After that, along this path, the adhesive is applied to the spine-closure edge on which the notch holes (milling holes) have been formed. The procedure for applying the adhesive is as described above. After the adhesive is applied, the control CPU 75 binds together the sheet bundle and the coversheet, and stores it in the stacker 67.
Thus, the present invention is characterized in that: in the “binder-hole perforating” mode, two or four punch holes are formed by the punch unit 80 in the hole positions according to the standard on the image-formed sheets conveyed to the carry-in path 31, and the sheets are then stored in the paper-discharge tray 37 that is disposed at a downstream side of the carry-in path 31; and at the same time, in the “bookbinding process” mode, crenellated notch-holes (milling holes) are formed on the edge of the sheets, and the sheets are then conveyed out to the inner-leaf transport path 32 that is positioned at a downstream side.
Now, a mode for forming the crenellated notch-holes H2 (hereinafter referred to as a “milling process”) will be described below.
First Milling Process Method
This is a method for forming perforating distances (d2 and d3) for the crenellated notch-holes H2 in previously set fixed positions. The transport length L2 is set to a constant value, and stored in the RAM 86a in advance. Thereby, uneven grooves having a predetermined number of holes (four holes in
Second Milling Process Method
Size of holes in the crenellated notch-holes H2 is adjusted based on sheet information such as the material quality of sheet paper, paper size, basis weight of the sheets, and the number of sheets to be collated. In this case, the perforation control means 68 is so configured to set the transport lengths L1 and L2 depending on the following information: (1) size information of the sheet transferred from the imaging device A; (2) information regarding the material quality of sheet paper, (3) basis weight of the sheet, and (4) the number of sheets to be collated (thickness of the bundle), entered by the user, for example. At this time, when the sheet size is large, the hole position d is set larger as compared to a case that the sheet size is small. Due to this, the depth of the uneven grooves increases, which further increases the adhesive strength. When the sheet material quality makes the adhesion difficult, e.g., in a case of a coating sheet, the hole position d is set larger as compared to standard paper that relatively facilitates the adhesion. Also, when the basis weight of the sheet (the thickness of the sheet) is large, the hole position d is set larger as compared to a smaller basis weight. When the number of sheets to be collated is large, the hole position d is set larger as compared to a smaller number. Due to this, the depth of the uneven grooves increases, which further increases the adhesive strength.
Third Milling Process Method
The number of the crenellated notch-holes H2 is adjusted (whether to increase or decrease the number) based on the sheet information such as the material quality of the sheet, paper size, the basis weight of the sheet, and the number of sheets to be collated. Similar to the second milling method, the number of notch holes is adjusted so that two or four holes are formed. Its control method is similar to that described above. The number of holes is set large in the following cases: the sheet size is large, the sheet material quality makes the adhesion difficult, the sheet basis weight is large, the number of sheets to be collated is large. In doing so, the number of holes of uneven grooves increases, which increases the adhesive strength.
Fourth Milling Process Method
Positions and/or the number of the crenellated notch-holes H2 are so set that they are differ for each collated and stacked sheets. For example, the hole positions (or the number of holes) on the first sheet are set differently from the hole positions (or the number of holes) on the second sheet. As a result, the sheets in which the positions of holes or the number of holes are differed are piled on top of one another along the spine-closure surface of the sheet bundle, and the adhesive is applied. Likewise, holes are not perforated on the first sheet but they are perforated on the second sheet. Thus, as shown in
Explanation of Punch Perforating Operation Procedure
Control of the perforation control means (control CPU 75) will now be explained based on a flowchart shown in
When the first operation mode is set, sheets on which images are formed by the imaging device A (St01) are conveyed out to the carry-in path 31. The perforation control means 78 positions the rear end of the sheets by the aligning mechanism 35 (St03). In this positioning, the forward and reverse rotating roller 35r is rotated in a direction opposite to the transport direction so as to push the sheets against the regulating means (nipping claws) 35a, whereby the sheets are aligned. After the rear end position is aligned, the perforation control means 78 rotates the forward and reverse rotating roller 35r in the transport direction for a predetermined amount, and moves the rear end of the sheet from the regulated position Pa to the perforated position Pb. In this way, the rear end of the sheet is set and positioned to the perforated position Pb (St04). Next, the perforation control means 78 rotates and drives the punch driving motor Mp of the punch unit to perforate the binder holes. In the 2-hole perforation mode, the driving axis 86 shown in
Next, the control CPU 75 activates the path switching flapper 36 (St06) to move the sheets to the cover-transport path 34 (St07). The finishing path 38 and the paper-discharge tray 37 of the finisher C are disposed at a downstream side of the cover-transport path 34. The control CPU 75 feeds the sheets from the cover-transport path 34 to the finishing path 38 (St08). After that, in the finishing path 38, the finish process is applied such as seals or stamps are applied, the sheets are bound by staple, etc. (St09). Thereafter, the sheets are stored in the paper-discharge tray 37.
On the other hand, when the second operation mode is set, the sheets on which images are formed (St01) by the imaging device A are conveyed out to the carry-in path 31, as shown in
Next, the control CPU 75 determines whether the sheets conveyed to the carry-in path 31 are the inner leaves or the coversheet (St11). When the sheets are inner leaves, the path switching flapper 36 is actuated (St12) to move the sheets to the inner-leaf transport path 32 (St13). The sheets are then collated in a bundle in the stacking tray 41 (St14), and transported in a bundle to the adhesive applying position E. Thereafter, as shown in
In the present invention, it has been depicted that in the punch unit 80, the four punch members 81 are disposed for perforating four holes. However, the punch members may also be disposed for perforating four holes or more. As shown in
The device in
In the present invention, the perforating means for perforating the binder holes or the notch holes in the sheet is described. In this case, indicated generally in the right portion of
This application claims priority rights from Japanese Pat. App. No. 2007-314808, which is herein incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2007-314808 | Dec 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1642866 | Ackley | Sep 1927 | A |
6045127 | Fukui | Apr 2000 | A |
6120015 | Albright et al. | Sep 2000 | A |
6549734 | Yamada et al. | Apr 2003 | B2 |
8475106 | Hata | Jul 2013 | B2 |
20020159877 | Chen | Oct 2002 | A1 |
20020168247 | Trovinger et al. | Nov 2002 | A1 |
20040118258 | Dera et al. | Jun 2004 | A1 |
20050110864 | Kan et al. | May 2005 | A1 |
20050265765 | Honmochi et al. | Dec 2005 | A1 |
20060210336 | Horiguchi et al. | Sep 2006 | A1 |
20070045928 | Yoshie et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
11035222 | Feb 1999 | JP |
2007-062145 | Mar 2007 | JP |
2007-276967 | Oct 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20090148215 A1 | Jun 2009 | US |