Finishers (i.e., post-processing devices) are devices used to perform a finishing process on a sheet-like printing medium, for example, paper and may be connected to a printing device to form an image forming apparatus. Finishers can perform a finishing process on a printing medium, on which printing has been completed, as a subsequent process of a print job performed in the printing device.
The finishing process may include a bookbinding process for binding multiple sheets of aligned paper, a folding process for folding one or more sheets of paper one or more times, or a punching process for punching holes in one or more sheets of paper.
A finisher may be connected to a printing device to perform a finishing process on a sheet-like printing medium, such as paper, that is output from the printing device. A finisher connected, coupled, or combined with a printing device may be classified as a small-capacity finisher or a large-capacity finisher. A concave loading portion, on which discharged paper may be loaded, may be provided in the printing device. A paper discharge port of the printing device may be provided in the concave loading portion. The small-capacity finisher may be installed on the loading portion of the printing device. The large-capacity finisher may have a large size and thus is not able to be installed on the loading portion of the printing device but may be installed at a side of the printing device. In this case, a paper relay module for transporting the paper from the paper discharge port of the printing device to the large-capacity finisher may be used.
In an example, a finishing unit that extends in a lateral direction from a support structure that is extending in a vertical direction and supported at the outside of the printing device may be located within the concave loading portion of the printing device. Further, a stacker, on which paper on which finishing has been completed may be loaded, may extend in an opposite direction to the finishing unit from the support structure and may be located outside the printing device. An elevation driving unit including a motor for elevating the stacker may be provided in the support structure. Thus, a low-cost large-capacity finisher having a compact paper conveying structure that does not require a paper relay module may be implemented. A second stacker, on which paper on which finishing is not performed is loaded, of the paper discharged from the printing device may be provided in the finishing unit.
In an example, adjusting a length of the support structure extending in the vertical direction and supporting the finishing unit is possible. A height of the printing device may vary. Thus, a height of the loading portion in which the finishing unit is installed, may also vary. A height of the support structure may be adjusted so that adjusting of the height of the finishing unit is possible. Thus, a finisher that may be applied to a printing device having various heights may be implemented.
An example finisher may include a support structure extending in the vertical direction and a finishing unit extending from the support structure in the lateral direction. A finisher, in a form in which a finishing unit extends from a support structure in the lateral direction, may fall over due to the weight of the finishing unit in a state in which the finishing unit is not combined, coupled, or connected with the printing device. In an example, a fall-over reduction member may support the finisher to reduce falling over due to the weight of the finisher even when the finisher is not combined, coupled, or connected with the printing device. Thus, handling of the finisher is easy.
Hereinafter, various examples of a finisher will be described with reference to the drawings. Components having the same function are denoted by the same reference numerals, and a redundant description thereof will be omitted.
Referring to
The first portion 10 may extend in the vertical direction. The vertical direction may be a direction relative to a force of gravity. The vertical direction may be a stacking direction in which the paper P may be discharged from the finishing unit 22 and loaded on the stacker 30. As shown in
The second portion 20 may extend from the first portion 10 in the lateral direction. In an example, the second portion 20 may extend from a top end 103 of the first portion 10 in the lateral direction. The second portion 20 may include the finishing unit 22 that performs one or more finishing processes on the paper P. The finishing process may include a bookbinding process for binding multiple sheets of aligned paper P, a folding process for folding one or more sheets of paper one or more times, or a punching process for punching one or more sheets of paper. In the illustrated example, the finishing unit 22 may perform a bookbinding process for binding multiple sheets of aligned paper P.
Referring to
A conveying structure for conveying the papers P may be disposed in the finishing unit 22. In an example, the conveying structure may include conveying rollers 223, 224, and 225, and an alignment member 226. Each of the conveying rollers 223, 224, and 225 may include a pair of rollers rotating while being engaged with each other and may convey the papers P inserted through the entrance 21. The alignment member 226 may be located above the paper alignment tray 221. The alignment member 226 may include a paddle having an elastic arm, for example. The paper P conveyed by the conveying rollers 223, 224, and 225 may be dropped into the paper alignment tray 221. The alignment member 226 may push the paper P on the paper alignment tray 221 toward an end guide 227 while being rotated. An end of the length direction L of the plurality of loaded sheets of paper P may be aligned by the end guide 227 on the paper alignment tray 221. The plurality of sheets of paper P loaded on the paper alignment tray 221 may be aligned by a pair of side guides 228 in a width direction W. Through this configuration, the plurality of sheets of paper P may be aligned on the paper alignment tray 221.
