The present invention is directed to a fire-fighting monitor and, more specifically, to a fire-fighting monitor that is flexible and configurable into a compact stowage configuration.
Fire-fighting monitors are used to direct the flow of water or other fire-fighting fluid and include an inlet, which is connected to a hose or pipe, and a discharge outlet to which a nozzle or stream-shaper is mounted. Monitors are typically mounted to fire-fighting vehicles and/or aerial ladders and deliver a large quantity of fluid (typically water or foam) either directly to a fire, or to a fire via a hose or other conduit. Typical monitors are made up of curved and straight pipes or conduits, some of which may be rotatably or rigidly mounted to one another, and commonly include curves in different directions, which reduces flow efficiency. Therefore, typical monitors provide limited directional control over the fluid that they convey, by rotating about a single vertical pivot axis and pivoting about one or two horizontal axes for elevational change, and can significantly reduce the fluid flow energy by causing abrupt or multiple changes in flow direction. Typical monitors may also include a relatively large number of different parts, adding cost and complexity. Further, because monitors typically have little flexibility, they occupy a relatively large amount of horizontal and vertical space when not in use, and can exhibit a large swing radius when rotated. Thus, typical monitors may prevent vehicles to which they are attached from being stored in certain garages or from passing through low-clearance areas, and may reduce the space available for other equipment in the vicinity of the monitor, for example. Therefore, there is a need to provide a monitor having improved flexibility and reduced proportions when stowed.
Accordingly, the present invention provides a fire-fighting monitor that is adapted to flex along a substantial portion of its length to control the direction of fluid flow through the monitor, to provide an efficient fluid path through the monitor, to require a relatively small stowage space, and to do so with a relatively simple and inexpensive design.
In one form of the invention, a fire-fighting monitor includes a base, an outlet, a plurality of hollow members, and one or more joints at the hollow members. The hollow members are connected in series between the base and the outlet to provide a flexible fluid path, and include a base-end hollow member, which is coupled to the base, and an outlet-end hollow member, which forms the outlet. Each of the hollow members has a ball portion and a socket portion, with the socket portions adapted to receive the ball portions.
In one aspect, the joints of the fire-fighting monitor include hinges or ball-joints.
In another aspect, the fire-fighting monitor comprises a seal at each of the socket portions of the hollow members. The seals engage the ball portions of the hollow members to provide a substantially fluid-tight seal between adjacent hollow members.
In yet another aspect, the fire-fighting monitor further incorporates an actuator having a first end coupled to the base and a second end coupled to the outlet. The actuator is actuatable to move the outlet relative to the base.
In still another aspect, the fire-fighting monitor further comprises rotary actuators at the joints for moving the outlet relative to the base.
In a further aspect, the base of the fire-fighting monitor is rotatable, and may be drivable by a powered drive unit, for example.
In another form of the invention, a fire-fighting monitor includes two or more hollow members pivotally connected to one another in series between a base and an outlet. An actuator is coupled between the base and the outlet, whereby actuating the actuator pivots the hollow members and repositions the outlet relative to the base.
In one aspect, the actuator is actuatable so that the outlet is substantially aligned with the base to define a substantially straight fluid path, and is further actuatable to form a curved fluid path. Optionally, the actuator is actuatable until the outlet is oriented at least about 135 degrees from the base.
In another aspect, the outlet is repositionable to form either a straight fluid path through the monitor, or a curved fluid path through the monitor.
In still another aspect, each hollow member is pivotable about a pivot axis relative to an adjacent hollow member, wherein the pivot axes of the hollow members are substantially parallel to one another.
Accordingly, the monitor of the present invention provides a monitor with improved flexibility, higher flow-efficiency, smaller stowage size, and relatively low complexity.
These and other objects, advantages, purposes, and features of the invention will become more apparent from the study of the following description taken in conjunction with the drawings.
Referring to
Referring to
Thus, the hollow members are pivotally mounted to one another in series about a plurality of pivot axes to form a straight fluid path (
As best seen in
Socket portion 16b of a given hollow member is adapted to receive ball portion 16a of an immediately adjacent hollow member to provide a nested or overlapping arrangement between each adjacent hollow member. As best seen in
Base 12 includes an annular base flange 24 and a base member 26 coupled to the base flange. Base flange 24 is coupled to a fluid pressure source, such as a fire-fighting vehicle, and holds base member 26 in a longitudinally fixed position relative to the pressure source. Base member 26 includes a ball portion 26a having substantially the same outer dimensions as ball portions 16a of hollow members 16, and is therefore configured for socket portion 16b of the hollow member 16 located at the base end of monitor 10 to be disposed thereon. Further, base member 26 includes a mounting element 30 that extends radially outward from base member 26 for receiving actuator 20. A mounting flange 26c of base member 26 is cooperatively received in a corresponding annular channel 24a of base flange 24 to fasten base member 26 thereto.
