This application claims priority under 35 U.S.C. § 119 to Great Britain application number 0327300.0, filed 25 Nov. 2003, by the inventors hereof, the entirety of which is incorporated by reference herein.
1. Field of the Invention
The present invention relates to turbomachinery, and in particular to improvements in finned seals, such as can be used to control flow of fluids through clearances between stationary and rotating components.
2. Brief Description of the Related Art
In turbomachines, such as steam turbines, there is a need to control leakage of the working fluid through annular gaps (clearances) between rotating and stationary components. One known means of controlling leakage of working fluid between rotating and stationary components is the finned seal. In one form, this comprises an axial series of circumferentially extending ribs or fins which project from both the stationary and rotating components towards each other across the annular gap.
One of numerous aspects of the present invention includes providing an improved finned seal that can minimise leakage through annular clearances between static and rotating components in turbomachinery while accommodating relative axial movement between such components.
Accordingly, another aspect of the present invention includes providing a seal assembly for controlling leakage of fluid through an annular gap between a rotary component and a static component in a turbomachine, in which the rotary and static components each have stepped diameters comprising a plurality of circumferentially and axially extending lands which confront each other across the annular gap and are complementarily formed such that the annular gap is maintained over the axial extent of the seal assembly, both components being provided with rows of fins which extend circumferentially of the lands and project radially therefrom towards each other, rows of fins on confronting lands being opposed to each other across the gap, the radial dimensions of the opposed fins being sufficient substantially to span the gap when added together.
The annular gap is exemplarily maintained substantially constant in radial dimension over the axial extent of the seal assembly. However, axially successive lands on both components may decrease in diameter stepwise over a first axial extent of the seal assembly and increase in diameter stepwise over a second axial extent of the seal assembly. Alternatively, axially successive lands on both components may increase in diameter stepwise over a first axial extent of the seal assembly and decrease in diameter stepwise over a second axial extent of the seal assembly.
In an exemplary embodiment, each of one or more rows of fins on the rotary component and/or the static component comprises a pair of axially adjacent fins of substantially equal radial extent. Alternatively, each of one or more rows of fins on the rotary component and/or the static component may comprise axially adjacent multiple fins.
Further aspects of the invention will become apparent from a study of the following description.
At their radially inner ends, the moving blades 10, 12 are provided with root portions 20, 22 by which they are attached to the rims of respective rotor discs 24, 26. As shown, the blade root portions 20, 22 are of the re-entrant slot type, the slots having a sectional profile somewhat like a fir-tree. Alternatively, other forms of attachments, such as pinned fingers or dovetails, could be used to secure the moving blades to the rotor discs. The rotor discs 24, 26 extend radially from a cylindrical shaft 28.
During operation of the turbine, some of the steam from the turbine annulus 19 tends to leak around the radially inner end of the fixed shroud 16 (as indicated by the arrows) instead of flowing through the passages between successive blades 14 in the static blade row. To maintain turbine efficiency, it is necessary to control this flow of steam and for this purpose a known type of labyrinth seal assembly 30 is provided. This comprises a radially inner cylindrical surface 32 of the fixed shroud 16 that confronts an outer cylindrical surface 34 of the shaft 28 across a gap G. Extending radially inwards from the surface 32 towards the shaft is an axial series of circumferentially extending fins or ribs 36; similarly, extending radially outwards from the surface 34 towards the fixed shroud 16 is an axial series of circumferentially extending fins or ribs 38. Fins 36 and 38 are axially offset from each other, so that they are interdigitated, thereby presenting steam with a serpentine path of increased flow resistance to reduce leakage.
It will be seen from
Another type of finned seal 40 suitable for use in the turbine of
It will be seen that some of the opposed fins, e.g., 42A, 44A, are offset from each other across the gap G, while others, e.g., 42B, 44B, are in registration with each other. This is because the ribs 42 on the fixed shroud ring 16 are axially spaced apart from each other by a slightly different amount compared to ribs 44 on the shaft 28. This is characteristic of so-called vernier-type seals, which are designed such that under a defined range of axial positions of the rotating and fixed components relative to each other, there is always at least one sealing rib or fin on one component in registration (or nearly so) with a corresponding rib or fin on the other component, so maintaining restriction of fluid flow through the gap G.
The skilled person will realise that axial movement of a steam turbine rotor relative to the turbine's fixed structure will be due, e.g., to differences in linear thermal expansion between the turbine casing and the rotor, or movement of the rotor in its bearings due to thrust forces transmitted from the turbine blades. The possible range of such axial movement will be known from tests and/or calculation, and therefore the vernier seal will be designed to cope with this specific range of movement.
A disadvantage of the vernier seal of
Turning now to
It will be realised that the steps in diameter of the lands 56 and 58 removes the ability of the leakage fluid to flow in a straight line through the seal, even when some of the fins have been shortened due to rubbing against each other. Hence, the flow resistance of the seal is increased relative to a “straight through” version of the seal without steps.
As will be seen from
From
The benefit of multiple rows of double fins as shown in
As noted above, one or more of the rows could comprise single fins, this being achieved by the simple expedient of having one limb of the U-shaped strips shorter than the other and level with the surface of the land in which it is embedded.
It will be realised by the skilled person that the steps in the diameters of adjacent lands need not be equal increments or decrements of diameter, though it will probably still be desirable to maintain a constant radial dimension of the gap G over the axial extent of the seal assembly.
The vernier effect in the vernier seal assembly described above in relation to
Although a vernier seal arrangement is illustrated in
Although the focus of the above description has been on use of the invention in connection with an axial flow steam turbine, the skilled person will appreciate that the invention could be applicable to other types of turbomachinery, whether or not steam-driven, including radial flow turbomachines and including radial or axial flow compressors.
List of reference numbers.
10, 12—moving turbine blades
14—fixed turbine blades
16—inner fixed shroud ring
18—radially outer surface of shroud 16
19—turbine passage
20,22—root portions of rotor blades 10, 12
24, 26—rotor discs
28—shaft
30—labyrinth seal
32—inner cylindrical surface of fixed shroud 16
34—outer cylindrical surface of shaft 28
36, 38—fins on surfaces 32, 34
40—vernier seal
42, 44—fins
42A, 44A—opposed fins offset from each other
42B, 44B—opposed fins in registration with each other
50—vernier seal (invention)
52, 54—confronting surfaces of fixed shroud 16 and shaft 28
56, 58—lands
60, 62—fins on lands 56, 58
64, 66—grooves
67—caulking
70, 80—seal assembly
82, 84—fins in seal assembly 80
‘A’, ‘B’—first and second axial extents of the seal assembly in
‘A1’, ‘B1’—first and second axial extents of the seal assembly in
G—gap
While the invention has been described in detail with reference to exemplary embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention. Each of the aforementioned documents is incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
0327300.0 | Nov 2003 | GB | national |