The binder 222 may put the binding needle on the edge of the plurality of sheets of paper P aligned on the paper alignment tray 221. The binder 222 may put the binding needle in one or more positions of the edge while being moved in the width direction W along the edge of the length direction L of the plurality of sheets of paper P aligned on the paper alignment tray 221. The plurality of sheets of paper P, of which a bookbinding process has been completed, may be pushed by an ejector 229 moved in the length direction L and may be discharged into the stacker 30.
The stacker 30 may extend to an opposite side of the second portion 20 in the lateral direction based on the first portion 10. The stacker 30 may be elevated in the vertical direction to increase a stacking capacity. The stacker 30 may be supported by the first portion 10 to be elevated in the vertical direction. The elevation driving unit 40 may elevate the stacker 30. The elevation driving unit 40 may be provided in the first portion 10. The elevation driving unit 40 may be implemented in various shapes. In an example, the elevation driving unit 40 may include, for example, a flexible circulating member 41 such as a flat belt, a timing belt, or a wire, which is supported by the first portion 10 to be able to circulate in the vertical direction, and a driving motor 42 for driving the circulating member 41. For example, the circulating member 41 may be supported by a pair of pulleys 43 and 44 that are spaced apart from each other in the vertical direction, and the driving motor 42 may rotate one of the pair of pulleys 43 and 44. The stacker 30 may be connected to the circulating member 41. Through this configuration, a control unit (not shown) may drive the driving motor 42 according to the number of sheets of paper P loaded on the stacker 30 to elevate the stacker 30 in the vertical direction to a suitable position.
The stacking capacity of the stacker 30 depends on the weight of the stacker 30 including the loaded paper P. The driving motor 42 may be sized to drive the weight of the stacker 30 and the weight of the maximum number of sheets of paper P that may be loaded. In a finisher of the related art in which an elevation driving unit is provided in a stacker, a driving motor needs to have a torque that is sufficient to drive the weight of a stacker itself, the weight of the maximum number of sheets of paper P loaded, and a weight of the elevation driving unit. In that case, when the stacking capacity of the stacker is increased, the driving motor having a large torque needs to be employed. However, because the driving motor having a large torque is usually heavier, it is not easy to increase the stacking capacity of the stacker.
In the finisher 2 according to an example, the elevation driving unit 40 for elevating the stacker 30 may be installed in the first portion 10. Thus, the driving motor 42 may have a torque that is sufficient to drive the weight of the stacker 30 and the weight of the paper P loaded thereon. Thus, it is easy to increase the stacking capacity of the stacker 30 and the finisher 2, in which the elevation driving unit 40 is provided in the first portion 10, is suitable for large-capacity.
The printing device 1 may include a printing unit 11 that prints an image on a print medium, for example, the paper P. The finisher 2 may perform a finishing process on the paper P discharged from the printing unit 11. The printing unit 11 may print an image on the paper P by using various printing methods, such as an electrophotographic method, an inkjet method, a thermal transfer method, a heat sublimation method, or the like. The paper P may be supplied to the printing unit 11 from a paper feeding unit. The paper feeding unit may include one or more cassette feeders located under the printing unit 11, for example, at least one of a main cassette feeder 12, a secondary cassette feeder 13, and a high capacity feeder 14. The paper feeding unit may also include a multi-purpose paper feeding tray (not shown).
The printing device 1 may further include a scanner unit 15 to read an image recorded on a document. The scanner unit 15 may be located on the printing unit 11. The scanner unit 15 may have various structures, such as a flatbed structure, whereby an image is read while the document is located at a fixed position and a reading member is moved, a document feed method, whereby the reading member is located at the fixed position and the document is conveyed, and a composite method thereof.
