The present invention is a device, and a two-wire interconnection scheme, that serves as an adapter 4 to interconnect and activate numerous residential 120 VAC operated smoke alarms 5 without the addition of a third red electrical conductor wire 6 required to trigger the independent audio alert line at the local alarm drive A. The present invention includes methods of installing and operating such a device.
Fire Codes for buildings in most States require that one and two story dwellings maintain and often upgrade the alarm systems by interconnecting their smoke alarms and CO detectors for simultaneous operation. After interconnection, when one alarm sensor detects a hazard at one end of the house, all other installed alarm sensors, even ones located at the other end of a house, as well as each bedroom, are energized simultaneously and begin to emit their alarm sound. (
Alarm interconnection has been proven to give people more time to escape from a structural fire. That extra time results in the saving of lives and property in a far greater proportion than when interconnection is not used.
The conventional method of accomplishing the necessary interconnection is to install each device with a third electrical wire connection 6. Two wires, white 6W and black 6B, provide the commercial power, such as 120 VAC 60 Hz power in the United States, or other commercial power, such as 230 VAC 50 Hz found in other countries.
A third trigger wire, usually red, 6 Red, is normally strung between alarms and is employed for interconnecting the low voltage signal needed to activate the other alarms installed within the building. This is typically a standard 9 VDC. Most United States Building and Fire Codes require this form of alarm interconnection in all new construction. Property Maintenance Codes require existing homes to be upgraded in this manner when and where it is feasible. When a fire or CO alarm actuates, it shorts this 9 VDC to its yellow alarm wire, which is conductively connected to the structure's red alarm wire 6.
This present invention makes it possible for all existing homes to receive the enhanced safety benefit of interconnecting all alarms in a house, while eliminating the expensive burden and inconvenience of rewiring, while still complying with state and local codes regarding alarm systems.
The present invention 4 comprises a 2-wire interconnected transceiver circuit, generally designated 4J, (
The transmitter portion 7 of the present invention is equipped with a trigger circuit 10 used to monitor the activity of output line YELLOW A, usually a yellow wire 6 YELLOW, of the local fire alarm sensor 5 it is attached to. When a low voltage (9 VDC) output signal is received on wire Yellow A (
Should the 455 KHz receiver portion 9 of the present invention detect the presence of a 455 KHz. signal injected into the power lines 6W & 6B from any other fire alarm sensor 5 on the 120 VAC power line, it processes that signal through a state-of-the-art microprocessor 10A (
This system allows as many alarms to be interconnected as desired. A smoke alarm and a carbon monoxide alarm could be in each room of as many rooms or zones as there are rooms or zones supplied by the commercial power circuit. If each alarm 5 were connected through a transceiver such as 4, all would be interconnected. All would alarm in response to an alarm from any one smoke or CO alarm.
A further feature of the present invention is to execute an “echo” transmission of the 455 KHz. signal, when a confirmed alert is detected from another alarm 5, so that it also acts as a 455 KHz. generator for the purpose of activating all other fire alarm units 5 attached to the building's 120 VAC power lines. This feature makes each transceiver 4 a repeater, and thereby increases the range of each alarm to every other alarm on the house circuit.
As in
Similarly, transceiver 4B connects the three-wired conductor 18 group of:
Any further additional transceiver mounted alarms would also be thereby connected to the pre-existing interconnected alarm group through the group's transceiver 4B.
If:
Or, the installer can change the position of that particular circuit onto the same phase as the others, as by moving the 2 Wire from Circuit 3 to Circuit 2. He can usually do so at the circuit breaker panel box 14.
Thus, as many alarms can be interconnected in a structure, as there are existing commercial power supply points, without hiring a licensed electrician to run a new three-wire alarm circuit for each new local alarm 5.
To further simplify installation, transceiver 4 can be equipped with an AC plug 60
This power goes through a power line interface 20, which provides low voltage DC power to the transceiver 4.
