The present invention relates to a method of compensating for drift within a fire detector, to a fire detector arranged to compensate for drift, and to a fire detector system.
After installation, it is known that most fire detectors will deteriorate over a period of time, and their response characteristics will change, normally owing to a build-up of dirt. This is particularly acute when a detector is located outside or in a location exposed to a large amount of dust or dirt. In such locations, it might be necessary to replace or clean the fire detector on a very regular basis to ensure that its response remains within acceptable limits. Such a fire detector will detect the characteristics of a fire, such as the presence of smoke particles, radiation of a certain wavelength indicative of a fire or heat, and when the characteristics exceed a threshold, an alarm will be signalled.
For example, a known type of smoke detector includes a detector chamber defining a detection region which is shielded from the light of the surrounding area, but which permits entry of air into the detector chamber. The detector chamber includes a light source, typically in the form of an LED, and a light detector, each of which is separated from the other by structural features which mean that light cannot pass directly from the light source to the light detector. In the event that a fire occurs, smoke will be carried into the detector chamber by the air, and light from the light source will be reflected or scattered from the smoke particles. The reflected or scattered light will be detected by the light detector, the amount of reflected light being indicative of the amount of smoke in the air within the detector chamber. Thus, as the amount of smoke in the air increases, the response of the fire detector increases accordingly.
Over time, dirt gradually builds up in the detector unit, for example on the internal walls of the detector chamber. Therefore, over a long period of time, the light detector is able to detect light which reflects off the dirt which has built up on the detector walls, giving a positive response. This can be seen in
It will be appreciated that, if there is a fire in the vicinity of the smoke detector, the output signal of the detector will significantly increase as smoke enters the detector chamber until it crosses a pre-set value which is the alarm threshold. When it crosses the alarm threshold, an alarm is signalled, and a siren will sound. It will be appreciated from
Of course, in the smoke detector described above, over time, the detector becomes more sensitive. Other types of detector become less sensitive with age and with the build up of dirt. In the case of a detector which becomes less sensitive, the response might be indicated in a graph with a response which gradually drops over time, rather than increases, so that the sensitivity decreases rather than increases.
It is known to compensate for the change in response of a fire detector over time by gradually changing the alarm threshold which must be crossed for an alarm to be triggered. The rate at which the threshold is changed can be set depending on the environment in which the fire detector is installed. In a very dirty environment, the threshold will be changed relatively quickly compared with a fire detector installed in a relatively cleaner environment. The change in the threshold is either implemented in the detector hardware or, more commonly, within a software algorithm running within the detector. The response of a smoke detector similar to the one described above is shown in
Of course, the point is reached when the fire detector is no longer able to resolve a fire alarm because the end of the dynamic range of the detector has been reached. Any further change in the threshold would mean that the fire detector would not be able to resolve a fire alarm, thereby risking the missing of a real alarm event, and this point is known as the drift compensation limit. The fire detector may be arranged so that, prior to reaching the drift compensation limit, a pre-warning is given to allow the fire detector to be replaced or cleaned. When it actually reaches the drift compensation limit, the fire detector is arranged to signal a warning or a fault.
It will be understood, therefore, that after a period of time, the drift compensation limit will be reached, and the fire detector must be cleaned or replaced. In a dirty environment, this point might be reached quite quickly, and this represents a regular expense. It would be advantageous if the frequency of cleaning or replacing the fire detector can be reduced.
According to a first aspect of the invention, a fire detector system comprises a fire detector unit;
In this way, the length of service of the fire detector system is extended because the alarm point threshold is changed from one mode to the next to keep it within the dynamic range of the sensor.
The alarm point threshold in this specification refers to the output from the sensor at which an alarm condition is signalled. For example, in the case of a smoke detector, as smoke enters the detector, the output of the sensor will increase until the alarm point threshold is reached, at which point an alarm condition is signalled.
In this specification, reference is made to drift compensation limits. It will be appreciated that, in the first mode over time, the alarm point threshold can increase or decrease as part of a first order of drift compensation. The point comes where the alarm point threshold reaches or approaches the end of the dynamic range of the sensor, and at that point, the detector unit is unable to properly detect whether or not the alarm point threshold has been reached. That point is the drift compensation limit, and will normally be the same for each of the modes.
