1. Field of the Invention
The present invention relates generally to fluid discharge nozzles, and in particular to a fire fighting tool for producing a swirling (rotating) fog pattern that has a forward thrust component.
2. Description of the Related Art
Spray discharge nozzles have many applications, and fire fighting is one of particular interest. It is well known that water absorbs not only heat but also many of the toxic gases of a fire and tends to clear away the smoke and does so most effectively when broken up into a fine spray or mist. Spray generating nozzles distribute the water discharge over a larger volume than do conventional fluid discharge nozzles in which water is discharged in a converging pattern of diffused solid streams. Spray generating nozzles are particularly useful in combating interior fires and are often used to provide protection for firefighting personnel by creating a water spray shield around the firefighters.
Conventional spray generating nozzles typically include a housing, a passageway for conducting water from a water supply source such as a fire hose from the inlet to the discharge end of the nozzle and a device for particulating the water to break it up into a fine stream. Multiple openings intersect the discharge end of the nozzle for directly diffusing the discharge spray outwardly from the nozzle. A commonly used device for particulating water is an internal impeller, which turns in response to the flow of water across obliquely inclined impeller surfaces inside the housing.
One limitation of conventional spray generating nozzles is that a high pressure source of water must be available to provide sufficient projection for the discharge spray. Because the discharge nozzle outlet is substantially smaller than the supply hose in order to produce a diffused spray, a back pressure builds up within the nozzle housing, thereby limiting the discharge flow rate. The use of an internal impeller to particulate the water also requires mechanical bearings and the like, which increases the cost and mechanical complexity of the nozzle.
U.S. Pat. No. 5,351,891 to Hansen and others show a fixed, non-rotatable spray head in which discharge orifices project a focused, converging jet spray discharge pattern.
The nozzle disclosed in U.S. Pat. No. 4,697,740 to Ivy is a substantial improvement over conventional spray nozzles by virtue of its ability to generate a large cloud of fog or fine mist that is particularly effective for smothering a blaze. This is made possible by a rotary nozzle in which the discharge orifices project water droplets radially outwardly thereby producing a static fog pattern. Because the cloud remains static or centered relative to the nozzle, it is necessary for fire fighting personnel to position the rotary nozzle in close proximity to the blaze in order for it to have effective coverage. Moreover, by placing the nozzle close to the fire source, the mist cloud becomes caught in the updraft and is pulled away from the fire. Because the static cloud is not controllable in direction, it is necessary for the nozzle to be attended by an observer so that it can be repositioned from time to time to maintain the protective thermal shield around the fire source.
A limitation of conventional fog-cloud or mist-cloud generator nozzles is that the movement of the fog cloud or mist pattern is not controllable in any particular direction, and tends to remain centered on the nozzle or to drift randomly. It is often necessary for fire fighter personnel to approach dangerously close to a very hot fire in order to establish a mist cloud and hold it centered on the fire, to establish a thermal shield that allows the fire fighting personnel to work safely, and to smother the fire until it is extinguished or brought under control. This exposes the fire fighters to risk of serious burn injury and smoke inhalation, particularly where chemical fuel source fires are involved.
For these reasons, there is a continuing interest in improving fire fighting equipment generally, and water spray projection equipment in particular, especially for use around intense blaze situations. Improvements are needed in water projection equipment that will extend the safe operational limits of standard protective clothing and respiration equipment, and allow fire fighting personnel to work safely and effectively in close proximity to a fire source.
An improved fog-cloud or mist-cloud generator nozzle according to the present invention produces a fog pattern having a forward thrust component that permits an operator, stationed safely at a remote location relative to a fire source, to exercise directional control and positioning of a relatively large volume of fog or mist on or about a fire source. The discharge nozzle includes a cylindrical bearing member closed at one end and open at the opposite end; means for connecting the bearing member to a fluid source; and a cylindrical sleeve member disposed concentric with and surrounding at least a portion of the bearing member and cooperating with the bearing member to form an annular chamber there between. The bearing member has a fluid passageway between the open and closed ends and a plurality of slots for allowing fluid entering the passageway to flow outwardly through the slots.
