The present invention relates to a fire extinguishing device for extinguishing small-scale fires, for instance in kitchen environments. In particular, the invention relates to such a fire extinguishing device arranged to cooperate with a pressurized carbon dioxide container or flask, such as a standard size carbon dioxide flask, such as such a flask used for producing carbonized beverages in domestic homes. When in use, the fire extinguishing device cooperates with such a flask so as to direct a jet of carbon dioxide towards the fire, whereupon the fire is extinguished. The invention also relates to such a fire extinguishing method.
For extinguishing small-scale fires, fire extinguishers of different types are known. Such extinguishers generally work well in the sense that they efficiently extinguish small-scale fires, such as in kitchens. They can be based upon, for instance, dry powder or foam extinguishing, where contents from a flask are emptied onto the fire so as to extinguish the fire by removing oxygen necessary to maintain the oxidizing reaction. Conventionally, the flask is typically an integrated part of the extinguisher.
There are several problems with such conventional extinguishers. Hence, when the flask has been emptied it must be refilled before the extinguisher can be used again. Also, the extinguisher must be checked with respect to proper functionality at regular intervals, for instance that the pressure is sufficient in the flask. Furthermore, such extinguishers are quite bulky, in order to contain sufficient amounts of the extinguishing medium for extinguishing the fire completely. They are typically also brightly coloured, for being clearly visible when needed. All in all, these properties maximize the chances that a fire extinguisher will be easy to find and work as intended once a fire is detected.
However, these properties also increase the chances that an extinguisher which is owned by a user is not available for use when needed. The user may have missed refilling or properly checking the extinguisher. Also, extinguishers, being bulky and brightly colored, are often not perceived as attractive as interior decoration objects, and are in practice, therefore, frequently hidden away out of sight. In practice, then, an extinguisher which is only very rarely used may be difficult to find on the very short notice, such as within seconds, necessary once a fire has been detected.
Also, after using conventional fire extinguishers, the premises must in general be sanitized, which is expensive.
The present invention solves the above described problems, in particular by realizing that a source of fire extinguishing medium is already readily available in many kitchens, in the form of pressurized carbon dioxide flasks for producing carbonized beverages. For instance, such flasks are used in SodaStream® home appliance carbonizing solutions. Furthermore, it has been realized that the fire extinguishing capability provided by the carbon dioxide contents of such a flask, while it may not readily compare to purpose-built fire extinguishers, it is generally adequate to extinguish smaller fires, or for delaying fire development sufficiently to save lives. Importantly, such flasks are readily available in many kitchens, and since they are typically frequently used and replaced, users have a high chance of finding them once needed.
Carbon dioxide does not soil the premises where the fire is extinguished as much as conventional fire extinguishers.
Furthermore, the present invention proposes a number of preferred ways of exploiting such flasks for fire extinguishing purposes. As such, the fire extinguishing device according to the invention can easily be made less bulky and aesthetically more attractive than conventional fire extinguishers, making it more attractive to store it where it can readily be seen by the user in need to, under time pressure, extinguish a discovered small-scale fire.
Hence, the invention relates to a fire extinguishing device, which device is characterised in that the fire extinguishing device comprises a flask engagement means, arranged to engage with a flask for compressed carbon dioxide and to hold the fire extinguishing device in an operating orientation in relation to such a flask, which flask is associated with a longitudinal direction extending in a upwards direction from a flask bottom to a flask top and a downwards direction from said top to said bottom, a radial direction perpendicular to said longitudinal direction, and an angular direction; an actuating means, arranged to apply a pressure on a valve of said flask when in said operating orientation so that the valve as a result of said pressure opens and carbon dioxide flows out from the flask, which actuating means in turn comprises a linearly or rotary acting lever means for transferring a force applied by a user within said actuating means for applying said pressure; and a carbon dioxide directing means, arranged to direct a jet of carbon dioxide flowing out from the flask when said valve is open.
The invention also relates to a method for extinguishing a fire, which method is characterised in that the method comprises providing a fire extinguishing device comprising a flask engagement means, arranged to engage with a flask for compressed carbon dioxide and to hold the fire extinguishing device in an operating orientation in relation to such a flask, which flask is associated with a longitudinal direction extending in a upwards direction from a bottom to a top and a downwards direction from said top to said bottom, a radial direction perpendicular to said longitudinal direction, and an angular direction; an actuating means, arranged to apply a pressure on a valve of said flask when in said operating orientation so that the valve as a result of said pressure opens and carbon dioxide flows out from the flask; a linearly or rotary acting lever means for transferring a force applied by a user within said actuating means for applying said pressure; and a carbon dioxide directing means, arranged to direct a jet of carbon dioxide flowing out from the flask when said valve is open; in that the method comprises further providing a flask of the said type, and in that the method also comprises the user directing the said carbon dioxide directing means towards a base of the fire and applying said force onto said actuating means.
