A face milling tool, or face mill, has one or, more generally, multiple primary cutting teeth affixed to the face mill body around its circumference, generally substantially equally spaced, and aligned as best as possible to one another in both the axial and radial dimensions of the face mill. Each primary cutting tooth is generally made up of a replaceable cutting insert 6b (
The feeding action may be quantified as a distance traveled in the time it takes for one revolution of the face mill, referred to as the feed per revolution. Of greater significance as related to surface roughness is the feed per primary cutting tooth, which is the feed per revolution divided by the number of primary cutting teeth affixed to the face mill cutter body. The feed per primary tooth dictates the distance between the microscopic peaks—the widths of the feed grooves.
Surface roughness may be characterized by one or more of numerous quantitative parameters, such as the roughness average value that is generally referred to as Ra. Ideally, the roughness average value is proportional to the square of the feed per primary tooth and inversely proportional to the radius on the tips of the primary cutting teeth. In practice the roughness average value will exhibit these types of proportional and inversely proportional trends; however, because the multiple primary cutting teeth are not perfectly aligned with one another, the roughness average value in practice will always be higher (a rougher surface) than the ideal value. While the radial misalignments of the primary cutting teeth have a deleterious effect surface roughness by perturbing the widths of the feed grooves from their ideally equal widths, the axial misalignments of the primary cutting teeth have an even greater deleterious effect on surface roughness by also perturbing the depths of the feed grooves relative to their ideally equal depths.
Thus, four parameters combine to impact the surface roughness—feed per primary tooth, tooth tip radius (often referred to as the corner radius, or sometimes the nose radius), tooth-to-tooth axial misalignments, and tooth-to-tooth radial misalignments. Assuming one has reduced the misalignments to be as small as possible by applying the degree of effort that can be afforded, it is the feed per primary tooth and the corner radius that are adjusted to achieve the desired/specified surface roughness on a face milled surface. Decreasing the feed per primary tooth, due to its squared effect on Ra, has the greater impact on decreasing/improving (making more smooth) the surface roughness, but, holding all other cutting conditions constant, such as spindle speed, this also results in a proportionate decrease in productivity. Increasing the corner radius will result in a proportionate decrease/improvement in surface roughness, but it also tends to direct a larger percentage of the cutting forces acting between the primary cutting teeth and the workpiece into the axial direction, which can lead to structural deflections that result in dimensional error in the location of the face milled surface produced.
When producing a machined surface, it is common to take multiple passes, including one or more roughing passes to more rapidly remove larger amounts of material without concern for the aforementioned dimensional error or higher surface roughness, followed by a finish pass at a lower rate of material removal to facilitate meeting the dimensional and surface roughness requirements. To achieve particularly low surface roughness without excessively reducing the feed per primary tooth and, likewise, in the presence of some level of tooth-to-tooth misalignments that always exist in practice, one or more secondary “wiper” teeth may be added to the face mill. When viewed in the direction that is tangential to the face mill body (the cutting motion direction), wiper teeth have either a straight cutting edge 5b or a cutting edge with a very large radius or “crown” that is much larger than the corner radius of the primary cutting teeth (see
Wiper teeth, or rather the indexible cutting insert 5c that makes up the cutting portion of the tooth, are usually common-size square or rectangular cutting inserts made from one of the many cutting insert materials (e.g., tungsten carbide, ceramic, cubic boron nitride, etc., either with or without a coating) that are well known to those working in the field. Viewing in the direction of the axis of the face mill, the wiper tooth cutting edge is substantially straight and has finite length 5d. Wiper teeth are set with their cutting edge length running substantially radially outward from the axis of the face mill. They are set at an axial position on the cutter body so the wiper cutting edge protrudes axially toward the machined surface just slightly more than the furthest protruding primary cutting tooth. The added protrusion of a wiper tooth may be up to approximately 0.003 inch (75 micron), sometimes less and sometimes more; it is desired to keep this added protrusion, or wiper depth, as small as possible while still assuring the wiper removes the entirety of all the cusps/peaks down to the lowest of the feed groove valleys. When a wiper has a non-radiused straight cutting edge, the wiper teeth may be set to have a very small angle relative to the feed plane so that the full, and generally excessive (relative to the feed per wiper tooth), length of the wiper tooth's cutting edge is not continuously rubbing on the machined surface that was wiped by a wiper tooth previously passing over that part of the surface. Generally a primary cutting tooth removes more than 0.003 inch of material in the axial direction whereas a wiper tooth removes 0.003 inch or less of material in the axial direction.
