The present invention is generally directed to joint sealing systems, and more particularly, to systems for sealing structural expansion joint openings in roofs of structures.
In many construction projects involving materials such as concrete and steel, gaps are left between adjacent structural elements to allow for thermal expansion and contraction, wind sway, settlement, live load deflection, and/or seismic movements of the structural elements. By permitting expansion and contraction, the gaps prevent the structural materials and/or building cladding elements from cracking or buckling. These gaps are referred to as expansion joints or movement joints and are typically sealed to prevent them from allowing the passage of water, dirt, debris, or snow, etc. into the structure and/or between portions of the structure.
Current systems for sealing exterior expansion joints in the roofs of structures typically consist of a length of flexible material or membrane that spans a length and width of the joint between adjacent elements and is attached to each side of the joint by anchor bars that are screwed or bolted to the substrate. The membrane, usually a sheet of rubber or the like, is wider than the joint itself to seal the joint and to allow for movement of the structural materials with the joint. Two designs have been developed to address the issue of debris collecting on top of the membrane and straining the seal.
Problems may arise with either joint seal 10 and 20 in several areas. For example, the fasteners 16 and 26 are exposed to weather conditions and the seals may fail as they deteriorate and no longer effectively anchor the seals 10 and 20 about the joint J. Additionally, the seals 10 and 20 provide only a single layer of waterproofing, increasing the chances of failure of the seals. Finally, the shape of the membrane 12 and 22, whether hanging down or humped up, makes it difficult to transition from a horizontal roof expansion joint to a vertical wall expansion joint without compromising the continuity of the seals or undertaking significant modifications to the seals 10 and 20 in the field.
According to aspects illustrated herein, there is provided a watertight, integrated wall and roof expansion joint seal system comprising an expansion joint seal for a structure. The expansion joint seal comprises a central portion having an underside and at least one central chamber disposed around a centerline. The central portion is disposed within and fills a gap between a first substrate and a second substrate of a structure of interest such a roof. The expansion joint seal has a first flange portion extending outwardly from the centerline and a second flange portion extending outwardly from the centerline in a direction opposite the first flange portion. The expansion joint seal also comprises a fold comprising a first fold portion and a second fold portion. The first fold portion of the first flange portion is attachable to a first surface of the first substrate and the second fold portion of the first flange portion is attachable to a second surface of the first substrate. The first fold portion of the second flange portion is attachable to a first surface of the second substrate and the second fold portion of the second flange portion is attachable to a second surface of the second substrate. The watertight integrated wall and roof expansion joint seal system also comprises a joint closure comprising a core and a layer of elastomer disposed on the core. The joint closure also comprises an end portion configured to match and integrate with the underside of the central portion to form the watertight, integrated wall and roof expansion joint system, wherein movement of one or both of the first or second substrates causes a response in the central portion to maintain the seal. In one embodiment, at least one of the first flange portion and the second flange portion is comprised of a flexible material such that the at least one of the first flange portion and the second flange portion may be affixed to the structure at an angle or an elevation that differs from the central portion. In one embodiment, at least one of the first flange portion and the second flange portion is bifurcated into an upper flange portion and a lower flange portion. The upper flange portion extends further in length from the centerline than the lower flange portion to facilitate interlaying the expansion joint seal with roofing materials to form a water tight seal of the structure.
According to embodiments, the expansion joint seal system further comprises a watertight barrier located beneath the central portion and between the first substrate and the second substrate forming a watertight seal between the first substrate and the second substrate. Movement of one or more of the first substrate and the second substrate causes a response in the central portion and in the watertight barrier to maintain the seal. According to further embodiments, the expansion joint seal system comprises an insulation batt and a looped membrane of roofing material located beneath the central portion and between the first substrate and the second substrate forming an insulating seal between the first substrate and the second substrate, wherein movement of one or more of the first substrate and the second substrate causes a response in the central portion to maintain the seal.