In the following, the invention will be described in detail, with reference to exemplifying embodiments of the invention and to the enclosed drawings, wherein:
All figures share the same reference numerals for same or corresponding parts.
Hence, the present invention relates to a fire extinguishing device 100, 200, 300, 400, 500 as illustrated in
In general, the fire extinguishing device 100, 200, 300, 400, 500 according to the invention is arranged to be used together with a flask 10 for compressed carbon dioxide. It is preferred that the flask 10 is a standard flask for compressed carbon dioxide of the type which is used as a carbon dioxide source when producing carbonated beverages in domestic homes. Examples of appliances for making such carbonated beverages, using and being compatible with such flasks, comprise SodaStream®. There are currently a very large number, such as several millions, such flasks 10 distributed in domestic homes throughout the world. Typically, the carbon dioxide contents of such a flask 10 is sufficient for producing about 50 liters of carbonated beverage, and must thereafter be replenished or replaced by a filled flask 10. Hence, such flasks 10 are in fact relatively common in domestic homes, and are frequently used and handled in such homes. Such flasks 10 are generally of the same standard size, within certain limits, and are, for compatibility reasons, equipped with a standard valve with standardized threads for installation in appliances of the above type. Such flasks 10 are typically cylindrical, about 40 cm, or more precisely about 37 cm, of length and with a diameter of about 5-7 cm, more particularly about 6 cm, in particular about 6.2 cm. The gas pressure of a full such flask 10 is typically between about 50 and about 250 bars and contains about 0.4-0.5 kg of CO2 in liquid phase.
As illustrated in
Turning now first specifically to
Hence, according to the invention the fire extinguishing device 100 further comprises an actuating means 120, arranged to apply a pressure on a valve 13 actuator of said flask 10 when in said operating orientation, so that the valve 13 as a result of said applied pressure opens and carbon dioxide flows out from the flask 10. The details regarding the valve mechanism and carbon dioxide outflow in the direct vicinity of the valve 13 is conventional as such, and is not described in any detail herein.
The actuating means 120 further comprises a linearly or rotary acting lever means 121, 122 for transferring a force applied by a user, within said actuating means 120, and for thereby applying said pressure.
That the lever means acts “linearly” means that the lever means may work by translating a substantially linear motion of longer total length into a corresponding linear motion of shorter total length of the valve 13 actuator of the flask 10, so that a force required to be applied by the user is smaller than a corresponding force required to achieve said pressure on the valve 13 should such a corresponding force be applied directly to the valve.
That the lever means acts “rotary” means that the lever means may work by translating a substantially rotary motion of the lever means, whereby a point on the lever means at which the user applies said force travels a certain distance in this rotary motion, into a corresponding linear motion of the valve 13 actuator of the flask 10, which linear motion is shorter than the certain distance. As a result, again a force required to be applied by the user so as to move the said point in such a rotary motion is smaller than a corresponding force required to achieve said pressure on the valve 13 should such a corresponding force be applied directly to the valve.
In general, it is preferred that a linearly acting lever means is used, for safety reasons. However,
Moreover, the fire extinguishing device 100 according to the present invention also comprises a carbon dioxide directing means 130, arranged to direct a jet 20 (see
Such a fire extinguishing device offers a number of advantages. It can be made very simple and small, as explained hereinbelow. It can also be made aesthetically attractive, encouraging users not to keep it out of sight. It can be designed to be simple and fail-safe to use for extinguishing small-scale fires. Moreover, the present inventors have discovered that the carbon dioxide provided by a flask 10 of the above type is often sufficient for putting out small-scale fires, such as a typical fire in a kitchen. As an example, the present invention can be successfully used to put out, or at least delay, an oil-containing frying pan or pot catching fire due to high cooking temperatures.
According to a preferred embodiment, illustrated in
Preferably, the tubular member 111 is arranged to, in said operating orientation, extend along at least the whole longitudinal L length of the flask 10.