A concave loading portion 16 may be provided between the printing unit 11 and the scanner unit 15. The paper P discharged from the printing unit 11 may be discharged into the loading portion 16. The paper P may be discharged from one side of the lateral direction of the loading portion 16 toward the other side. The other side of the lateral direction of the loading portion 16 may be open. The front of the loading portion 16 may also be open. The rear of the loading portion 16 may also be open. A user may access the paper P through the other side or the front of the loading portion 16.
The finisher 2 may be attached to and detached from the printing device 1. The finisher 2 may be mounted on the printing device 1 to form an image forming apparatus. A finisher, having a structure in which a finishing unit is accommodated in a first portion, may be located at a side of the printing device 1 in a lateral direction, entirely. In order to supply the paper P discharged from the printing unit 11 to the finisher, a relay conveying module for conveying the paper P across the loading portion 16 in the lateral direction may be installed in the loading portion 16.
In a finisher 2 according to an example, the second portion 20 including the finishing unit 22 may extend from the first portion 10 in the lateral direction. The finisher 2 may have a structure in which the second portion 20 including the finishing unit 22 is mounted between the printing unit 11 and the scanner unit 15 of the printing device 1. The first portion 10 may be located on the side of the printing device 1 in the lateral direction. Referring to
When the finisher 2 is combined with the printing device 1, the second portion 20 is included in a foot-print of the printing device 1. Here, the foot-print of the finisher 2 depends on the length of the lateral direction of the stacker 30 and the length of the lateral direction of the first portion 10. The length of the lateral direction of the stacker 30 depends on the size of the paper P. As described above, since the elevation driving unit 40 for elevating the stacker 30 in the vertical direction is installed in the first portion 10, the first portion 10 of the finisher 2 may be more compact as compared to a finisher having a structure in which a finishing unit is accommodated in a first portion. The length of the lateral direction of the first portion 10 may be smaller than the length of the lateral direction of the second portion 20. Thus, the foot-print of the image forming apparatus formed when the finisher 2 is mounted on the printing device 1, may be reduced.
The second portion 20 may include a second stacker 50 on which the paper P of which finishing is not performed, is stacked. Referring to
A height of the loading portion 16, into which the finisher 22 may be inserted, may vary. For example, a height from the installation surface MS to the loading portion 16 may vary according to a configuration of the printing unit 11 of the printing device 1. Also, the height from the installation surface MS to the loading portion 16 may vary according to the configuration of a paper feeding unit located under the printing unit 11. For example, one, two, or three of the main cassette feeder 12, the secondary cassette feeder 13, and the high capacity feeder 14 may be installed under the printing unit 11. The height from the installation surface MS to the loading portion 16 may vary according to each combination.
In view these different combinations, the finisher 2 may include the first portion 10 that extends in a vertical direction, the second portion 20 that includes the finishing unit 22 for performing a finishing process on the paper P and extends from the first portion 10 in a lateral direction, the stacker 30 on which the paper P discharged from the finishing unit 22 is loaded and which extends in an opposite direction to the second portion 20 based on the first portion 10, and a height adjustment unit for adjusting the height from the installation surface MS of the second portion 20.
The height of the second portion 20 refers to the height from the installation surface MS on which the finisher 2 is installed, to the second portion 20. An example of a height adjustment unit that may be applied to the finisher 2 shown in
Referring to
The height adjustment member 60 and the first portion 10 may be combined with each other by using various combining methods.
In an example, the first portion 10 and the height adjustment member 60 may be combined with each other through a combination hole-boss combination structure. A combination hole may be provided in one of the bottom end 101 of the first portion 10 and the top end of the height adjustment member 60, and a combination boss insertable into the combination hole may be provided on another one of the bottom end 101 of the first portion 10 and the top end of the height adjustment member 60. Referring to
In an example, the first portion 10 and the height adjustment member 60 may be combined with each other through a hook combination structure. A hook may be provided on one of the bottom end 101 of the first portion 10 and the top end of the height adjustment member 60, and a protrusion jaw on which the hook is to be caught, may be provided on another one of the bottom end 101 of the first portion 10 and the top end of the height adjustment member 60. Referring to
In a state in which the height adjustment member 60 shown in
As shown in
Referring to
The third portion 10-1 and the fourth portion 10-2 may be combined with each other by using various combining methods.