According to further aspects illustrated herein, there is provided a garden roof assembly. The garden roof assembly comprises an expansion joint seal for a structure, comprising a central portion having at least one central chamber disposed around a centerline; a first flange portion extending outwardly from the centerline; and a second flange portion extending outwardly from the centerline in a direction opposite the first flange portion. The expansion joint seal also comprises a fold comprising a first fold portion and a second fold portion. The first fold portion of the first flange portion is attachable to a first surface of the first substrate and the second fold portion of the first flange portion is attachable to a second surface of the first substrate. The first fold portion of the second flange portion is attachable to a first surface of the second substrate and the second fold portion of the second flange portion is attachable to a second surface of the second substrate, the expansion joint seal being configured for a roof. The garden roof assembly further comprises at least one layer of roofing material located over the expansion joint seal and comprising a growing medium, thereby forming the garden roof assembly.
According to further aspects illustrated herein, there is provided an expansion joint seal system comprising an expansion joint seal for a structure. The seal comprises a central portion having at least one central chamber disposed around a centerline; a first flange portion extending outwardly from the centerline; and a second flange portion extending outwardly from the centerline in a direction opposite the first flange portion. When installed on the structure the first flange portion is attachable to a first substrate of the structure and the second flange portion is attachable to a second substrate of the structure such that the central portion is disposed within and seals a gap formed between the first substrate and the second substrate of the structure; wherein movement of one or both of the first substrate and the second substrate causes a response in the central portion to maintain the seal. The expansion joint seal system further comprises at least one of i) a watertight barrier located beneath the central portion and between the first substrate and the second substrate forming a watertight seal between the first substrate and the second substrate, and ii) an insulation batt and a looped membrane of roofing material located beneath the central portion and between the first substrate and the second substrate forming an insulating seal between the first substrate and the second substrate.
According to further aspects illustrated herein, there is provided a garden roof assembly comprising an expansion joint seal for a structure. The expansion joint seal comprises a central portion having at least one central chamber disposed around a centerline; a first flange a first flange portion extending outwardly from the centerline; and a second flange portion extending outwardly from the centerline in a direction opposite the first flange portion. When installed on the structure the first flange portion is attachable to a first substrate of the structure and the second flange portion is attachable to a second substrate of the structure such that the central portion is disposed within and seals a gap formed between the first substrate and the second substrate of the structure. Movement of one or both of the first substrate and the second substrate causes a response in the central portion to maintain the seal. The garden roof assembly further comprises at least one layer of roofing material located over the expansion joint seal and comprising a growing medium, thereby forming the garden roof assembly.
The present invention alleviates perceived problems associated with current rooftop expansion joint systems by including, for example, redundant levels of waterproofing, a dual flange apparatus, which protects the anchors and enhances the seal, and the ability to manufacture transitions that can be integrated into coplanar, perpendicular and other expansion joints.
Referring to
As described below, the expansion joint seals 100, 200, 300, 400 (
Referring again to
In one embodiment, as best illustrated in
Referring again to
As shown in
As shown in
Referring to
Referring to
Referring to
As illustrated in, e.g.,
Expansion joint seal 100 has been described above with respect to, e.g.,
According to embodiments, the inventors have solved the problem of how to obtain a watertight transition from a roof to a wall expansion joint. Advantageously, according to embodiments and as best seen in
As shown in
The expansion joint seal 100 of
Joint closure 810 can comprise any suitable shape, size and thickness. As shown in
The core 840 can be infused with a suitable material including, but not limited to, waterproofing material such as an acrylic, such as a water-based acrylic chemistry, a wax, a fire retardant material, ultraviolet (UV) stabilizers, and/or polymeric materials, and so forth. As an example, core 840 can comprise an open celled foam infused with a water-based acrylic chemistry, and/or a fire retardant material. One type of fire retardant material that may be used is a water-based aluminum tri-hydrate (also known as aluminum tri-hydroxide (ATH)). However, the present invention is not limited in this regard, as other fire retardant materials may be used. Such materials include, but are not limited to, metal oxides and other metal hydroxides, aluminum oxides, antimony oxides and hydroxides, iron compounds, such as ferrocene, molybdenum trioxide, nitrogen-based compounds, phosphorus based compounds, halogen based compounds, halogens, e.g., fluorine, chlorine, bromine, iodine, astatine, combinations of the foregoing materials, and other compounds capable of suppressing combustion and smoke formation.