Preferably, the processor is disposed within the fire detector unit, although it can be located elsewhere, for example within a control panel. An advantage of the processor being located within the fire detector unit is that, where more than one fire detector unit is included within a fire detector system, each one can be programmed individually.
Where the sensor is an analogue sensor, an analogue to digital convertor can be included in the fire detector unit which is connected to the sensor and is arranged to generate the output signal.
In one embodiment, the alarm point threshold of the second sensitivity mode corresponds to a lower output signal of the sensor than the alarm point threshold of the first sensitivity mode. In this way, as the drift compensation limit is reached or approached in one mode, switching to a more sensitive mode moves the alarm point threshold downwards so that the drift compensation limit of the second sensitivity mode is further away than it would be in the first sensitivity mode.
In one arrangement, there are at least three sensitivity modes, and when the sensitivity mode is changed, it is changed to the sensitivity mode which is immediately more sensitive. In another arrangement, the sensitivity mode can be changed to a sensitivity mode which is more sensitive than the sensitivity mode that is immediately more sensitive. In other words, it is possible for sensitivity modes to be skipped, if appropriate. Whether modes are skipped might depend on the extent to which adjacent modes have overlapping dynamic ranges.
Advantageously, the processor is arranged to have a most sensitive sensitivity mode limit which defines the most sensitive mode into which it can be placed. Typically, this will not be the most sensitive possible mode available to the detector unit, but one which is predefined during installation.
The processor is preferably arranged to define a least sensitive sensitivity mode limit which defines the least sensitive mode into which it can be placed.
Preferably, the system further comprises a memory. The memory might be used to store the programme executed by the processor and/or the parameters by which a detector is controlled. Such parameters might include the least sensitive sensitivity mode limit, the most sensitive sensitivity mode limit and the rate of drift compensation, and for each of the modes, the alarm point threshold, the drift compensation limit and the drift allowance.
In one arrangement, the fire detector unit includes a second sensor. The sensors might be of different types. The sensors might face in different directions. The sensors might be arranged to compensate for drift independently of each other to take account of their different rates of drift. The sensors can be arranged to have different settings of one or more of the following: rate of drift compensation; drift compensation limit; most sensitive sensitivity mode limit; and least sensitive sensitivity mode limit.
The sensors may be disposed in the fire detector unit, or the system may include a second fire detector unit in which the second sensor is disposed.
A second aspect of the present invention is a method of compensating for drift in a fire detector unit having a sensor arranged to detect the characteristics of a fire and to generate an output signal indicative of the characteristics detected by the sensor, the method involving a processor arranged to receive the output signal from the sensor and to control the response by indicating a fire when the output signal exceeds an alarm point threshold, the method comprising:
In this way, the length of service of the fire detector system is extended because the alarm point threshold is changed from one mode to the next to keep it within the dynamic range of the sensor.
Preferably, the output signal is a digital output signal. The sensor may generate an analogue output signal which is converted to the digital output signal.
In one embodiment, the alarm point threshold of the second sensitivity mode corresponds to a lower output signal from the sensor than that of the alarm point threshold of the second sensitivity mode. In this way, as the drift compensation limit is reached or approached in the first sensitivity mode, switching to the second sensitivity mode moves the alarm point threshold downwards so that the drift compensation limit for the second sensitivity mode is further away than it would be in the first sensitivity mode.
According to one arrangement, the method further comprises:
In some arrangements, the fire detector unit has at least three sensitivity modes and when the sensitivity mode is changed, it is changed to the sensitivity mode which is immediately more sensitive. According to an alternative arrangement, when the sensitivity is changed, it can be changed to a sensitivity mode which is more sensitive than the sensitivity mode that is immediately more sensitive. Whether modes are skipped might depend on the extent to which adjacent modes have overlapping dynamic ranges.
Advantageously, the fire detector unit is arranged to have a most sensitive sensitivity mode limit which defines the most sensitive mode into which it can be placed. Typically this will not be the most sensitive possible mode available to the detector unit, but one which is predefined during installation.
Preferably, the fire detector unit is arranged to have a least sensitive sensitivity mode limit which defines the least sensitive mode into which it can be placed.
