The disclosure relates to gas turbine engines. More particularly, the disclosure relates to fire containment coatings for titanium components.
In gas turbine engines, compression of inlet air causes a continuous temperature and pressure increase from upstream to downstream along the gaspath within the compressor section(s). Components within the compressor section(s) are typically made of lightweight alloys such as titanium alloys. Such components include disks, blade stages carried by the disks, case structure surrounding the disks, vane stages carried by the case structure between blade stages, and outer air seals carried by the case structure surrounding the blade stages.
The high temperature and air pressure within downstream portions of the compressor section(s) create a favorable environment for engine fires. Blade tip rub against outer air seals may be sufficient to ignite titanium material of the blades and/or air seals. This material may be driven into contact with the case structure. To contain fires, the inner diameter (ID) portions of the case structure may be coated with a barrier coating system similar to those used on hot section components (e.g., used on nickel-based superalloy components of combustor and turbine sections). Exemplary coatings comprise a metallic bondcoat and a ceramic barrier coating. The barrier coating provides thermal insulation. Exemplary bondcoats are MCrAlY bondcoats. Exemplary barrier coatings are zirconia-based (e.g., yttria-stabilized zirconia).
One aspect of the disclosure involves a blade outer air seal (BOAS) or segment thereof comprising: a metallic substrate having an inner diameter (ID) surface; and a coating system along the inner diameter surface comprising: a bondcoat atop the substrate; and a ceramic barrier coat atop the bondcoat. The bondcoat has a combined content of one or more of molybdenum, chromium, and vanadium of at least 50 percent by weight.
A further embodiment may additionally and/or alternatively include the metallic substrate being a titanium-based substrate.
A further embodiment may additionally and/or alternatively include the metallic substrate comprising aluminum and vanadium.
A further embodiment may additionally and/or alternatively include the metallic substrate being a steel substrate.
A further embodiment may additionally and/or alternatively include the bondcoat comprising by weight at least 50 weight percent said chromium.
A further embodiment may additionally and/or alternatively include the bondcoat comprising by weight at least 6.0 percent nickel.
A further embodiment may additionally and/or alternatively include the bondcoat comprising by weight at least 10.0 percent cobalt.
A further embodiment may additionally and/or alternatively include the bondcoat comprising by weight at least 50.0 percent said molybdenum and at least 6 percent nickel.
A further embodiment may additionally and/or alternatively include the bondcoat comprising by weight at least 54 weight percent said vanadium.
A further embodiment may additionally and/or alternatively include the bondcoat comprising by weight at least 6.0 weight percent aluminum.
A further embodiment may additionally and/or alternatively include the ceramic barrier coat comprising at least 50 weight percent zirconia.
A further embodiment may additionally and/or alternatively include the ceramic barrier coat comprising yttria-stabilized zirconia.
A further embodiment may additionally and/or alternatively include, at a location along the substrate, the bondcoat having a thickness of 25.4 micrometer to 0.41 millimeter and the ceramic barrier coat having a thickness of 0.10 millimeter to 1.27 millimeter.
A further embodiment may additionally and/or alternatively include the substrate having a melting point of at most 1660° C. and the bondcoat having a melting point of at least 1550° C.
A further embodiment may additionally and/or alternatively include the substrate having a melting point and the bondcoat having a melting point greater than the melting point of the substrate.
A further embodiment may additionally and/or alternatively include the substrate having a melting point and the bondcoat having a melting point at least 25° C. greater than the melting point of the substrate.
A further embodiment may additionally and/or alternatively include a gas turbine engine including the blade outer air seal or a stage of the blade outer air seal segments and further comprising: a stage of blades surrounded by the blade outer air seal or stage of blade outer air seal segments.
A further embodiment may additionally and/or alternatively include one or both of the blades each having a titanium alloy substrate and the blade outer air seal or segment metallic substrate(s) are titanium alloy substrate(s).
A further embodiment may additionally and/or alternatively include a method for manufacturing the blade outer air seal or segment. The method comprises applying the bondcoat by air plasma spray.