The sleeve member has a plurality of orifices communicating between the annular chamber and the exterior of the sleeve member. According to an important feature of the invention, the orifices extend at an acute forward projection angle relative to the nozzle axis, thus imparting a forward directional movement component to the water droplets as they are discharged. Additionally, the discharge orifices extend transversely to the radii of the sleeve member for imparting rotational torque to the sleeve member, thus producing a swirling (rotating) fog pattern that has a forward thrust component. As the rotor sleeve rotates in response to reaction forces imparted by the outward flow of fluid through the orifices, the fluid is particulated into a finely divided fog or mist and discharged along a swirling trajectory with a forward component of directional movement. When the annular chamber is pressurized, the fluid in the chamber serves as a bearing to support the sleeve member as it rotates about the bearing member.
According to one preferred embodiment, a pair of the fog producing nozzles of the invention are configured with counter-rotating rotors. The nozzles are positioned at laterally separated projection stations and are aimed at the fire source. Each nozzle generates a swirling (rotating) fog pattern or cloud that has a forward thrust component, swirling in counter-rotation relation to the other nozzle. The counter-rotating clouds intersect and intermix along a common vortex, thus reinforcing each other along the vortex, and producing a common rotating fog cloud pattern having a magnified forward vector thrust component, enabling directional control of the mist cloud for remote positioning.
According to another embodiment, dual counter-rotating nozzles are attached to a self-contained, portable tank unit with an internal pump and onboard power unit. The portable tank unit is skid mounted and capable of stand-alone operation, or can be slung below a helicopter for remote aerial stand-off operation, or truck-mounted for transport and set-up where road access is available.
According to yet another embodiment of the invention, dual counter-rotating nozzles are attached to portable, freestanding tripod units, each equipped with counter-rotating nozzles for set-up at safe, remote locations. The outputs of the counter-rotating nozzles combine along a common vortex to project a protective fog curtain or cloud onto or about a fire source for fire suppression and thermal shielding purposes. This allows fire fighting personnel to quickly set up the tripod units to gain initial control with protection of a thermal shield, and then reposition the tripod units and move progressively closer as the fire is contained, and then work safely in close proximity to the fire source.
According to a hand-held embodiment of the invention, the nozzle assembly is equipped with a handle shaft and a blunt (dome-shaped) bumper cap for manual application of fog or mist in industrial fire situations where penetration of plant infrastructure is to be avoided, for example around pressurized piping and tank containers holding caustic chemicals. In this embodiment, the nozzle is incorporated into a hand-held firefighting tool. The nozzle is mounted on a tubular shaft member having an open end; hose connection means for connecting the shaft member to a supply hose so that pressurized fluid is supplied to the nozzle; and the bumper cap is attached to the closed end of the bearing member. The bumper cap protects the rotor and prevents penetration damage to tubing and other plant equipment.
In the description which follows, like parts are marked throughout the specification and drawings, respectively. The drawings are not necessarily to scale and in some instances, proportions have been exaggerated in order to move clearly depict certain features of the invention.
Referring to
As can be seen in
The base portion 22 is threaded at 32 and functions as a male member for mating with corresponding threads 34 on a female end of coupling 12, as best seen in
Referring to
The pitch angle α is preferably in the range of from about 30-45 degrees, and more preferably in the range of about 35-42 degrees, as shown in
The orifices 42 also extend transversely at an acute angle Φ with respect to corresponding lines of radius R of rotor sleeve 40 so that a turning force is imparted to sleeve 40 when water is discharged through orifices 42. The angle Φ is preferably equal to about 30 degrees as measured from the orifice axis A to the principal radius line R, as shown in
The rotor sleeve 40 is positioned concentric with bearing member 16 and is rotatable with respect to bearing member 16. As best shown in
An annular chamber 44 is defined between bearing member 16 and rotor sleeve 40. When water 30 flows into passageway 18 under pressure, annular chamber 44 is pressurized with water to provide a water cushion upon which rotor sleeve 40 rides during rotation. Water flowing into passageway 18 will flow through slots 28 into annular chamber 44 and outwardly through orifices 42, thereby causing rotor sleeve 40 to rotate around bearing member 16.
The discharge of water 30 through the orifices 42 creates a reaction force having a component which is tangential to the curved surface 46 of the rotor sleeve 40, as well as a component which is normal thereto. The tangential component imparts rotational motion to sleeve 40 in much the same manner that a jet engine turbine is turned by the reaction force produced by the flow of combustion gases through the engine nozzles. The centrifugal force associated with the rotation of rotor sleeve 40 breaks up the water particles into a fine mist or fog. The water particles travel outwardly in a substantially spiral pattern. Thus, the water particles are carried a sufficient distance to enable the nozzle 10 to be effectively used for firefighting purposes.
