1. Field of the Invention
The present invention relates to doors having a fire rating and in particular, narrow and/or tall doors having an improved fire rating.
2. Description of Related Art
Fire doors are made to resist a rise in temperature over a desired degree on the side of the door opposite the fire or other combustion source. Fire doors also must maintain a certain degree of rigidity, and resist gaps or other openings from developing which will cause passage of flames directly around or through the door. While fire doors of conventional widths of about 32 in. (0.81 m) or more and heights no greater than about 84 in. (2.13 m) are able to meet various fire standards, it has been difficult to meet such fire standards in narrower and taller doors.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide a fire door having improved fire resistance, particularly at narrower widths.
A further object of the invention is to provide a fire door which passes specific Underwriters' Laboratories and ANSI tests requirements.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
The above and other objects, which will be apparent to those skilled in the art, are achieved in the present invention which is directed to an insulated fire door comprising a door shell having spaced first and second exterior panels and a gypsum panel between the first and second exterior panels. The insulated fire door includes a plurality of spacers bonded across an interior side of each of the first and second exterior panels. The spacers extend inward from the first and second exterior panels and contact the gypsum panel. The spacers maintain the gypsum panel in a spaced position from the interior sides of the first and second exterior panels as the door bows during a fire on one side of the door, until the gypsum disintegrates. The gypsum panel may extend along substantially all of the interior sides of the first and second exterior panels. Each of the spacers may have a flat portion contacting the gypsum panel, a leg extending from the flat portion spacing the gypsum from the interior sides of the first and second exterior panels, and a flange extending from the leg bonding the spacer to the first and second exterior panels. The spacers may have a length extending vertically within the door, and may be welded to the first and second exterior panels.
The fire door may include a C-shaped stiffener extending vertically within the door between the interior sides of the first and second exterior panels. The C-shaped stiffener may have a leg spacing the interior sides of the first and second exterior panels and flanges extending from the leg bonding the stiffener to at least one of the first and second exterior panels. The door may have hinges along a first edge thereof, and the C-shaped stiffener may extend vertically between the first and second exterior panels near a second edge opposite the first edge.
The door may be an active door and include hinges along a first edge thereof and a lock pocket along a second edge opposite the first edge, and may further include a mineral wool insulation around the lock pocket and between the first and second exterior panels. The mineral wool insulation may extend along a top, bottom and side of the lock pocket between the first and second exterior panels. The door may have hinges along a first edge thereof and a lock pocket along a second edge opposite the first edge, and may further include a stiffener extending vertically between the first and second exterior panels, with the stiffener being disposed between the first and second edges adjacent the lock pocket.
The door may be an inactive door and have hinges along a first edge thereof and a strike pocket along a second edge opposite the first edge, and may further include a mineral wool insulation along the second edge and between the first and second exterior panels. The door may have hinges along a first edge thereof and a strike pocket along a second edge opposite the first edge, and may further include a stiffener extending vertically between the first and second exterior panels, the stiffener disposed between the first and second edges near the second edge.
The door may have hinges along a first edge thereof, and may further include a stiffener extending vertically between the interior sides of the first and second exterior panels near a second edge opposite the first edge, the stiffener extending along an edge of the gypsum panel. The door may further include a sheet of ceramic paper extending over the stiffener and overlapping the edge of the gypsum panel. The gypsum panel may have a thickness sufficient to permit heat from a fire on one side of the door to flow through the gypsum panel and cause the first and second exterior panels to bow substantially uniformly as a result of thermal expansion thereof, while maintaining sufficient spacer contact with the gypsum panel and having sufficient thermal insulation to meet a fire code, until the gypsum disintegrates. The door may have a width less than about 32 in. (0.81 m) and/or has a height greater than about 84 in. (2.13 m).
In another aspect the present invention is directed to an insulated fire door system having as an active door as described above and as an inactive door as described above. The active door has hinges along a first edge thereof and a lock pocket along a second edge opposite the first edge. The inactive door has hinges along a first edge thereof and a strike pocket along a second edge opposite the first edge. The active and inactive doors meet at their second edges. The active door of the door system may have a flexible thermal insulation around the lock pocket between the first and second exterior panels and the inactive door of the door system may have a strike pocket along the second edge and a flexible thermal insulation along the second edge between the first and second exterior panels.
In a further aspect the present invention is directed to a method of using a fire door comprising providing the insulated fire door as described above, exposing the door to a heat source on one side of the door and causing the door to bow toward the heat source as a result of thermal expansion of the first and second exterior panels. The method may include using the spacers to maintain the gypsum panel in a spaced position from the interior sides of the first and second exterior panels as the door bows, until the gypsum disintegrates.