In some arrangements, a second sensor is included, wherein the sensors are arranged such that they can be set to compensate to drift independently of each other. Advantageously, the sensors can be arranged to have different settings of one or more of the following: rate of drift compensation; drift compensation limits; most sensitive sensitivity mode limit; least sensitive sensitivity mode limit. The method might further comprise the use of a second fire detector unit in which the second sensor is disposed.
According to a third aspect of the present invention, a fire detector unit comprises: a sensor disposed in the fire detector unit and arranged to detect the characteristics of a fire and to generate an output signal indicative of the characteristics detected by the sensor; and
The present invention will be now be described by way of example only with reference to the accompanying drawings in which:
In this instance, the sensor produces an analogue output signal indicative of whether it detects the characteristics of a fire which is converted to a digital output signal by the analogue to digital convertor. Of course, if the sensor were a digital one, no analogue to digital convertor will be required.
The sensor 5 can be any one of a number of different types, including a radiation sensor arranged to detect radiation within a certain range of wavelengths corresponding to the wavelength of radiation emitted by a fire, a heat detector, a smoke detector or the like. By way of example, this embodiment will be described with a smoke detector. With this type of smoke detector, a detector chamber is included which defines a detection region which is shielded from the light of the surrounding area, but which permits entry of air into the detector chamber. The detector chamber includes a light source typically in the form of an LED, and a light detector, each of which is separated from the other by structural features which mean that light cannot pass directly from the light source to the light detector. In the event that a fire occurs, smoke will be carried into the detector chamber by the air, and light from the light source will be reflected or scattered from the smoke particles. The reflected or scattered light will be detected by the light detector, the amount of reflected light being indicative of the amount of smoke in the air within the detector chamber. Thus, as the amount of smoke in the air increases, the response of the fire detector increases accordingly.
Over time, dirt gradually builds up in the detector unit, for example on the internal walls of the detector chamber. Therefore over a long period of time, the light detector is able to detect light which reflects off the dirt which has built up on the detector walls giving a positive response. This can be seen in
As is mentioned above, as the characteristics of the fire are increasingly detected, the response from the sensor increases causing the output signal from the analogue to digital convertor to increase. In this case, for example, an 8-bit analogue to digital convertor works in the range of 0-255, with an output signal of 0 corresponding to a zero output signal from the sensor 5 with no fire being detected, and an output signal of 255 representing the maximum output signal from the sensor indicating a very intense fire. The processor 7 receives the output signal from the analogue to digital convertor 6 and controls the response of the fire detector or fire detector system to the characteristics of a fire which is sent to the control panel 3. The processor is software controlled in this embodiment, its operation being controlled by the software and by parameters which are saved within the memory 8.
For example, if the fire detector unit 2 is set to a low sensitivity, it will require the output signal of the sensor 5 to cause the analogue to digital convertor 6 to output a signal of, say, a value of 200 before the processor considers that a fire has been detected, at which point an alarm condition is transmitted to the control panel 3, and the control panel 3 causes the alarm sounder 4 to be activated so as to generate an alarm noise. In this case, 200 is considered to be the alarm point threshold. If the fire detector unit is set to a higher sensitivity, it will require the output signal of the sensor 5 to cause the analogue to digital convertor 6 to output an output signal of, say, a value of 100 before the processor considers that a fire has been detected. In this case 100 is considered to be the alarm point threshold.
As discussed above, a fire detector unit tends to change in its responsiveness over time, particularly where it is located in a dirty environment. In the case of the smoke detector mentioned above, as the fire detector unit 2 accumulates dirt, it begins to become responsive to the dirt, resulting in an upward drift in its output signal. The memory 8 therefore includes a routine by which the alarm point threshold increases over time from, for example, 160 to 250, giving a drift allowance of 90 over time. The rate of drift compensation depends on the environment in which the detector unit 2 is located. The dirtier the environment, the faster the rate of drift compensation. It will be appreciated that, as the alarm point threshold increases from 160 to 250, the sensitivity of the detector unit remains the same. This ensures that the fire detector unit 2 does not become less responsive to the outbreak of a fire. This can be described as the first order of drift compensation.
