Fire control assembly

Information

  • Patent Grant
  • 11592255
  • Patent Number
    11,592,255
  • Date Filed
    Wednesday, January 20, 2021
    3 years ago
  • Date Issued
    Tuesday, February 28, 2023
    a year ago
Abstract
In some embodiments, a fire control assembly comprises a frame, a hammer, a trigger and a disconnector. The frame is arranged to be supported along a trigger axis and a hammer axis. The hammer is rotatable about the hammer axis and the trigger is rotatable about the trigger axis. The frame comprises a hammer stop arranged to impede rotation of the hammer. The frame comprises a preloading mechanism arranged to contact a safety selector.
Description
BACKGROUND OF THE INVENTION

This invention relates to a fire control assembly for a firearm.


Firearms are often controlled by an assembly that includes a trigger and a hammer. Different fire control assemblies can be used in a given firearm, which can alter certain characteristics of the firearm. A user might select a particular fire control assembly to achieve a lighter trigger pull weight and/or a smoother trigger feel when compared to an OEM or mil-spec trigger. There can also be trade-offs with a non-mil-spec trigger, such as a loss of robustness.


In some known fire control assemblies, the hammer reaches an end of its travel path when it impacts another part of the fire control assembly, such as the disconnector. Under certain conditions, parts of a fire control assembly that impact one another can be damaged.


Additionally, due to manufacturing tolerances and variations in specific sizing and spacing of firearm housings, a fire control assembly can have fitment issues and can shift position slightly during operation.


There remains a need for novel fire control assemblies that provide benefits over prior designs.


All U.S. patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety.


Without limiting the scope of the invention a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.


A brief abstract of the technical disclosure in the specification is provided as well only for the purposes of complying with 37 C.F.R. 1.72. The abstract is not intended to be used for interpreting the scope of the claims.


BRIEF SUMMARY OF THE INVENTION

In some embodiments, a fire control assembly comprises a frame, a hammer, a trigger and a disconnector. The frame is arranged to be supported along a trigger axis and a hammer axis. The hammer is rotatable about the hammer axis and the trigger is rotatable about the trigger axis. The frame comprises a hammer stop arranged to impede rotation of the hammer.


In some embodiments, the hammer stop comprises a bumper. In some embodiments, the frame comprising a first material and the bumper comprises a second material different from the first material.


In some embodiments, the bumper comprises a stem engaged with the frame and an enlarged contacting surface.


In some embodiments, a hammer sleeve is attached to the frame and the hammer sleeve supports the hammer. In some embodiments, a trigger sleeve is attached to the frame and the trigger sleeve supports the trigger.


In some embodiments, the hammer comprises a first portion arranged to contact the disconnector and a second portion arranged to contact the hammer stop.


In some embodiments, a fire control assembly comprises a frame, a hammer, a trigger and a disconnector. The frame is arranged to be supported along a trigger axis and a hammer axis. The hammer is rotatable about the hammer axis and the trigger is rotatable about the trigger axis. The frame comprises a preloading mechanism arranged to contact a safety selector.


In some embodiments, the preloading mechanism is arranged to contact a shaft of the safety selector.


In some embodiments, the preloading mechanism comprises a biasing member and a contacting member, the contacting member moveable with respect to the frame via resilient deformation of the biasing member.


In some embodiments, a trigger spring is arranged to bias the trigger in a first rotational direction about the trigger axis and the preloading mechanism is arranged to bias the frame in a second rotational direction about the trigger axis.


In some embodiments, the preloading mechanism is centered in the frame between the first side and the second side.


In some embodiments, a distance between the trigger axis and the preloading mechanism is greater than a distance between the trigger axis and the hammer axis.


These and other embodiments which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages and objectives obtained by its use, reference can be made to the drawings which form a further part hereof and the accompanying descriptive matter, in which there are illustrated and described various embodiments of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

A detailed description of the invention is hereafter described with specific reference being made to the drawings.



FIG. 1 shows an embodiment of a fire control assembly in a housing.



FIG. 2 shows an embodiment of a fire control assembly.