A further embodiment may additionally and/or alternatively include applying the ceramic barrier coat by air plasma spray.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
The core flowpath 522 proceeds downstream to an engine outlet 36 through one or more compressor sections, a combustor, and one or more turbine sections. The exemplary engine has two axial compressor sections and two axial turbine sections, although other configurations are equally applicable. From upstream to downstream there is a low pressure compressor section (LPC) 40, a high pressure compressor section (HPC) 42, a combustor section 44, a high pressure turbine section (HPT) 46, and a low pressure turbine section (LPT) 48. Each of the LPC, HPC, HPT, and LPT comprises one or more stages of blades which may be interspersed with one or more stages of stator vanes.
In the exemplary engine, the blade stages of the LPC and LPT are part of a low pressure spool mounted for rotation about the axis 500. The exemplary low pressure spool includes a shaft (low pressure shaft) 50 which couples the blade stages of the LPT to those of the LPC and allows the LPT to drive rotation of the LPC. In the exemplary engine, the shaft 50 also drives the fan. In the exemplary implementation, the fan is driven via a transmission (not shown, e.g., a fan gear drive system such as an epicyclic transmission) to allow the fan to rotate at a lower speed than the low pressure shaft.
The exemplary engine further includes a high pressure shaft 52 mounted for rotation about the axis 500 and coupling the blade stages of the HPT to those of the HPC to allow the HPT to drive rotation of the HPC. In the combustor 44, fuel is introduced to compressed air from the HPC and combusted to produce a high pressure gas which, in turn, is expanded in the turbine sections to extract energy and drive rotation of the respective turbine sections and their associated compressor sections (to provide the compressed air to the combustor) and fan.
The case carries air seals 70 immediately outboard of blade tips. Each stage of air seal may be associated with a respective stage of blades and may be formed in a plurality of circumferential segments 72 arrayed circumferentially end-to-end. The air seal segments may comprise metallic substrates (e.g., Ti-alloy (Ti-based as at least 50% Ti by weight), steel, or Ni-based superalloy) 74 having inner diameter (ID) surfaces 76 bearing an abradable coating 78 with the tips bearing abrasive coating 66.
The air seal segments may have features for mounting to the case.
With exemplary existing coatings, an observed failure mechanism has been melting of the bondcoat causing delamination of the barrier coat. To provide enhanced fire protection, the bondcoat chemistry may be chosen to have a melting point higher than typical MCrAlY bondcoat material and higher than that of the substrate. For example, an exemplary titanium alloy substrate has a melting point (solidus) of 1550° C. to 1660° C., more particularly, 1580° C. to 1630° C. A particular Ti alloy is Ti6Al4V having a melting point of 1604° C. (solidus) and 1660° C. (liquidus). Exemplary MCrAlYs have melting points (solidus) of 1200° C. to 1350° C. An exemplary baseline MCrAlY has a melting point (solidus) of 1335° C.
The exemplary bondcoat, however, may have a melting point of at least an exemplary 1455° C., more particularly, at least an exemplary 1495° C. or 1495° C. to 2617° C.
This melting point may be an exemplary at least 25° C. higher than the melting point of the case substrate, for maximum protection. Temperatures much higher are not clearly beneficial because the bondcoat will conduct heat through to the substrate and allow the substrate to melt. Thus a broader range is at least 1.0° C. or at least 10° C. higher. This may lead to the incongruity that the bondcoat used on the HPC case (or other cold section component) may have a higher melting point than one-to-all of the bondcoat materials used in the hot section.
Exemplary bondcoat materials are chromium and/or molybdenum-based alloys (e.g., at least 50 wt. % combined chromium and molybdenum content).