While a face mill having wiper teeth may have them in addition to a full complement of evenly spaced primary cutting teeth, most finishing face mills having wiper teeth replace a small number of the primary cutting teeth each with a wiper tooth, one wiper in each tooth location where a primary cutting tooth is replaced. While this is convenient and is easy to accomplish given the limited space available between successive primary cutting teeth, replacing some of the primary cutting teeth results in each primary cutting tooth that immediately follows a replaced primary cutting tooth location to experience twice the nominal feed per primary-tooth location. As such it removes double the nominal amount of material, which can cause all primary cutting teeth that immediately follow a wiper tooth to wear more quickly than the other primary cutting teeth. The feed experienced by a primary cutting tooth, meaning the feed distance traveled since the previous primary cutting tooth passed over the same cutter-angular location on the workpiece, is often referred to as “chip load”. When a wiper tooth replaces a primary cutting tooth, the distance travelled by the primary cutting tooth (that is immediately following the wiper tooth) since the previous primary cutting tooth (that is immediately preceding the wiper tooth) passed that same cutter-angular location on the workpiece, is twice as far since the angular spacing to the previous primary tooth is the angular spacing to the wiper tooth location plus the angular spacing from the wiper tooth location to the preceding primary tooth location, or two times the nominal distance travelled per tooth location.
Generally, a wiper tooth has a means of axial adjustment so that the wiper tooth can be adjusted to the desired wiper depth (relative to the furthest axially protruding primary cutting tooth) and, in the case of multiple wiper teeth, adjusted to be well aligned with all other wiper teeth. It is common, though without restriction, for there to be one wiper tooth for every three to ten primary cutting teeth.
In an example embodiment a face milling tool is provided including a body which is rotatable about an axis, at least one wiper tooth, and at least two primary cutting teeth mounted on the body having a cutting edge for cutting about the axis. The primary cutting teeth are staggered radially relative to each other by a radial shift so that a chip load variation during operation is less than 0.7 times a mean primary-tooth chip load. In one example embodiment, the radial shift Δri+1 of each primary cutting tooth i+1 is a function of a radial shift Δri from an angular location i and of an angle Δθi,i+1 relative to said angular location i, where
where,
In another example embodiment, the preceding angular location is a location of one of said at least two primary cutting teeth, where,
where,
In a further example embodiment, the chip load variation during operation is less than 0.6 times the mean primary-tooth chip load. In yet a further example embodiment, the chip load variation during operation is less than 0.5 times the mean primary-tooth chip load. In another example embodiment, the chip load variation during operation is less than 0.4 times the mean primary-tooth chip load. In yet another example embodiment, the chip load variation during operation is less than 0.3 times the mean primary-tooth chip load. In one example embodiment, the chip load variation during operation is less than 0.2 times the mean primary-tooth chip load. In yet another example embodiment, the chip load variation during operation is less than 0.1 times the mean primary-tooth chip load. In a further example embodiment, each of the at least one wiper tooth is set for removing 0.003 inch or less of material in the tool axial direction. In yet a further example embodiment, each primary cutting tooth is set for removing more than 0.003 inch of material in the tool axial direction.