FIG. 3 shows another view of an embodiment of a fire control assembly.



FIG. 4 shows an exploded view of a portion of an embodiment of a fire control assembly.



FIG. 5 shows a partial sectional view of an embodiment of a fire control assembly.



FIG. 6 shows a partial sectional view of an embodiment of a fire control assembly in a housing.





DETAILED DESCRIPTION OF THE INVENTION

While this invention may be embodied in many different forms, there are described in detail herein specific embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.


For the purposes of this disclosure, like reference numerals in the figures shall refer to like features unless otherwise indicated.



FIG. 1 shows an embodiment of a fire control assembly 10 oriented in a housing 8. A fire control assembly 10 can be used in any suitable type of firearm. In some embodiments, a fire control assembly 10 is configured for use in an AR-style rifle, such as an AR15. In some embodiments, a housing 8 comprises an AR lower receiver. FIG. 1 shows the housing 8 partially cut away so parts of the fire control assembly 10 are more visible.


In some embodiments, the fire control assembly 10 comprises a hammer 20 arranged to pivot about a hammer axis 22 and a trigger 30 arranged to pivot about a trigger axis 32. In some embodiments, a trigger spring 38 is arranged to bias the trigger 30 in a first rotational direction (e.g. clockwise). In some embodiments, a hammer spring 28 is arranged to bias the hammer 20 in a second rotational direction (e.g. counter-clockwise). In some embodiments, the fire control assembly 10 comprises a disconnector 14 arranged to catch the hammer 20. In some embodiments, the fire control assembly 10 comprises a frame 40. In some embodiments, the frame 40 is arranged to support the hammer 20. In some embodiments, the frame 40 is arranged to support the trigger 30. In some embodiments, the fire control assembly 10 comprises a drop-in trigger assembly arranged to ease installation of the fire control assembly 10 in a housing 8.


Referring to FIGS. 1-4, in some embodiments, the frame 40 is constructed and arranged to be oriented within a cavity defined by the housing 8. In some embodiments, the frame 40 is constructed and arranged to be supported along the trigger axis 32. In some embodiments, the frame 40 is constructed and arranged to be supported along the hammer axis 22. In some embodiments, the frame 40 is supported by a hammer pin 24 and a trigger pin 34, which are supported by the housing 8.


In some embodiments, the frame 40 is engaged with or attached to a hammer sleeve 26, and the hammer sleeve 26 is arranged to support the hammer 20. In some embodiments, the frame 40 is engaged with or attached to a trigger sleeve 36, and the trigger sleeve 36 is arranged to support the trigger 30. In some embodiments, the hammer sleeve 26 is hollow and the trigger sleeve 36 is hollow. In some embodiments, the hammer pin 24 is arranged to be oriented in the hammer sleeve 26 and to engage the housing 8. In some embodiments, a trigger pin 34 is arranged to be oriented in the trigger sleeve 36 and to engage the housing 8. In some embodiments, fasteners 25 can be received by the hammer pin 24 and used to tighten the housing 8 to the fire control assembly 10. In some embodiments, fasteners 35 can similarly be attached to the trigger pin 34.


In some embodiments, the frame 40 comprises a unitary body comprising a first side 46 and a second side 48 defining a slot 47 therebetween. In some embodiments, the slot 47 provides clearance for the hammer 20, trigger 30, disconnector 14 and other parts of the fire control assembly 10. In some embodiments, the first side 46 and second side 48 each comprise a hammer aperture 42 and a trigger aperture 44. In some embodiments, the hammer apertures 42 are sized to receive the hammer sleeve 26 and the trigger apertures 44 are sized to receive the trigger sleeve 36.


In some embodiments, the frame 40 comprises a hammer stop 41. In some embodiments, the hammer 20 comprises a surface 23 arranged to contact the hammer stop 41. Desirably, the hammer stop 41 is arranged to impede movement of the hammer 30. In some embodiments, as the hammer 20 travels, a catch 21 of the hammer 20 is able to engage the disconnector 14, then the hammer stop 41 operates to stop rotation of the hammer 20 before another portion of the hammer 20 contacts the disconnector 14. In some embodiments, the hammer stop 41 comprises a bumper 50.