A first exemplary bondcoat is a chromium-nickel binary system. This exemplary system may have 95 wt. % to 100 wt. % chromium and nickel combined, more particularly, 98% to 100%. Within the chromium-nickel system, relatively high melting points are achieved with relatively high chromium contents. An exemplary range of chromium content is 50 wt. % to 100 wt. %. A narrower range is 60 wt. % to 100 wt. %. A narrower range is 76 wt. % to 94 wt. % discussed below. Some nickel content may be desired to provide improved toughness/durability (due to better ductility) and perhaps limit cost. A range of chromium content of 76 wt. % to 94 wt. % has associated melting points of about 1455° C. to about 1720° C. (estimate from phase diagrams). Within that range, alternative range endpoints include 88 wt. % yielding about a 1605° C. solidus. Pure chromium has a 1907° C. melting point. Commercially pure chromium (98 wt. % pure) has about a 1850° C. melting point.
A second exemplary bondcoat is a chromium-cobalt binary system. This exemplary system may have 95 wt. % to 100 wt. % chromium and cobalt combined, more particularly, 98% to 100%. Within the chromium-cobalt system, relatively high melting points are achieved with relatively high chromium contents. An exemplary range of chromium content is 50 wt. % to 100 wt. %. A narrower range is 67 wt. % to 90 wt. % discussed below. Some cobalt content may be desired to provide improved toughness/durability (due to better ductility) and perhaps limit cost. A range of chromium content of 67 wt. % to 90 wt. % has associated melting points of about 1495° C. to about 1730° C.
Within that range, alternative range endpoints include 80 wt. % yielding about a 1605° C. solidus.
A third exemplary bondcoat is a molybdenum-nickel binary system. This exemplary system may have 95 wt. % to 100 wt. % molybdenum and nickel combined, more particularly, 98 wt. % to 100 wt. %. Within the molybdenum-nickel system, relatively high melting points are achieved with relatively high molybdenum contents. An exemplary range of molybdenum content is 50 wt. % to 100 wt. %. A narrower range is 52 wt. % to 94 wt. % discussed below. Some nickel content may be desired to provide improved toughness/durability (due to better ductility) and perhaps limit cost. A range of molybdenum content 52 wt. % to 94 wt. % has associated melting points of about 1455° C. to about 2477° C. Within that range, alternative range endpoints include 56 wt. % yielding about a 1605° C. solidus and 87 wt. % yielding about a 2327° C. solidus. Pure molybdenum has a 2617° C. melting point.
A fourth exemplary bondcoat is a vanadium-aluminum binary system. This exemplary system may have 95 wt. % to 100 wt. % vanadium and aluminum combined, more particularly, 98% to 100%. Within the vanadium-aluminum system, relatively high melting points are achieved with relatively high vanadium contents. An exemplary range of vanadium content is 54 wt. % to 100 wt. %. A narrower range is 62 wt. % to 94 wt. %. A narrower range is 74 wt. % to 91 wt. % discussed below. Some aluminum content may be desired to provide improved corrosion resistance/durability (due to formation of a protective aluminum oxide surface layer) and perhaps limit cost. There is a 1670° C. plateau in melting point from 54 wt. % to about 62 wt. %. Thus, a range of vanadium content of from anywhere between 54 wt. % and 62 wt. % on the one hand to 94 wt. % on the other hand has associated melting points of about 1670° C. to about 1900° C. A range of vanadium content of 74 wt. % to 91 wt. % has associated melting points of about 1850° C. to about 1885° C. Pure vanadium has a 1910° C. melting point. Although ranges up to near 100 wt. % may be desirable from a performance point of view, balancing costs suggests a value closer to the 74 wt. % example.
Other possibilities include using mixtures of the higher melting point elements along with relevant amounts of one or more lower melting point elements (plus impurities and minor additions typically totaling at most 2.0 wt. % or at most 5.0 wt. %). Thus tertiary or greater systems may be implemented. One example is nickel-molybdenum-chromium. In such a system, the molybdenum provides increased solidus; the chromium provides hot corrosion-resistance (via formation of surface chromium oxide film); and the nickel provides ductility. Thus, exemplary systems comprising more than one of the high melting point elements (e.g., molybdenum, chromium or vanadium) may have a total of at least 50 wt. % combined of such elements.