According to a preferred embodiment as shown in
Hence, the fire extinguishing device 100 preferably comprises a bottom shoulder means 112, arranged to limit the movement of the flask 10 in its longitudinal downwards direction L when the fire extinguishing device 100 is in said operating orientation. The top 113 and bottom 112 shoulder means are preferably distanced one from the other so as to hold the flask 10 using a certain longitudinal pressure. For instance, the top 113 and/or bottom 112 shoulder means may be spring-loaded so as to press the flask 10 towards the opposite respective shoulder means in the operating orientation. This provides both a safe hold and a reliable seal of the flask 10. Such a seal is important, since the carbon dioxide flowing out from the flask 10 is typically very cold, and if the user is put into direct contact therewith, the user runs the risk of dropping the fire extinguishing device 100 during use in reaction to the cold. In worst case, the user may even be injured by the cold, if exposed to prolonged flows of the rapidly expanded carbon dioxide.
According to the preferred embodiment illustrated in
However, as illustrated in
In a preferred embodiment illustrated in
Also, slightly varying flask 10 lengths can be accommodated for this way. The pin 124 holding part 131 attachment point, or, more preferably, the pin 124 itself may be slightly flexible, so as to be able to flex somewhat during activation by the user applying said force.
It is noted that, in the embodiment illustrated in
Preferably, the pin holding part 131 comprises a first disk 131 (the pin holding part being the first disk in the exemplifying embodiment illustrated in
In particular, it is preferred that the first 131 and second 132 disks are arranged to, when the fire extinguishing device 100 is in said operating orientation, seal the said tubular part 111, via contact between a respective outer periphery edge of the respective disk 131, 132 and an inner surface of said tubular member 111, so as to prevent carbon dioxide to flow in the upwards longitudinal direction L from the valve 13, except for through respective openings 131a, 132a in said first 131 and second 132 disks, respectively. Hence, using such an arrangement of the disks 131, 132, the carbon dioxide released through the valve 13 is forced to flow out into the surrounding atmosphere through the openings 131a, 132a, why a very controlled flow of carbon dioxide can be achieved. Preferably, the openings 131a, 132a mutually arranged so as to achieve a turbulent carbon dioxide flow through the top-most opening 131a and out through the carbon dioxide directing means 130 into the surrounding atmosphere when the valve 13 is fully open, in particular given the specific internal geometry of the carbon dioxide directing means 130 and the expected pressure of a fully loaded flask 10. Using such a controlled, turbulent flow, a jet 20 of carbon dioxide which is very efficient for putting out small-scale fires is achieved. Also, the risk for clogging by dry ice is decreased.
In particular, it is preferred that the openings 131a, 132a are not aligned in the angular direction A of the flask 10 when the fire extinguishing device 100 is in the operating orientation, but offset in the angular direction 10. As illustrated in
In particular, it is preferred that the openings 131a, 132a of subsequent disks 131, 132 have substantially no angular overlap.
In
It is understood that there may be more than two discs 131, 132, even if the arrangement with two discs 131, 132 arranged both to hold and steer the pin 124 and providing a turbulent flow is simple and efficient, and therefore preferred.
Hence, according to a preferred embodiment, illustrated in
Hence, the actuating means 120 comprises a lever 121 and a force transfer means 122 in the form of a metal bar, a flexible rope or similar. The user pushes the lever 121, effectively pulling the transfer means 122 in the downwards longitudinal direction L. The force transfer means 122 is attached to the first disk 131. The first disk 131 is hingedly or pivotably attached, such as to the tubular member 111, at a side of the first disk 131 which is arranged to the opposite, in a main plane of the disk 131 in question, of the attachment point to the force transfer means 122, why the force transfer means 122 forces the first disk 131 to pivot in the downwards longitudinal direction L, as illustrated in
As the disks 131, 132 are preferably displaced in parallel in the said second alternative, the pin 124 directing part 132 will be able to keep the pin 124 substantially parallel to the longitudinal direction L at all times during the downwards movement of the pin 124, which provides a simple yet fail-safe construction.
The force transfer means 122 may preferably run freely through a hole 113a in the top shoulder means 113, which hole 113a is preferably a through hole arranged to provide a sealing engagement with the force transfer means 122.
The pin 124 is preferably aligned with, and overlapping, a central flask 10 longitudinal axis.
For all embodiments illustrated in
The pivoting or bending angle V, downwards, of the disks 131, 132 is preferably between 2-5°, see
Hence, in operation the user applies a force, in a general direction U, to the lever 121, which is transferred to the pin 124 and on to the valve 13. The corresponding is true in the embodiment shown in
Since the valve 13 is typically spring-loaded towards a closed state, or is closed by means of the internal pressure of the flask 10 if not actively pressed, the lever 121, 221, 321 is preferably not spring-loaded apart from the counter-force provided by the valve 13 itself.