In some embodiments, a fire control assembly 10 comprises a preloading mechanism 54 arranged to stabilize the fire control assembly 10 in the housing 8. In some embodiments, the frame 40 comprises a preloading mechanism 54. In some embodiments, the preloading mechanism 54 is arranged to apply forces between the frame 40 and another portion of the firearm. In some embodiments, the preloading mechanism 54 is arranged to apply forces between the frame 40 and a safety selector 12 that is supported by the housing 8. In some embodiments, a preloading mechanism 54 comprises a biasing member 56 such as a spring and a contacting member 58 arranged to contact the safety selector 12. In some embodiments, the contacting member 58 contacts a shaft 13 of the safety selector 12. In some embodiments, the biasing member 56 and contacting member 58 are received in a cavity 52 formed in the frame 40. In some embodiments, the cavity 52 is oriented along a midline of the frame 40. In some embodiments, the preloading mechanism 54 is oriented on a midline of the frame 40. In some embodiments, the preloading mechanism 54 is centered between the first side 46 and second side 48 of the frame 40.



FIGS. 5 and 6 show partial cross-sectional views of an embodiment of a fire control assembly 10. In some embodiments, a fire control assembly 10 comprises a disconnector 14. In some embodiments, the disconnector 14 is supported by the trigger sleeve 36.


In some embodiments, a bumper 50 can be made from any suitable material and desirably comprises a rubber, elastomer, urethane or any other material arranged to cushion the hammer impact. In some embodiments, the frame 40 comprises a first material, such as metal, and the bumper 50 comprises a second material different from the first material.


In some embodiments, a bumper 50 comprises a stem 62 that is received by the frame 40. In some embodiments, the frame 40 engages the bumper 50 via friction, although any suitable engagement mechanism can be used. In some embodiments, the bumper 50 comprises a flange 60 having an enlarged face portion arranged to contact the hammer 20. In some embodiments, a distance across the flange 60 is greater than a distance across the stem 62. In some embodiments, a diameter of the flange 60 is greater than a diameter of the stem 62.


In some embodiments, the hammer 20 is moveable between first and second stop positions. FIG. 6 shows the hammer 20 in a first stop position, such as a fire position where the firearm discharges a round. After discharging a round, the firearm action will typically force the hammer 20 backwards, for example causing the hammer 20 to rotate clockwise in FIG. 6. FIG. 5 shows the hammer 20 in a second stop position, wherein a surface 23 of the hammer 20 contacts the bumper 50. Desirably, the bumper 50 is arranged to stop travel of the hammer 20 before the hammer 20 contacts the top of the disconnector 14, preventing the disconnector 14 from functioning as a travel stop.


In some embodiments, a catch 21 portion of the hammer 20 contacts the disconnector 14, and the hammer stop 41 prevents another portion of the hammer 20 from contacting the disconnector 14.



FIG. 6 shows an embodiment of a safety selector 12 supported by the housing 8. The fire control assembly 10, including the frame 40, is supported by the hammer pin 24 and trigger pin 34, which are supported by the housing 8. The preloading mechanism 54 also biases the frame 40 against the safety selector 12.


In some embodiments, the preloading mechanism 54 applies a force between the safety selector 12 and the frame 40, which results in a stabilizing torque being applied between the frame 40 and the supporting hammer and trigger pins 24, 34. In some embodiments, the preloading mechanism 54 applies a rotational force to the frame 40 about the trigger pin 34 in the same direction as the trigger operation. For example, in FIG. 6, the preloading mechanism 54 is arranged to apply a force to the frame 40 that biases the frame 40 in a counter-clockwise direction about the trigger pin 34, and the trigger 30 will move in the counter-clockwise direction when operated. Thus, the preloading mechanism 54 is arranged to stabilize the fire control assembly 10 to take up any slack caused by gaps due to manufacturing tolerances, etc.