In another example embodiment, a method for determining the primary cutting tooth radial positions on a face milling tool body is provided. The milling tool includes a body which is rotatable about an axis, at least one wiper tooth, and at least two primary cutting teeth mounted on the body having a cutting edge for cutting about the axis. The primary cutting teeth are staggered radially relative to each other so that a chip load variation during operation is less than 0.7 times a mean primary-tooth chip load. The method includes defining a number of primary cutting teeth zp on the face mill, defining the feed per revolution fn at which chip load variation should be minimized, defining a base angular location (i=0) for which Δr0=0, identifying the angle, Δθ0,1, from the base angular location (i=0) to a primary cutting tooth (i=1) following the base angular location, and setting a radial shift for each primary cutting tooth, where
In a further example embodiment, the base angular location is a location of a primary cutting tooth location (i=1) and the radial shift for each other primary cutting tooth is set as
In a further example embodiment method, the chip load variation during operation is less than 0.6 times the mean primary-tooth chip load. In yet a further example embodiment, the chip load variation during operation is less than 0.5 times the mean primary-tooth chip load. In another example embodiment, the chip load variation during operation is less than 0.4 times the mean primary-tooth chip load. In yet another example embodiment, the chip load variation during operation is less than 0.3 times the mean primary-tooth chip load. In one example embodiment, the chip load variation during operation is less than 0.2 times the mean primary-tooth chip load. In yet another example embodiment, the chip load variation during operation is less than 0.1 times the mean primary-tooth chip load. In a further example embodiment, each of the at least one wiper tooth is set for removing 0.003 inch or less of material in the tool axial direction. In yet a further example embodiment, each primary cutting tooth is set for removing more than 0.003 inch of material in the tool axial direction.
A finishing face mill 1 disclosed herein improves/decreases surface roughness. The present disclosure applies to any wiper-based finishing face mill, having a body 2 that is provided a rotating motion 3 about an axis 4 to provide a cutting motion, that incorporates, as shown in
The wiper-based finishing face mill of the present disclosure staggers, or shifts, the primary cutting teeth 6 in the radial direction such that the chip load experienced by a primary cutting tooth, fzi, is at least similar to the chip load experienced by all other primary teeth, fzj. Referring to
In some cases, such as that shown in
Referring to
Δθi,i+1 in radians,
where, depending on which tooth, or more generally which tooth's angular location, corresponds to Δr=0, computed Δr values may be either positive or negative (or zero), negative values indicating an inward radial shift. As such, the distance from the cutter axis 4 to a primary cutting tooth i is Rt+Δri where Rt is the nominal or mean cutting radius of the tool. When Δri is positive, tooth i cuts at a slightly larger radius than the nominal tool radius Rt and when Δri is negative, tooth i cuts at a slightly smaller radius than the nominal tool Rt.
Referring to
Of course, in practice, achieving these exact values of Δr for each primary cutting tooth may be impractical. However, calculating the ideal values from the above equation and then rounding to practically achievable increments will greatly reduce the variation in chip load seen by all the primary cutting teeth, generally such that the chip load variation fzi,max−fzi,min, relative to the mean primary-tooth chip load fn/zp, measured across all primary cutting teeth, is at 50% or below; that is
where,
Without implementing this technique, fzi,max=2fz=2fn/zn and fzi,min=fz=fn/zn, where, recalling from earlier, zn is the total number of tooth locations, which is the sum of the number of primary cutting teeth, zp, and the number of wiper teeth. The following table shows some examples of the primary-tooth chip load variation, as defined here, that occur without implementing this technique for a representative selection of typical primary and wiper tooth counts for finishing face mills.
As can be seen, these representative cases have primary-tooth chip load variation greater than or equal to 0.8. Applying this technique, even without being able to achieve the ideal levels of (resolution in) Δr values, to achieve primary-tooth chip load variation of 0.5 (or less) results in at least a 100×(0.5−0.8)/0.8=37.5% reduction in primary-tooth chip load variation compared to what is achievable without this technique, in the best case of those illustrated.
In example embodiments, the chip load variation is 40% or less. In another example embodiment the chip load variation was 30% or less. In yet another example embodiment, the chip load variation was 20% or less. In a further example embodiment, the chip load variation was 10% or less. In a further example embodiment, the chip load variation was 70% or less and in another example embodiment was 60%.
In the case of having only one primary cutting tooth between successive wiper teeth, there is no opportunity to apply this technique. However, if there are two or more primary cutting teeth between successive wiper teeth, this technique will reduce chip load variation, in particular by eliminating the theoretically double chip load experienced by each primary cutting tooth that follows a wiper tooth. It should be noted that the number of wiper teeth is generally desired to be a small percentage of the total number of tooth locations so as to ease the task of axially aligning the multiple wiper teeth with one another, so the case of only one primary cutting tooth between successive wiper teeth is not likely to be seen in practice.
This application is based upon and claims priority to U.S. Provisional Application Ser. No. 61/927,408, filed on Jan. 14, 2014, the content of which is fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61927408 | Jan 2014 | US |