The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
In describing the preferred embodiment of the present invention, reference will be made herein to
In referring to double door systems such as shown in the perspective view of
The active fire door 10 comprises an interior portion 8, shown in an enlarged view of
The active fire door 10 includes elongated spacers or hat sections 50, 52, 54 and 56 for spacing and securing the interior surface of front door skin 20 to one face of the gypsum panel 60. Elongated spacers or hat sections 40, 42, 44 and 46 secure the interior surface of rear door skin 22 to the opposite face of the gypsum panel. Spacer 50 is shown in the longitudinal cross sectional view of
Upper spacers 44 and 54 are positioned a distance above lower spacers 46 and 56 to allow a pocket 84 for the lock to be located along the free edge of the door. Except for the length spacers, 44, 46, 54 and 56 are substantially the same as spacers 40 and 50. Mineral wool 90 is positioned between the door skins around the pocket area 84 between the upper spacers 44, 54 and lower spacers 46, 56. Gypsum panel 62 is positioned above mineral wool 90 and between spacer 44 and spacer 54 and gypsum panel 64 is positioned below mineral wool 90 and between spacer 46 and spacer 56. The gypsum panels 60, 62, 64 extend along substantially all of the interior sides of the first and second exterior panels.
The length of legs 58, 58′ as shown in
The ceramic paper 70 extends substantially the height or length of the fire door 10 and may be positioned on the side of the fire door 10 most likely to face the fire, adjacent the lock edge stiffener 80. The ceramic paper 70 resists heat transfer in a portion of the fire door between the gypsum panel 60 and the upper and lower gypsum panels 62, 64, and may overlap both. The ceramic paper 72 is positioned between the ceramic paper 70 and the fire side door skin 22. The width of the ceramic paper 72 extends between spacer 40 and spacers 44, 46. The ceramic paper 70 is positioned between the lock edge retainer 86 and the ceramic paper 72. The ceramic paper 70 may include a width extending between the legs of spacers 40 and spacers 44, 46. Side edge channels 30, lower end channel 34 and upper end channel 32 are each C-channels which surround the fire door interior portion 8 and the spacers 50, 52, 54, 56, 40, 42, 44 and 46. The channels 30, 32 and 34 may be bonded to the front door skin 20 and rear door skin 20 by the same type of bonding or welding as the spacers.
The inactive fire door 110 comprises an interior portion 108, shown in an enlarged view of
The inactive fire door 110 includes spacers or hat sections 150, 152 and 154 for securing the front door skin 120 to one face of the gypsum panel 160. Spacers 140, 142 and 144 secure the rear door skin 122 to the opposite face of the gypsum panel. All spacers 140, 142, 144, 150, 152, 154 extend vertically within substantially the entire height or length of the inactive door. Side edge channels 130, lower end channel 134 and upper end channel 132 are each C-channels, which surround the fire door interior portion 108 and the spacers 150, 152, 154, 156, 140, 142, 144 and 146. The individual spacers, edge stiffeners and channels of the inactive door are substantially the same configuration as those of the active door, and are bonded or welded to the door skins in the same manner.
The door skins, spacers, edge stiffeners and channels may be made from low carbon or other sheet steel. The doors (active or inactive) may be of any outside thickness, such as 1.75 in. (44.5 mm). The door skins may be made of 16 gauge steel, with a thickness range of about 0.053-0.059 in. (1.35-1.50 mm), to provide an inside spacing of about 1.625 in. (41.3 mm) between the inner surfaces of the door skins. Each door may be of any desired width and height, although the present invention is particularly useful for narrower doors, i.e., those having a width W less than about 32 in. (0.81 m), preferably no greater than about 24 in. (0.61 m), and taller doors, i.e., those having a height or length H greater than about 84 in. (2.13 m), preferably up to about 96 in. (2.44 m) or more.
The primary thermal insulation for the doors of the present invention is provided by the gypsum panel(s), which spans substantially the entire width of the door, and substantially the entire height or length of the door. Gypsum board is also known as plasterboard, wallboard or drywall and is made in panel form by gypsum plaster pressed between two thick sheets of paper. Gypsum is a very soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula CaSO4.2H2O, and gypsum plaster is produced by heating gypsum to about 300° F. (150° C.). The preferred gypsum board is Sheetrock Firecode Core Type X brand in a thickness of about ⅝ in. (16 mm) available from United States Gypsum Company of Chicago, Ill.
