The invention relates to a fire column having the features of the preamble of claim 1, in particular for forming a vortex flame.
In such fire columns, usually with a glass cylinder as outer casing, the flame is set in rotation by swirled air, so that the “tornado-like” appearance results in a special optical attraction for the observers. In U.S. Pat. No. 7,097,448, this flame appearance is described as “corkscrew”-shaped. When using bio-ethanol and similar fuels, such fire or flame columns are also suitable in homes and are used primarily for decoration, but also for recreation of the inhabitants, as is often attributed to open fireplaces (or replicated fireplaces on monitors). In addition, such fire columns are used in outdoor areas, e.g. on terraces, wherein they then serve as light and heat sources on colder evenings.
A fire column of this type is known from U.S. Pat. No. 8,641,413, in which a base having the same diameter is arranged at the lower end of the glass cylinder, in which a large number of lateral blade elements are arranged in the form of helixes or helical lines. The air inflow and turbulent flame zone are clearly illustrated in
The construction effort is also relatively high in U.S. Pat. No. 8,641,413, since the individually attached guide elements are combined with a metal ring. In addition, this guide apparatus is divided into two parts in order to gain access to the combustion bowl by swinging out one half, e.g. when lighting or extinguishing the flame. This is also due to the fact that the glass cylinder is relatively hot, so that it should only be lifted off when wearing gloves. In U.S. Pat. No. 7,097,448, the outer casing is intended to remain relatively cold due to several tangential inflow gaps, but in this case the casing is at least in two parts and thus relatively complex to manufacture or assemble.
Thus, the invention is based on the task of improving such a fire column with regard to safety and construction effort.
This task is solved by a fire column according to claim 1. Expedient embodiments are subject of the subclaims.
The proposed placing of the outer casing over the guide elements provides a secure hold, since the inner wall of the outer casing engages around the guide elements with a small clearance fit. This axial overlap is preferably about 20% of the height of the outer casing, so that in combination with a relatively solid foot or base part, unintentional knocking over of the glass cylinder is hardly possible. Another advantage of the overlap is that the outer edges of the guide elements are enclosed by the outer casing, so that no separate component is required to delimit the individual air channels between the guide elements. The aforementioned clearance fit thus largely prevents the transfer of supply air from one air channel to the adjacent air channel, but still allows the outer casing to be lifted off easily in a vertical direction. It is advantageous here that the plurality of air channels (e.g. six in the case of six guide elements) cools the outer casing (in particular the inner wall of the glass cylinder) by an increased flow velocity, so that the lower region of the glass cylinder (and possibly the middle region at the level of the flame outlet above the fuel container) remains relatively cool. This minimizes the risk of burns and the outer casing can be removed without gloves by grasping the lower, cool region in order to extinguish the flame.
Thus, a chimney effect is created due to the thermal lift not only in the upper region of the fire column, but also in the individual air channels between the guide elements. These can also be nozzle-shaped in order to increase the flow velocity for cooling purposes. A blower or fan (as in the aforementioned prior art) is thus not required, which further reduces the construction effort and increases the usability in the garden (outdoors). In addition, the guide elements can be produced in a cost-saving manner together with the base part (incl. fuel receiver) as a cast part, wherein the guide elements can also be produced in an oblique or helical shape in one manufacturing step for the preferred formation of air vortices. In the case of axial main alignment of the guide blades, these can also be extruded together with the fuel holder in the manner of a heat sink tube, which can significantly reduce manufacturing costs (for higher quantities). Such extruded or continuously cast parts also exhibit high dimensional accuracy, which can ensure the above-mentioned clearance fit even without machining.
The generation of an air vortex rotating around the vertical axis of the fire column is particularly intensive due to the aforementioned helical air guide elements, but even with only slightly inclined blade surfaces, intensive swirling is already achieved, since the air flow which is initially axial and largely laminar becomes increasingly turbulent in the region of the flame. Even with a purely axial inflow from the lower part of the fire column, this chimney effect (with good cooling of the lower region of the inner wall of the fire column) allows swirling at the height of the flame in the manner of a flickering fire. Since the flame appearance also depends on the amount of air supplied, the lower supply air cross section (before the entrance to the guide elements) is preferably variable.