The fire detector system 1 also operates with 8 different modes of sensitivity. These are shown in
It will be appreciated, therefore, that the alarm installation technician will place the detector in its least sensitive mode when the detector unit 2 is installed. In the example shown in
Once the dynamic range of Mode 4 is approached, the processor 7 and memory 8 change the mode from Mode 4 to Mode 5 to again increase the sensitivity. In Mode 5, the alarm point threshold occurs at 225, and again it compensates for drift over time by increasing the alarm point threshold to 250. Again, the safety of the system is not reduced because the sensitivity of Mode 5 is greater than that of Mode 4.
It will be appreciated that, within each of the modes, the increase in the alarm point threshold 11, 13, 14 corresponds to a first order of drift compensation, and that switching from one mode to another, changing the alarm point threshold to increase sensitivity, and to maintain the alarm point threshold within the dynamic range of the sensor represents a second order of drift compensation. It will be appreciated that, in mode 3, the alarm point threshold 11 is maintained at about 120 above the output signal 10 of the detector as shown by double headed arrow L in
It will also be appreciated that, by using the second order of drift compensation, the life of the detector unit has been significantly extended by about two times.
At some point, the likelihood of false alarms occurring increases to a point where it is more appropriate to clean or replace the detector unit than to keep on increasing the sensitivity of the detector unit. In this case, that limit, the sensitivity mode limit, occurs once you reach the compensation limit of Mode 6. During the installation of the fire detector unit 2, the installation technician sets the sensitivity mode limit so that, even if there are further, more sensitive, modes, in this case Modes 7 and 8, they will not be available to the system because the chances of false alarms are too great. Thus, once the drift compensation limit for Mode 6 is approached or reached, the fire detector is arranged to signal a latched fault, although it is preferred that a warning is given in advance of the compensation limit being reached.
It will be appreciated that, in different positions and environments, the installation technician will be able to specify different least sensitive modes and different limits for different detector units on a system. For example, the fire detector system 1 might include many fire detector units in different positions around a site, some of which are located in areas such as a factory in which a large amount of dirt is present, and others of which are located in more benign environments such as office space. Thus different detectors on the same system can have different least sensitive modes and limits set by the installation technician. These would be stored in the memory 8.
Additionally, each fire detector unit might include more than one sensor 5, which might be pointing in different directions, or which might be sensing different parameters or which might have different sensitivities. The different sensors can be arranged so as to have different, drift compensation limits, sensitivity mode limits and rates of drift compensation which are different from each other and which are arranged to accommodate drifts of different rates. Where there is more than one sensor, in the least sensitive mode, the sensors will be arranged to have their drift compensation limits, sensitivity mode limits and rates of drift compensation set. Additionally, if one of the sensors reaches its mode limit, it might be appropriate, in the next mode, to operate with only a single sensor. For example, if there is a photo sensor and a heat sensor, and the photo sensor reaches its limit, it may be appropriate for the next mode only to use the heat sensor.
In effect, the present invention has two orders of drift compensation. The first order drift compensation is simply to gradually increase the alarm point threshold of a detector over time to take account of a reduction in response caused, for example, by the build up of dirt. The second order of drift compensation is achieved by having a number of sensitivity modes and switching from one sensitivity mode to a higher sensitivity mode as the drift compensation limit is either reached or approached. It is possible for the sensitivity mode to be increased more than once which gives a potential advantage of the present invention of increasing the capacity for a detector unit to accommodate first order drift several times over.
The sensitivity modes might overlap with each other. In such a case, or, in fact, where they do not overlap, it may be appropriate for the mode to increase not just to the next sensitivity mode but to skip one or more sensitivity modes. In
In this way, it is possible to extend the operating period of a fire detector before it must be replaced or cleaned without any detrimental effect on the ability of the detector to detect a fire.
In the embodiment described above, the sensor is an analogue sensor which produces an analogue output signal which is converted to a digital output signal by the analogue to digital convertor 6. As indicated above, the sensor 5 can be replaced with a digital sensor, thereby removing the need for an analogue to digital convertor. Alternatively, the system can be arranged to operate in analogue form, where the processor is capable of interpreting an analogue output signal from the sensor rather than requiring a digital one.
Number | Date | Country | Kind |
---|---|---|---|
1507574.0 | May 2015 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2016/051249 | 4/29/2016 | WO | 00 |