An advantage of the invention is the ability of the fire door to control the bowing into a fire when the door reaches temperatures associated with a fire. The doors of the present invention are constructed to meet the standards for physical endurance for door swing and twist of ANSI A250.4-2011 published by the American National Standards Institute, Inc. and the Steel Door Institute. More significantly, the doors of the present invention are constructed to meet the standard for positive pressure fire tests of door assemblies of UL 10C published by Underwriters Laboratories Inc. of Northbrook, Ill. The doors are exposed to gas-fired burner combustion sources on one side at specified temperatures and times. Temperature measurements are taken of at least three portions of the unexposed door skin surface, i.e., the side of the door away from the heat source, and cotton pads are applied at specified regular intervals nears cracks, holes, or other openings in or around the door. During the fire test, the steel door skins are subject to thermal expansion and bow outward toward the source of the heat and are deformed up to about 8 in. (20 cm) or more in a direction normal to the original plane of the door at room temperature. As the door is deformed and distorts under the rising temperature, the gypsum panel is held in place and spaced from the inner sides of the door skins by the spacer sections, which distribute the stress to preserve the integrity of the gypsum panel. Since gypsum panels are somewhat brittle, and because exposure to high heat degrades and eventually chars the paper covering of the gypsum panel, the gypsum panels ultimately degrade and disintegrate. Surprisingly, when used on narrower doors, e.g., doors of about 24 in. (0.61 m) width, the gypsum panel permits sufficient heat to flow from the door skin exposed to the combustion source through the panel to the opposite door skin on the unexposed side to cause the opposite door skins to expand with temperature and bow substantially uniformly. This enables the spacer sections to maintain sufficient spacer contact and hold the position and integrity of the gypsum panel for a sufficient amount of time, up to three (3) hours or more, to provide the desired insulation qualities, before it disintegrates.
Narrower doors made without the gypsum panels of the present invention, but with conventional insulation of higher thermal insulative value, do not pass the UL 10C standard. While not wishing to be bound by theory, it is believed that the lower thermal insulative value of the gypsum panel permits additional heat to pass through to the unexposed door skin, thereby permitting a more controlled expansion of both door skins during exposure. Although the exposed side of the door may reach temperatures of about 1800-1900° F. (1000-1050° C.) over ambient after 30 minutes, the unexposed side of the door of the present invention does not exceed a temperature of about 450° F. (250° C.) over ambient.
Another advantage of the invention is the resistance against heat transferred around the lock mechanism. Since the portion of the door which retains the lock or lock mechanism is particularly susceptible to heat transfer, the present invention incorporates mineral wool surrounding the lock areas. Thermal insulation is provided adjacent the lock pocket in the active door and adjacent the free edge of the inactive door by the use of a flexible thermally insulating material such as mineral wool. A C-shaped section of mineral wool surrounds the mortise lock or the lock mechanism on the active door. An elongated section of mineral wool extending from the door top to the door bottom surrounds the locking rod in an inactive door. Mineral wool or stone wool is a furnace product of molten rock at a temperature of about 1600° C., through which a stream of air or steam is blown. More advanced production techniques are based on spinning molten rock on high speed spinning wheels somewhat like the process used to prepare cotton candy. The final product is a mass of fine, intertwined fibres with a typical diameter of 6 to 10 micrometers. Mineral wool may contain a binder. The mineral wool employed in the present invention may comprise a mineral wool fiber that employs a modified urea extended phenolic cured resin binder. The preferred mineral wool is Delta brand mineral wool available from Rock Wool Manufacturing Company of Leeds, Ala.
Further improving the resistance to heat transfer, ceramic paper extends substantially the length of the door and is positioned on the side of the door facing the combustion source, adjacent the lock edge stiffener. The ceramic paper resists heat transfer in a portion of the fire door which does not have a gypsum panel. The sheets of ceramic paper generally extending over the stiffener and overlapping the edge of the gypsum panel, beneath the door skins. A ceramic paper which may be employed in the present invention is a ceramic fiber product manufactured from alumina-silica materials into paper and other sheet-like forms, which are referred to herein generally as ceramic paper. The ceramic paper generally has a wide temperature range for applications from 1500° F. to 3000° F. Ceramic paper is processed from washed, spun, high purity fibers formed into highly flexible sheet. Ceramic paper contains an organic binder to provide increased handling strength at room temperature. The ceramic paper employed in the present invention may comprise refractory ceramic fibers (RCF) in a binder of Acrylic acid and polymers. The preferred ceramic paper is Inswool 2300 paper available from ANH Refractories Company of Moon Township, Pa.
The use and placement of C-channel stiffeners and the additional mineral wool and ceramic paper insulation are believed to contribute to the good fire performance of the door of the present invention by limiting the formation of gaps and openings as the door distorts.
While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1202316 | Ries | Oct 1916 | A |
4263752 | Jungbluth | Apr 1981 | A |
4282687 | Teleskivi | Aug 1981 | A |
4489121 | Luckanuck | Dec 1984 | A |
4811538 | Lehnert et al. | Mar 1989 | A |
5522195 | Bargen | Jun 1996 | A |
5603194 | Fridlyand et al. | Feb 1997 | A |
6112496 | Hugus et al. | Sep 2000 | A |
6619010 | Wang Chen | Sep 2003 | B2 |
6643991 | Moyes | Nov 2003 | B1 |
7721500 | Clark et al. | May 2010 | B2 |
7897235 | Locher et al. | Mar 2011 | B1 |
20020189182 | Record | Dec 2002 | A1 |
20030033786 | Yulkowski | Feb 2003 | A1 |
20030150182 | Chou et al. | Aug 2003 | A1 |
20090038261 | Lee et al. | Feb 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20140047785 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61683001 | Aug 2012 | US |