Exemplary bondcoat deposition is via air plasma spray. Alternative techniques include high velocity oxy-fuel (HVOF), high velocity air-fuel (HVAF), cold spray, warm spray, electron beam physical vapor deposition (EBPVD), and cathodic arc deposition.
Exemplary barrier coating may be of conventional thermal barrier coating (TBC) composition. Key examples are zirconias such as yttria-stabilized zirconia (YSZ), gadolinia-stabilized zirconia (GSZ), and mixtures thereof or layered combinations thereof and the like. A basic example is a 7 wt. % yttria-stablilzed zirconia (7YSZ). This may be applied by air plasma spray or by various techniques mentioned above for the bondcoat.
Another example is a segmented outer air seal. Although Ti-based substrates are noted above for these (see, also, U.S. Pat. No. 8,777,562 (the disclosure of which is incorporated by reference in its entirety herein as if set forth at length) which discloses a Ti-based substrate with metallic bondcoat and ceramic topcoat forming a thermal barrier and then a metallic abradable atop the ceramic), steel is an alternate substrate. Fire is more significant when Ti-based segments are involved because the Ti alloy has a greater contribution as a fuel than the steel does (thus the present bondcoats help resist ignition of such substrate). However, the present bondcoats will still have benefit in a situation involving a steel substrate.
Exemplary steel substrate material is 400-series hardenable stainless steel having a melting point of 1477° C. (solidus, with liquidus being very slightly higher). The same ranges of bondcoat melting points may be used as noted above. When expressed in terms relative to substrate melting point, those differences will be 127° C. greater than the difference ranges specified for Ti-based substrates. Similarly, the deltas will change if nickel-based substrates are used.
The use of “first”, “second”, and the like in the following claims is for differentiation within the claim only and does not necessarily indicate relative or absolute importance or temporal order. Similarly, the identification in a claim of one element as “first” (or the like) does not preclude such “first” element from identifying an element that is referred to as “second” (or the like) in another claim or in the description.
Where a measure is given in English units followed by a parenthetical containing SI or other units, the parenthetical's units are a conversion and should not imply a degree of precision not found in the English units.
One or more embodiments have been described. Nevertheless, it will be understood that various modifications may be made. For example, when applied to an existing baseline configuration, details of such baseline may influence details of particular implementations. Accordingly, other embodiments are within the scope of the following claims.
This is a divisional application of U.S. patent application Ser. No. 14/624,817, filed Feb. 18, 2015, and entitled “Fire Containment Coating System for Titanium”, the disclosure of which is incorporated by reference herein in its entirety as if set forth at length.
Number | Name | Date | Kind |
---|---|---|---|
4761346 | Naik | Aug 1988 | A |
5006419 | Grunke et al. | Apr 1991 | A |
5114797 | Uihlen et al. | May 1992 | A |
5413871 | Nelson et al. | May 1995 | A |
5921751 | Freling et al. | Jul 1999 | A |
6528189 | Beele | Mar 2003 | B1 |
8777562 | Strock et al. | Jul 2014 | B2 |
20070190351 | Eichmann et al. | Aug 2007 | A1 |
20070190352 | Bayer et al. | Aug 2007 | A1 |
20080160172 | Taylor | Jul 2008 | A1 |
20090293447 | Roth-Fagaraseanu et al. | Dec 2009 | A1 |
20100143108 | Uihlein et al. | Jun 2010 | A1 |
20100294263 | Kuckelkorn et al. | Nov 2010 | A1 |
20140272456 | Trubelja | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
102007005755 | Aug 2008 | DE |
2112248 | Oct 2009 | EP |
2253737 | Nov 2010 | EP |
1384883 | Feb 1975 | GB |
Entry |
---|
European Search Report dated Jun. 15, 2016 for Application No. 16153869.9. |
U.S. Office Action dated Mar. 17, 2017 for U.S. Appl. No. 14/624,817. |
European Search Report dated Dec. 4, 2018 for European Patent Application No. 18187111.2. |
Number | Date | Country | |
---|---|---|---|
20180066348 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14624817 | Feb 2015 | US |
Child | 15802837 | US |