Base member 26 may be rotatable relative to base flange 24 to facilitate control over the flow direction of fire-fighting fluid out of outlet 14. For example, ball bearings or a bushing may be provided between base member 26 and base flange 24, to facilitate rotation and directional aiming of base member 26. Optionally, a tubular sleeve or hollow cylinder, such as a sleeve made of a polytetrafluoroethylene (PTFE) or other resinous material, may be inserted between base member 26 and base flange 24, to facilitate rotation of base member 26. Optionally, the base flange may include a latch mechanism for removably attaching the monitor to a fire-fighting vehicle or other mounting surface, such as the latch mechanism described in commonly assigned U.S. Pat. No. 6,786,426, which is hereby incorporated herein by reference in its entirety.
As noted above, outlet 14 includes a socket portion 14b for receiving the ball portion of the hollow member that is at the outlet end of monitor 10. An annular seal 22 is also included at an inner surface 31 of socket portion 14b of outlet 14 to provide a fluid-tight seal between socket portion 14b and ball portion 16a. Outlet 14 further incorporates a threaded end portion 14a for mounting a nozzle 28 (shown in phantom in
Joints 18 are provided at opposite sides of socket portions 16b and socket portion 14b, as best seen in
Actuator 20 is pivotally coupled to mounting element 30 at base member 26, and is further coupled to mounting element 32 at outlet 14. Extension and retraction of actuator 20 causes outlet 14 and hollow members 16 to pivot relative to one another at joints 18 and move relative to base 12 in a substantially vertical plane. In this manner, the fluid passage or fluid path through the flexible monitor body may have a varying radius of curvature. For example, when actuator 20 is fully retracted, actuator mounting elements 30, 32 are drawn toward one another to form a relatively small radius of curvature so that monitor 10 is in a relatively compact stowage configuration and/or may direct fluid downwardly (
Actuator 20 may comprise an electric actuator, a hydraulic actuator, a ball screw actuator, a manually-driven actuator, a belt or chain system, or the like, for example. Alternatively, a pivoting actuator may be provided to move outlet 14 relative to base member 26 by applying a moment force. Alternatively, each joint 18 may be equipped with a rotary actuator such as an electric or hydraulic motor. Actuator 20 may include a pivoting control (not shown) at one or both of mounting elements 30, 32, which pivoting control is driven by an electric or hydraulic motor to change the orientation of actuator 20 and thus change the position and orientation of outlet 14. Such a pivoting control may be selectively operated in combination with the linear adjustment of actuator 20, or operated independently. For example, the hollow members may define a fluid path having single bend in a first direction, while the outlet or a nozzle thereon is aimed by the pivoting control to define another bend in the fluid path in a second direction.
Optionally, and with reference to
Optionally, and with reference to
Optionally, and with reference to
Optionally, a tiller handle or a manual hand wheel may be provided at any of base members 26, 126, 226 for rotating the base member. Other drive units that may be suitable for use to rotatably drive the monitor include a fire-fighting monitor with remote control such as that disclosed in commonly assigned U.S. Pat. No. 7,191,964, which is hereby incorporated herein by reference in its entirety.
Accordingly, the present invention provides a fire-fighting monitor with a flow-efficient fluid path, a large range of flexibility of the monitor in a vertical plane, a relatively small stowage size, and 360 degree rotational capability.
While several forms of the invention have been shown and described, other forms will now be apparent to those skilled in the art. For example, the monitor may be mounted to a substantially vertical surface such that fluid flow through the base is substantially horizontal. Optionally, monitor 10 may be oriented in substantially any orientation on a vehicle, or on a portable mount or stand or the like. In the illustrated embodiment, monitor 10 includes seven hollow members 16 arranged between base member 26 and outlet 14. However, it will be appreciated that additional hollow members may be provided to increase the length and/or to increase the degree of flexibility of the monitor. Similarly, hollow members may be removed to reduce the length and degree of flexibility as desired. Optionally, while the pivot axes of the joint are illustrated as being substantially parallel, the pivot axes of the joints may be non-parallel, such that the flexible monitor forms a helical shape, or other curved shape, when in a curved or stowed position.
Therefore, it will be understood that the embodiments shown in the drawings and described above are merely for illustrative purposes, and are not intended to limit the scope of the invention, which is defined by the claims that follow, as interpreted under their principles of patent law including the doctrine of equivalents.
The present invention claims the benefit of U.S. provisional application Ser. No. 60/947,188, filed Jun. 29, 2007, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60947188 | Jun 2007 | US |