In an example, the third portion 10-1 and the fourth portion 10-2 may be combined with each other by a slot-combination piece structure. A slot may be provided in one of the third portion 10-1 and the fourth portion 10-2, and a plurality of combination pieces, which are spaced apart from one another in the vertical direction and into which the slot may be inserted, may be provided in another one of the third portion 10-1 and the fourth portion 10-2. Referring to
In an example, the third portion 10-1 and the fourth portion 10-2 may be combined with each other through a pin-guide structure. A guide including at least two fixing guides which are spaced apart from each other in the vertical direction and a connection guide for connecting the at least two fixing guides in the vertical direction, may be provided on one of the third portion 10-1 and the fourth portion 10-2, and a pin inserted into the guide may be provided on another one of the third portion 10-1 and the fourth portion 10-2. Referring to
Referring to
Referring again to
Referring to
An example of the fall-over reduction member may include a bottom end support 70 that extends from the bottom end 101 of the first portion 10 below the second portion 20 and includes the second support portion 71. Referring to
At least one of two bottom end supports 70 may be supported by the first portion 10 to be movable in the width direction W of the paper P. In an example, a guide slot 113 that extends in the width direction W may be provided on the bottom end 101 of the first portion 10. A guide pin 72 insertable into the guide slot 113 may be provided on the bottom end support 70. Through this configuration, the bottom end support 70 may be moved in the width direction W along the guide slot 113. A support member such as a foot, a roller, a caster, and the like, which is supported on the installation surface MS, may be provided on a lower portion of the printing device 1. When the finisher 2 is combined with the printing device 1, the bottom end support 70 may be inserted into or below a lower portion of the printing device 1. In this case, the bottom end support 70 may interfere with a support member of the printing device 1. In this case, after the bottom end support 70 is moved in the width direction W and is located in a position in which the bottom end support 70 does not interfere with the support member, the finisher 2 may be combined with the printing device 1. In
When the finisher 2 is combined with the printing device 1, the bottom end support 70 may be inserted into or below the lower portion of the printing, device 1. In this case, the bottom end support 70 located in the first position may interfere with a support member 17 provided on a bottom surface of the printing device 1. In this case, the bottom end support 70 may interfere with the support member 17 and may be rotated toward the second position, as shown by the dashed line of
Through this configuration, the finisher 2 may be stably combined with the printing device 1. When the finisher 2 is detached from the printing device 1, the bottom end support 70 may be returned toward the first position, and the finisher 2 may be stably supported by the first support portion 102 and the second support portion 71 to reduce an occurrence of falling over.
The bottom end support 70 may be located outward in the width direction W so that the finisher 2 may reduce an occurrence of falling over in the width direction W. However, the bottom end support 70 may be fixed at the first portion 10 in a position in which the bottom end support 70 is moved inward in the width direction W to reduce interference with the support member 17 of the printing device 1. That is, the bottom end support 70 may slide inward in the width direction W to reduce interference with the support member 17 of the printing device 1. In this case, the stability of the finisher 2 with respect to falling-over in the width direction W may be deteriorated.
According to an example, the rotation support 75 may extend from the bottom end support 70 in the width direction W, and the third support portion 76 provided on the extending end may be supported on the installation surface MS, or the third support portion 76 may be slightly spaced apart from the installation surface MS upward and when then the finisher 2 is inclined in the width direction W, the third support portion 76 may be supported on the installation surface MS so that the finisher 2 may reduce an occurrence of falling over. Thus, in a state in which the finisher 2 is separated from the printing device 1, stability of conduction of the width direction W of the finisher 2 may be improved.
The rotation support 75 may be elastically rotated in the extending position and the reduced position.
Referring to
In a state in which the second support portion 71 is located in the storage position, as shown in
Although not shown, the inclination support 80 may be maintained in the storage position and the support position due to an elastic force of a toggle spring (not shown). When the inclination support 80 is rotated from the storage position to the support position, the direction of the elastic force of the toggle spring may be changed from a direction in which the inclination support 80 is maintained in the storage position, to a direction in which the inclination support 80 is rotated to the support position. When the inclination support 80 reaches the support position, the inclination support 80 may be maintained in the support position due to the elastic force of the toggle spring. When the inclination support 80 is rotated from the support position to the storage position, the direction of the elastic force of the toggle spring may be changed from a direction in which the inclination support 80 is maintained in the support position, to a direction in which the inclination support 80 is rotated in the storage position. When the inclination support 80 reaches the storage position, the inclination support 80 may be maintained in the storage position due to the elastic force of the toggle spring.