Irrespectively of the type of lever 121, 221, 321, it is, for similar reasons as described above in relation to the seal, preferred that the lever means 121, 221, 321 is arranged to transfer, via the actuating means 120, a force, applied by the user to a location on the fire extinguishing device 100, 200, 300 arranged at least 25 cm from the valve 13, when the fire extinguishing device 100, 200, 300 is in said operating position. Preferably, the downwards component of a straight path between the point of application of said force and the valve 13 is at least 10 cm.
Also preferably, the lever means 121, 221, 321 is arranged, when the fire extinguishing device 100, 200, 300 is in said operating orientation, to allow the user to apply said force either in the radial direction R, towards a central longitudinal axis of the flask 10 (as illustrated in
As seen in
If the fire extinguisher 200, 300 is screwed onto the flask 10 in order to achieve the operating orientation, it is preferred that the carbon dioxide is not transferred from the valve 13 to or within a carbon dioxide directing means 230, 330 using a flexible or non-flexible tube or duct, since such a tube or duct provides an undesired pressure fall. In case such a tube or duct is used, for instance to provide directability of the jet 20, it is preferably no more than 20 cm, preferably no more than 10 cm, of length.
Preferably, the cylindrical member 211 has a diameter which is approximately, or at the most, identical to the radius of the flask. Further preferably, the cylindrical member 211 rests on the tapered upper part of the flask 10, which then will form a sturdy construction when the fire extinguisher 200 is fully engaged with the flask 10 in the operating orientation. In other words, the cylindrical member 211 will form an approximately continuous cylindrical body of constant diameter together with the flask 10. Alternatively, the inner diameter of the cylindrical member 211 corresponds to the outer diameter of the flask 10, so that the cylindrical member 211 forms an abutting sleeve along an upper end part of the flask 10 when fully engaged in said operating orientation. A sleeve of this type is illustrated in
In a first step, a fire extinguishing device 100, 200, 300 of the above described type is provided.
In a second step, a pressurized carbon dioxide-containing flask 10 of the above described type is further provided.
The first and second steps can be performed in any order, or simultaneously.
In a third step, the fire extinguishing device 100, 200, 300 is mounted on the flask 10 in any one of the above-described ways, so as to achieve the said predetermined operating orientation of the fire extinguishing device 100, 200, 300 in relation to the flask 10.
In a fourth step, the user directs the fire extinguishing device 100, 200, 300 so that its upwards longitudinal direction L, or any other direction of the device 100, 200, 300 in which the jet 20 is arranged to be directed, is directed towards the base of the fire 1.
In a fifth step, the user applies a force, in the general direction U, onto the above-described actuating means, as a result of which and via the actuating means 120, 220, 320 the flask 10 valve 13 is opened and the carbon dioxide is released onto the said fire 1 base.
A fire extinguishing device 400 of the type illustrated in
Above, preferred embodiments have been described. However, it is apparent to the skilled person that many modifications can be made to the disclosed embodiments without departing from the basic idea of the invention.
It is realized that the five different embodiments discussed above are merely for exemplifying purposes, and that many modifications can be made as long as the principles described herein are used.
For instance, the fire extinguishing device 100, 200, 300, 400, 500 may be provided with a hook for hanging the device 100, 200, 300, 400, 500 on the wall, or any number of aesthetically appealing design elements in order to make it a more attractive interior decorating object.
As another example, the tubular member 111 and the disks 131, 132 may be rectangular-cylindrical.
The different embodiments described herein are freely combinable as applicable. For instance, the lever 121 can be arranged to accept an inwards radial force by the user; and the directing means 130 and 230 may be provided with a nozzle 334.
Furthermore, all that has been said above regarding the fire extinguishing devices 100, 200, 300, 400, 500 is applicable to the present method, and vice versa.
Hence, the invention is not limited to the described embodiments, but can be varied within the scope of the enclosed claims.
Number | Date | Country | Kind |
---|---|---|---|
1651681-7 | Dec 2016 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2017/051268 | 12/13/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/117947 | 6/28/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2564733 | Sipkin | Aug 1951 | A |
2644313 | Griggs | Jul 1953 | A |
20030094195 | Huang | May 2003 | A1 |
20130014964 | Yoshida | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
101360535 | Feb 2009 | CN |
102410121 | Apr 2012 | CN |
0380852 | Aug 1990 | EP |
2018895 | Jan 2009 | EP |
0226328 | Apr 2002 | WO |
2013043700 | Mar 2013 | WO |
2016129788 | Aug 2016 | WO |
Entry |
---|
International Search Report from corresponding International Patent Application No. PCT/SE2017/051268, dated Feb. 8, 2018, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190329082 A1 | Oct 2019 | US |