As shown in
As a non-limiting example, the amount of fire retardant material infused into the core 840, such as an open celled foam, is between 3.5:1 and 4:1 by weight in a ratio with the un-infused core itself. The resultant uncompressed core whether comprising a solid block or laminates, has a density of about 130 kg/m3 to about 150 kg/m3, specifically 140 kg/m3, according to embodiments. Further according to embodiments, the resultant uncompressed core has a density of about 50 kg/m3 to about 250 kg/m3, e.g., between about 100 kg/m3 to about 180 kg/m3.
The infused core 840, such as infused foam laminate, can be constructed in a manner which insures that substantially the same density of fire retardant is present in the product regardless of the final size of the product. For example, the starting density of the infused foam/core is approximately 140 kg/m3, according to embodiments. After compression, according to embodiments, the infused foam/core density is in the range of, e.g., about 160-800 kg/m3, 200-700 kg/m3. After installation, the laminate can cycle between densities of approximately 750 kg/m3 at the smallest size of the expansion joint to approximately 400-450 kg/m3 or less at the maximum size of the joint. This density of 400-450 kg/m3 is based upon experiments as a reasonable value which still affords adequate fire retardant capacity, such that the resultant composite can pass the UL 2079 test program. The present invention is not limited to cycling in the foregoing ranges, however, as the material may attain densities outside of the herein described ranges. It is further noted that UL 2079, developed by Underwriters Laboratories, is a further refinement of ASTM E-119 by adding a cycling regimen to the test. Additionally, UL 2079 stipulates that the design be tested at a maximum joint size. This test is more reflective of real world conditions, and as such, architects and engineers have begun requesting expansion joint products that meet it. Many designs which pass ASTME-119 without the cycling regime do not pass UL 2079. This may be adequate for non-moving building joints; however, most building expansion joint systems are designed to accommodate some movements as a result of thermal effects (e.g., expansion into the joint and contraction away from the joint) or as a result of seismic movement. Advantageously, embodiments of the systems disclosed herein meet and can pass UL 2079 testing. Thus, embodiments of the systems disclosed herein are capable of withstanding exposure to a temperature of at least of about 540° C. for about five minutes, capable of withstanding exposure to a temperature of about 1010° C. for about two hours, capable of withstanding exposure to a temperature of about 930° C. for about one hour, and capable of withstanding exposure to a temperature of about 1260° C. for about eight hours.
In any embodiment, for example when individual laminations 870 are used, several laminations, the number depending on the expansion joint size (e.g., the width, which depends on the distance between opposing substrates into which the expansion joint system 800 is to be installed), can be compiled and then compressed and held at such compression in a suitable fixture. The fixture, referred to as a coating fixture, is typically at a width slightly greater than that which the expansion joint will experience at the greatest possible movement thereof.
It is noted that in the fixture, the laminations 870 can be configured in any desired shape and size depending upon the desired application and end use. For example, the laminations 870 thus can be configured and factory fabricated, with use of a fixture, as a substantially straight portion of the elongated section 860 or in other configurations.
According to embodiments, in the fixture for instance, the assembled infused or un-infused core 840 is typically coated with waterproof elastomer 850 on, for example, one or more surface. The elastomer 850 may comprise, for example, at least one polysulfide, silicone, acrylic, polyurethane, poly-epoxide, silyl-terminated polyether, combinations and formulations thereof, and so forth, with or with or without other elastomeric components, coatings, liquid sealant materials, and so forth. Further examples of elastomer 850 for coating, e.g., laminations 870 include PECORA 301 (available from Pecora Corporation, Harleysville, Pa.), DOW 888 (available from Dow Corning Corporation, Midland, Mich.), DOW 790 (available from Dow Corning Corporation, Midland, Mich.), DOW 795 (also available from Dow Corning Corporation), PECORA 890 (available from Pecora Corporation, Harleysville, Pa.), and so forth. A primer may be used depending on the nature of the adhesive characteristics of the elastomer 850.