In some embodiments, a trigger spring 38 is arranged to bias the trigger 30 in a first rotational direction (e.g. clockwise) about the trigger axis 32 and the preloading mechanism 54 is arranged to bias the frame 40 in a second rotational direction (e.g. counter-clockwise) about the trigger axis 32.


In some embodiments, the biasing member 56 comprises a coil spring. In some embodiments, the biasing member 56 comprises a compression spring. In some embodiments, the biasing member56 is oriented in a cavity 52 in the frame 40. In some embodiments, a portion of the contacting member 58 is oriented in the cavity 52. In some embodiments, a portion of the contacting member 58 is oriented outside of the cavity 52. In some embodiments, the contacting member 58 comprises a first portion engaged with the biasing member 56 and a second portion arranged to contact the safety selector 12. In some embodiments, the contacting member 58 is moveable with respect to the frame 40. In some embodiments, the contacting member 58 moves along the length of the cavity 52.


In some embodiments, the trigger axis 32 is located between the hammer axis 22 and the preloading mechanism 54. In some embodiments, a distance between the trigger axis 32 and the preloading mechanism 54 is greater than a distance between the trigger axis 32 and the hammer axis 22.


The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this field of art. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to.” Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims.


Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.


This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.

Claims
  • 1. A fire control assembly comprising: a frame arranged to be received within an AR lower receiver and supported along a trigger axis and a hammer axis;a hammer rotatable about the hammer axis;a trigger rotatable about the trigger axis; anda disconnector;wherein the frame comprises a bumper arranged to impede rotation of the hammer, the frame comprising a first material and the bumper comprising a second material different from the first material.
  • 2. The fire control assembly of claim 1, the first material comprising a metal, the second material comprising a non-metal.
  • 3. The fire control assembly of claim 1, the first material comprising a greater elastic modulus than the second material.
  • 4. The fire control assembly of claim 2, the frame comprising a cavity and the bumper comprising a stem oriented in the cavity.
  • 5. The fire control assembly of claim 2, the bumper comprising a stem and a flange, a distance across the flange being greater than a distance across the stem.
  • 6. The fire control assembly of claim 1, comprising a hammer sleeve attached to the frame, the hammer sleeve supporting the hammer.
  • 7. The fire control assembly of claim 6, comprising a trigger sleeve attached to the frame, the trigger sleeve supporting the trigger.
  • 8. The fire control assembly of claim 1, the hammer comprising a first portion arranged to contact the disconnector and a second portion arranged to contact the hammer stop.
  • 9. The fire control assembly of claim 1, the frame comprising a preloading mechanism arranged to contact a safety selector.
  • 10. A fire control assembly comprising: a frame arranged to be received within an AR lower receiver;a hammer sleeve arranged to support a hammer, the hammer sleeve comprising a tube, the hammer rotatable about a hammer axis;a trigger sleeve arranged to support a trigger and a disconnector, the trigger sleeve comprising a tube, the trigger rotatable about a trigger axis; anda disconnector;wherein the frame comprises a bumper arranged to impede rotation of the hammer, the bumper comprising a non-metal.
  • 11. The fire control assembly of claim 10, comprising a hammer pin oriented within the hammer sleeve.
  • 12. The fire control assembly of claim 11, comprising a fastener attached to the hammer pin.
  • 13. The fire control assembly of claim 10, the frame comprising a cavity and the bumper comprising a stem oriented in the cavity.
  • 14. The fire control assembly of claim 10, the bumper comprising a rubber, a urethane or an elastomer.
  • 15. A fire control assembly comprising: a frame arranged to be received within an AR lower receiver, the frame comprising a first material;a hammer arranged to rotate about a hammer axis between a first position and a second position;a trigger arranged to rotate about the trigger axis;a disconnector; anda bumper supported by the frame, the bumper comprising a second material different from the first material;wherein the hammer contacts the bumper in the second position.
  • 16. The fire control assembly of claim 15, the hammer comprising a first portion arranged to contact the disconnector and a second portion arranged to contact the bumper.
  • 17. The fire control assembly of claim 15, comprising a hammer sleeve supporting the hammer and a hammer pin oriented within the hammer sleeve.
  • 18. The fire control assembly of claim 15, the bumper comprising a rubber, a urethane or an elastomer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Patent Application No. 62/963,526, filed Jan. 20, 2020, and claims the benefit of U.S. Patent Application No. 62/964,079, filed Jan. 21, 2020, the entire content of each of which are hereby incorporated herein by reference.