The outer casing preferably consists of refractory glass, in particular in the form of a cylinder with an open end face. Such tubes can be manufactured with high precision (to ensure the above-mentioned clearance fit) and are relatively inexpensive due to series production (e.g. for use in the chemical industry). However, other shapes and materials are also possible, e.g. a metal tube with windows in the manner of a lamp or a metal grid or metal mesh. The outer casing preferably rests at its lower end face on several radially aligned pins attached to a base part that surrounds the fuel container. The latter can also be designed for fuel paste or for receiving wood pellets or other fuels.
The base part is preferably made of metal in order to ensure the required stability together with a relatively heavy stand plate, especially in the so-called table fire version. The fire column can also be arranged in an elevated manner in order to increase the light effect, in particular with a holder in the manner of a patio heater (so-called “heating mushroom”) for the terrace area or with a support, e.g. in the manner of a ground spike for the garden area. The above-mentioned pins can also be molded or attached to the respective lower end of the e.g. three guide elements, so that the number of components is further reduced. The pins may be adjustable in their height positions to adjust the supply air cross section, in particular configured as eccentric pins, so that the flame appearance can be varied. The outer casing can also be wavy or stepped at the lower end so that the air gap can be regulated by rotation about the vertical axis. Also possible are perforated discs in horizontal alignment or perforated rings that can be rotated against each other in order to regulate the supply air or to smother the fire in the fire column when the slots provided therein are closed.
These and other features and advantages of the present invention will become more readily appreciated when considered in connection with the following detailed description and appended drawings, wherein:
The incoming air is deflected by the guide elements 3 to form a vortex or flow with swirl. The amount of air can be varied via the cross-section of the supply air opening 6, whereby the height of pins 5, for example, can be adjusted. In the setting shown here, the cross-section above the stand plate 2a corresponds approximately to the passage volume between base part 2 and outer casing 4, wherein the relatively thin guide elements 3 hardly reduce the passage. The outer casing 4, which rests on the pins 5 (here three pins with a pitch of 120° on the circumference of the base part), is placed (slipped) over the guide elements 3 with a tight fit or slight clearance fit and touches them at least at some points.
In
In
In
In
In order to keep the flame central, the fuel container 2a here has a hood or partial cover 9 open in the center, which is shaped in particular like a roof or truncated cone. This may also extend beyond the upper edge of the fuel container 2a, as indicated in dashed lines, to allow air supply to the interior, namely via upper supply air openings 8′. These are also provided more distinctly in the configuration according to
In summary, the small number of components achieves a purist design with low manufacturing costs. The stable construction increases safety and simplifies operation. In addition, various designs are also possible for outdoor use, wherein the light output or the heat supply can be varied more according to requirements, especially when wood pellets are used. Likewise, the indoor use as a so-called “table fire” is possible, since bio-ethanol burns largely odorless and soot-free, to which also the swirling of the flame can contribute.
The foregoing invention has been described in accordance with the relevant legal standards, thus the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiment may become apparent to those skilled in the art and fall within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
202018004601.9 | Oct 2018 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/000284 | 10/3/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/069770 | 4/9/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7097448 | Chesney | Aug 2006 | B2 |
8641413 | Chen et al. | Feb 2014 | B2 |
9170017 | Shimek | Oct 2015 | B2 |
10101036 | Fuller et al. | Oct 2018 | B2 |
10330313 | Huang | Jun 2019 | B2 |
20120178035 | Chen | Jul 2012 | A1 |
20120231403 | Chen et al. | Sep 2012 | A1 |
20130011800 | Chen | Jan 2013 | A1 |
20130252188 | Chen | Sep 2013 | A1 |
20140290643 | Potter | Oct 2014 | A1 |
20150167962 | Chen | Jun 2015 | A1 |
20150167963 | Chen | Jun 2015 | A1 |
20150167964 | Chen | Jun 2015 | A1 |
20180051886 | Myers et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
202007018478 | Sep 2008 | DE |
102008012794 | Aug 2009 | DE |
102013100971 | Jan 2017 | DE |
Entry |
---|
International Preliminary Report on Patentability for PCT/EP2019/000284, Apr. 15, 2021. |
Number | Date | Country | |
---|---|---|---|
20220235930 A1 | Jul 2022 | US |