During or after application of the elastomer 850 to, e.g., laminations 870, the elastomer 850 can tooled or otherwise configured to create a “bellows,” “bullet,” or other suitable profile. The profile can be of any suitable size and dimension. As a non-limiting example, widths less than about 1 inch have a convex single bellows surface. As a further non-limiting example, widths between about 1 inch and about 4 inches have a dual bellow surface. It is noted that the layer of elastomer 850 also can be continuous or non-continuous over the elongated section 860.
As noted above, the joint closure 810 comprising core 840 and elongated section 860 can be constructed in any suitable shape and size depending upon application and use such as, e.g., depending upon whether the application is a solid to wall or a cavity to wall sealing application. For example,
As a non-limiting example, in the solid to wall roof closure applications describe above with respect to, e.g., the as installed embodiment of
Thus, advantageously, according to embodiments of the invention, continuity of seal is extended to roof-to-wall configurations. Additionally, according to embodiments, the continuity of seal can also extend to, e.g., crosses, tees, upturns, downturns, and other conditions typically found in constructions projects. Moreover, embodiments of the invention are also suited for use in sealing structural slabs beneath, e.g., green, vegetative roof layers 940, as shown in
A further advantage of embodiments of the invention is in providing insulation in the joint openings beneath a roof expansion joint to maintain energy efficiency in the structure. For example, as shown in
Thus, according to embodiments, disclosed is a fire and water resistant, integrated wall and roof expansion joint seal system. The system comprises: a) an expansion joint seal for a structure, the seal comprising: a central portion having an underside and at least one central chamber disposed around a centerline; a first flange portion extending outwardly from the centerline; and a second flange portion extending outwardly from the centerline in a direction opposite the first flange portion; and b) a joint closure comprising a core and a layer of a water resistant material disposed on the core, the joint closure further comprising an end portion configured to match and integrate with the underside of the central portion to form the fire and water resistant, integrated wall and roof expansion joint seal system. A fire retardant material is included in the core in an amount effective to pass testing mandated by UL 2079, and the core with the fire retardant material therein is configured to facilitate compression of the core when installed between the first substrate and the second substrate by repeatedly expanding and contracting to accommodate movement of the first substrate and the second substrate; and the core with the fire retardant material included therein is configured to pass the testing mandated by UL 2079; and movement of one or both of the first substrate and the second substrate causes a response in the central portion to maintain the seal. According to aspects of the invention, i) at least one of the first flange portion and the second flange portion is comprised of a flexible material such that the at least one of the first flange portion and the second flange portion may be affixed to the structure at an angle or an elevation that differs from the central portion; and/or ii) at least one of the first flange portion and the second flange portion is bifurcated into an upper flange portion and a lower flange portion, the upper flange portion extending further in length from the centerline than the lower flange portion, and the lower flange portion being substantially parallel to the upper flange portion, the thickness of each of the upper flange portion and the lower flange portion being planar and substantially the same as the thickness of the members of the sidewall; and/or iii) further including a bracket disposed between the upper flange portion and the lower flange portion to facilitate mounting of the expansion joint seal to the structure; and/or iv) wherein when installed the upper flange portion and the lower flange portion interlay with two or more layers of roofing materials; and/or v) wherein expansion of at least one of the first substrate and second substrate causes the central portion to deflect upward such that the central portion does not impinge on itself or prevent movement of one or both of the first substrate and the second substrate while maintaining the seal; and/or vi) wherein contraction of at least one of the first substrate and the second substrate causes the central portion to deflect downward such that the central portion does not impinge on itself or prevent movement of one or both of the first substrate and the second