US Referenced Citations (66)
Number Name Date Kind
2457296 Yawman Dec 1948 A
2920413 Marhefka et al. Jan 1960 A
3206884 Purvis Sep 1965 A
3768190 Ruger et al. Oct 1973 A
3949508 Elkas Apr 1976 A
4004496 Snodgrass et al. Jan 1977 A
4005540 Robinson Feb 1977 A
4310981 Waddell Jan 1982 A
4322906 Civolani Apr 1982 A
4433610 Tatro Feb 1984 A
4667429 Perazzi May 1987 A
4680884 Smith, Jr. et al. Jul 1987 A
4691461 Behlert Sep 1987 A
4693170 Atchisson Sep 1987 A
4955155 Jones Sep 1990 A
5018292 West May 1991 A
5274939 Scaramucci Jan 1994 A
5463829 Sprangers Nov 1995 A
5503137 Fusco Apr 1996 A
5548914 Anderson Aug 1996 A
5623114 Soper Apr 1997 A
5822903 Davis, Sr. Oct 1998 A
5881485 Milazzo Mar 1999 A
5904132 Biller May 1999 A
6164001 Lee Dec 2000 A
6298594 Strayer Oct 2001 B1
6367465 Buccieri, Jr. Apr 2002 B1
6615527 Martin Sep 2003 B1
6651642 Powers Nov 2003 B1
6722072 Mccormick Apr 2004 B1
6772072 Ganguli et al. Aug 2004 B2
7162824 Mccormick Jan 2007 B1
7188561 Kelbly Mar 2007 B1
7293385 Mccormick Nov 2007 B2
7331136 Geissele et al. Feb 2008 B2
7600338 Geissele Oct 2009 B2
7661220 Crandall et al. Feb 2010 B2
7854084 Rutherford Dec 2010 B1
7992338 Bowman et al. Aug 2011 B2
8820211 Hawbaker Sep 2014 B1
8893607 Audibert et al. Nov 2014 B2
9021733 DiChario May 2015 B1
9046313 Lutton Jun 2015 B1
10222160 Gillette Mar 2019 B2
20030228915 Goko Dec 2003 A1
20050229911 Simo et al. Oct 2005 A1
20060207149 Lazor Sep 2006 A1
20080010889 Metzger et al. Jan 2008 A1
20080060245 McCormick Mar 2008 A1
20090183414 Geissele Jul 2009 A1
20090266348 Yeh Oct 2009 A1
20100281739 Geissele Nov 2010 A1
20110167691 Bowman et al. Jul 2011 A1
20110167697 Geissele Jul 2011 A1
20120117841 Joubert et al. May 2012 A1
20130047484 Wickser, Jr. Feb 2013 A1
20130118050 Alicea May 2013 A1
20130167423 Lupher et al. Jul 2013 A1
20130213376 Kenworthy Aug 2013 A1
20130269233 Chin Oct 2013 A1
20140366418 Stakes Dec 2014 A1
20160018176 Fellows Jan 2016 A1
20160153732 Geissele Jun 2016 A1
20170138689 Biegel May 2017 A1
20180087858 Geissele Mar 2018 A1
20180100712 Tompkins Apr 2018 A1
Foreign Referenced Citations (2)
Number Date Country
102007004588 Jul 2008 DE
WO-2021121710 Jun 2021 WO
Non-Patent Literature Citations (1)
Entry
Hiperfire's Way to Design a Drop-in. Terry Bender, <https://www.hiperfire.com/hiperfires-way-to-design-a-drop-in/>. Jan. 18, 2020. (Year: 2020).
Related Publications (1)
Number Date Country
20210310760 A1 Oct 2021 US
Provisional Applications (2)
Number Date Country
62964079 Jan 2020 US
62963526 Jan 2020 US