When a 9 VDC alert input comes from detection of the smoke or CO alarm through wire 6; or when a manual input occurs through pressing:
If a test button 22 is provided, there should also be a reset button 23 (
If, as in
Additionally drive enable 30 is stimulated to actuate frequency stable oscillator 32, which outputs a radio wave, preferably in this embodiment 455 kHz, to output power amplifier 34, which amplifies that wave. We may find as the population of these alarms becomes dense, that it is helpful to provide an adjustable frequency or provide adjustably coded signals, to discriminate between interfering alarm signals. An adjustment control for adjustable frequency or adjustably coded signals is contemplated within the scope of this invention.
The radio frequency (RF) wave then passes through filter 36, through impedance matching transformer 38, and is injected through the powerline interface 20, into power lines 6B and 6W, for receipt by the other transceivers to actuate their alarms 26.
When another alarm such as 5A (
In
The signal is filtered through collision protection 40, and if it passes that screening, to receiver interface 42.
A band limited amplifier 44 amplifies only a specific frequency used as the alarm frequency, preferably, in the presently preferred embodiment a frequency of about 455 kHz. Sharp band pass filter 46 further screens and narrows the frequency. This narrowed wave is then input into band limited amplifier 48 which amplifies it. The amplified wave is input to a discriminator comparator 50 which ascertains that the input signal is indeed 455 kHz, or whatever is the preferred frequency of this particular model.
The signal is passed from discriminator comparator 50 to noise eliminating microcomputer 10, and if it is determined not to be noise, a signal is sent to output drive 24 which actuates sound warning 26.
As part of the repeater feature the noise eliminating microcomputer 10 also passes the signal to drive enable 30, which actuates frequency stable oscillator 32 to output the 455 kHz signal, which is amplified by power amplifier 34. The amplified wave then passes through band filter 36 to further narrow it. The narrowed wave then passes through impedance matching transformer 38, and then to powerline interface 20, where the amplified signal is again injected into power lines 6B and 6W, for further transmission down the power line, to other alarms 4, which might otherwise be out of range of the unit which transmitted the original alarm signal to the unit 4 depicted in
An optioal test button 22 may be provided for an additional diagnostic tool, although the test button on the fire or CO alarm 5 can also test this part of the circuit. The advantage of the test button on unit 4 is that it allows the interface 4 to be tested independently of the detector 5.
A reset button 23 is a good way to terminate such a test, although the unit can alternately be designed to use a second press of Test 22 to terminate such a test.
In
Three prongs should not be necessary, since most fire alarms have two prong plugs. But in case some building code somewhere requires a ground prong 65, this configuration is envisioned as an alternative to an embodiment that has only two prongs 63 and 64.
Alternatively, the integrated unit 84 may be equipped with a cord 60 and a plug 60 or 62, as shown in
A “Test” switch 22 is essential in this unit 84, because there is no separate alarm unit 5, providing its switches for testing. A reset switch 23 is nice to have too.
This application is a continuation in part of, and National Phase of, and takes priority from PCT Application: PCTUS2011/036233, filed May 12, 2011, pending, for any common subject matter, and is a continuation in part thereof for any new matter. Said PCT application is a non-provisional of and takes priority from U.S. Provisional Application: 61/345,056, filed 14 May 2010, when the PCT Application was filed. The present application also takes priority, for any common subject matter, from said U.S. Provisional Application: 61/345,056, filed 14 May 2010, through said PCT Application. Those Applications are all hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2567908 | Levy | Sep 1951 | A |
4956875 | Bernard et al. | Sep 1990 | A |
5168262 | Okayama | Dec 1992 | A |
5999094 | Nilssen | Dec 1999 | A |
6611204 | Schmurr | Aug 2003 | B2 |
6778082 | Goodwin | Aug 2004 | B2 |
6788198 | Harshaw | Sep 2004 | B2 |
6822555 | Mansfield et al. | Nov 2004 | B2 |
7301455 | McKenna et al. | Nov 2007 | B2 |
7403096 | Curran et al. | Jul 2008 | B2 |
20040097137 | Devine et al. | May 2004 | A1 |
20050156669 | Ando | Jul 2005 | A1 |
Entry |
---|
International Search Report of PCT/US2011/036233 and Written Opinion of the International Searching Authority dated Feb. 9, 2012. |
Number | Date | Country | |
---|---|---|---|
20130049951 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61345056 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2011/036233 | May 2011 | US |
Child | 13320497 | US |