substrate while maintaining the seal; and/or vii) wherein the central portion includes a sidewall, the sidewall configured to define the at least one central chamber, the at least one central chamber being configured to be selectively collapsible in response to a force from movement of one or both of the first substrate and the second substrate; and/or viii) wherein the at least one central chamber is comprised of at least one pair of central chambers disposed about the centerline; and/or ix) wherein the at least one central chamber is comprised of an odd number of central chambers; and/or x) wherein the core comprises open celled foam comprising a plurality of individual laminations assembled to construct a laminate, one or more of the laminations being infused with the fire retardant material and an acrylic; and/or xi) wherein the core comprises an elongated section comprising a horizontal setback portion configured to bridge a gap between a structural wall and a façade; and/or xii) wherein the elongated section comprises a water resistant material coated 45 degree miter; and/or xiii) further comprising a fold comprising a first fold portion and a second fold portion, wherein the first fold portion of the first flange portion is attachable to a first surface of a first substrate of the structure and the second fold portion of the first flange portion is attachable to a second surface of the first substrate, and the first fold portion of the second flange portion is attachable to a first surface of a second substrate of the structure and the second fold portion of the second flange portion is attachable to a second surface of the second substrate, such that the central portion is disposed within and seals a gap formed between the first substrate and the second substrate of the structure; and/or xiv) wherein the core with the fire retardant material included therein has a density when compressed in a range of about 200 kg/m3 to about 700 kg/m3; and/or xv) wherein the core uncompressed has a density of about 130 kg/m3 to about 150 kg/m3; and/or xvi) wherein the core with the fire retardant material included therein has a density when compressed in a range of about 160 kg/m3 to about 800 kg/m3; and/or xvii) wherein the core uncompressed has a density of about 50 kg/m3 to about 250 kg/m3; and/or xviii) wherein the system is configured to maintain fire resistance upon exposure to a temperature of about 540° C. at about five minutes; and/or xix) wherein the system is configured to maintain fire resistance upon exposure to a temperature of about 930° C. at about one hour; and/or xx) wherein the system is configured to maintain fire resistance upon exposure to a temperature of about 1010° C. at about two hours.
While the invention has been described with reference to various exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. Moreover, the embodiments disclosed herein can be employed in any combination with each other. In addition, many modifications may be made to adapt a particular situation or matter to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
The present application is a Continuation-in-Part Application of U.S. patent application Ser. No. 14/211,694, filed on Mar. 14, 2014, now U.S. Pat. No. (attorney ref. 1269-0005-1) which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/788,866, filed Mar. 15, 2013 (attorney ref. 1269-0009) and is a Continuation-in-Part Application of U.S. Non-Provisional patent application Ser. No 13/652,021 filed Oct. 15, 2012, now U.S. Pat. No. 9,322,163 (attorney reference 1269-0005), which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/547,476, filed Oct. 14, 2011, entitled “THERMOPLASTIC EXPANSION JOINT SEAL FOR ROOFS.” The present application is also a Continuation-in-Part Application of U.S. patent application Ser. No. 15/613,936, filed on Jun. 5, 2017 (attorney reference 1269-0001-1CIP-1), which is a Continuation Application of Ser. No. 13/729,500, filed on Dec. 28, 2012, now U.S. Pat. No. 9,670,666 (attorney reference 1269-0001-10P), which is a Continuation-in-part Application of U.S. Non-Provisional patent application Ser. No. 12/622,574, filed on Nov. 20, 2009, now U.S. Pat. No. 8,365,495 (attorney reference 1269-0001-1), which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/116,453, filed Nov. 20, 2008. The contents of all of the foregoing applications are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61788866 | Mar 2013 | US | |
61547476 | Oct 2011 | US | |
61116453 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13729500 | Dec 2012 | US |
Child | 15613936 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14211694 | Mar 2014 | US |
Child | 15681622 | US | |
Parent | 13652021 | Oct 2012 | US |
Child | 14211694 | US | |
Parent | 15613936 | Jun 2017 | US |
Child | 13652021 | US | |
Parent | 12622574 | Nov 2009 | US |
Child | 13729500 | US |