The inclination support 80 may be detached from the first portion 10. For example, the inclination support 80 may be detached from the first portion 10, and the finisher 2 may be combined with the printing device 1. After the finisher 2 is detached from the printing device 1, the one end 81 of the inclination support 80 may be combined with the first portion 10 and may be located in the support position.
Referring to
In an example, one end 91 of the first support 90-1 may be rotatably supported on the lower portion of the second portion 20. The one end 93 of the second support 90-2 may be rotatably connected to another end 92 of the first support 90-1. A first stopper (not shown) may be provided on the second portion 20 in such a way that the first support 90-1 may not be rotated beyond the support position. A second stopper (not shown) may be provided on the other end 92 of the first support 90-1 or the one end 93 of the second support 90-2 and may maintain the second support 90-2 in an unfolded state.
As shown in
Although not shown, the first support 90-1 may be maintained in the storage position and the support position due to the elastic force of a first toggle spring (not shown). When the first support 90-1 is rotated between the storage position and the support position, the direction of the elastic force of the toggle spring may be changed from a direction in which the first support 90-1 is maintained in the storage position, into a direction in which the first support 90-1 is rotated in the support position. When the first support 90-1 reaches the support position, the first support 90-1 may be maintained in the support position due to the elastic force of the toggle spring. When the first support 90-1 is rotated from the support position to the storage position, the direction of the elastic force of the toggle spring may be changed from a direction in which the first support 90-1 is maintained in the support position, into a direction in which the first support 90-1 is rotated in the storage position. When the first support 90-1 reaches the storage position, the first support 90-1 may be maintained in the storage position due to the elastic force of the toggle spring. Similarly, the second support 90-2 may be maintained in a position in which the second support 90-2 is stored in the first portion 10, and in an unfolded position due to the elastic force of a second toggle spring. The first support 90-1 may also be detached from the second portion 20 together with the second support 90-2. For example, the first support 90-1 may be detached from the second portion 20 together with the second support 90-2 and the finisher 2 may be combined with the printing device 1. After the finisher 2 is detached from the printing device 1, the one end 91 of the first support 90-1 may be combined with the second portion 20 and may also be located in the support position.
It should be understood that examples described herein should be considered in a descriptive sense and not for purposes of limitation. Descriptions of features or aspects within each example should typically be considered as available for other similar features or aspects in other examples. While one or more examples have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0064914 | May 2020 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/056775 | 10/22/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/242296 | 12/2/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5649695 | Lawrence | Jul 1997 | A |
7284752 | Nagata | Oct 2007 | B2 |
7571909 | Saeki | Aug 2009 | B2 |
7874552 | Chiaki | Jan 2011 | B2 |
7883079 | Sato | Feb 2011 | B2 |
7971875 | Iino | Jul 2011 | B2 |
8226080 | Morita | Jul 2012 | B2 |
8408531 | Sato | Apr 2013 | B2 |
8424962 | Uehara et al. | Apr 2013 | B2 |
8672312 | Nonaka | Mar 2014 | B2 |
8955838 | Saito | Feb 2015 | B2 |
9186926 | Nonaka | Nov 2015 | B2 |
9381760 | Egawa | Jul 2016 | B2 |
10496031 | Sugiyama | Dec 2019 | B2 |
10828925 | Kubo | Nov 2020 | B2 |
11518641 | Takahashi | Dec 2022 | B2 |
20100068026 | Brewer, III et al. | Mar 2010 | A1 |
20110215517 | Mizutani et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
05-039823 | Feb 1993 | JP |
2000-044111 | Feb 2000 | JP |
2003-175268 | Jun 2003 | JP |
2004-126157 | Apr 2004 | JP |
2006-206197 | Aug 2006 | JP |
2014-118295 | Jun 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20230219779 A1 | Jul 2023 | US |