The nozzle 10 discharges a greater volume of water than conventional nozzles (1260 gallons per minute as compared to 65 gallons per minute for conventional convergent nozzles) and distributes the fog or mist discharge over a larger area. The improved G.P.M. delivery is obtained because of the unusually low back pressure presented by operation of the cylindrical bearing and rotatable sleeve, and due to the absence of frictional loading associated with conventional mechanical roller bearing structures.
According to another aspect of the invention, a hand-held firefighting tool 50 is depicted in
The forward end of shaft 52 is equipped with female threads 66 for engaging corresponding threads 32 on bearing member 16, to couple the nozzle 10 to the shaft 52. In one embodiment, the bumper cap 60 is integrally formed on the forward end of the bearing member 16. In an alternate embodiment, the bearing member 16 is equipped with male threads on or adjacent to the top portion 24 for engaging corresponding female threads on the bumper cap 60. In both embodiments, the nozzle 10 is disposed immediately behind the bumper cap 60 and flush with tubular shaft 52. According to this arrangement, the nozzle 10 is protected from damage resulting from inadvertent engagement of the nozzle against building structure and equipment.
Referring again to
Referring now to
The centrifugal force associated with the rotation of the sleeve member 40 particulates the water into finely divided mist particles and discharges the mist forwardly in a swirling, spiral pattern 76, 78. Extended coverage is obtained from available high pressure supply mains, and because of the substantially reduced back pressure, a large delivery rate approaching the supply conduit flow rate is obtained, thus enabling it to extinguish a fire and cool down the source prior to approach by firefighting personnel.
Because of the finely particulated nature of the discharged water droplets, heat from the fire source 74 will cause approximately 80% of the water droplets to flash to steam, thereby removing heat from the fire by increasing the temperature of the discharged water droplets to the flash point and by latent heat of vaporization which causes the water droplets to make the transition to the vapor state. For example, one cubic foot of water will produce approximately 1700 cubic feet of steam. The resulting steam forms a blanket around the fire source 74, which reduces the amount of oxygen available so as to “choke off” the fire. Moreover, the fog and steam propagate throughout the structure surrounding the fire source and into spaces that otherwise could not be reached. Even if the fire cannot be completely extinguished, the fire source will be cooled down sufficiently to allow firemen to work and move about in close proximity with additional hoses and fire fighting equipment to extinguish the fire.
One skilled in the art will recognize that the fog generating nozzle 10 of the present invention has many applications in addition to portable fire fighting equipment. For example, the nozzle 10 may be coupled to a rigid water pipe or flexible water hose and installed in a central location within a greenhouse or other enclosure in which humidity control is desired. The nozzle 10 can be pressurized periodically, as desired, to discharge a large volume of fog or mist which will propagate throughout the enclosure to maintain a desired humidity level. Moreover, a system of nozzles 10 can be installed in a building structure as an integral part of an automatic fire extinguishing system.
Preferred specifications for the nozzle 10:
The nozzle 10 constructed with the preferred dimensions given above offers more protection for firefighters and also provides a higher GPM flow. Specifically, the protection this improved design offers is a more dense fog pattern. This dense fog pattern provides a very high reduction in temperatures that firefighters are subjected to while approaching a burning structure or chemical fire.
In an industrial setting, i.e. chemical, petroleum and the like, there are piping, electrical, water, etc. systems running throughout the plant. A sharp, pointed tip is not always needed in a more open industrial plant environment which is often congested with vital supply lines that maintain the operation of the plant. In an industrial setting, most of the fires are related to the product that the plant produces, i.e. LPG, gasoline, diesel, jet fuel, etc. The improved nozzle 10 offers firefighters an option to any given fire situation. The blunt bumper cap poses no risk of penetration damage to surrounding infrastructure.
Referring now to
The tank unit 82 includes a 1500-gallon stainless steel tank 84 with dished ends, two skids 86, 88, a self-contained submersible pump 90, an electric drive motor 92, intake conduit 94, one-way fill valves 96, 98, 100 located on the bottom side of the tank, a distribution manifold 102, and internal interconnect piping. Discharge conduits 104, 106 extend from the manifold through one dished end 108 the tank at a 50° angle downward. There are two 3-inch diameter stainless steel conduits that form the working end of the tank system. Two mist generators 10 are mounted on the end of the discharge conduits. The rotor orifices of these nozzles are drilled at an angle that provides a forward thrust of the fog pattern, and counter-rotation rotor movement relative to each other.
With both mist generator patterns 76, 78 intersecting or converging on one another, rotating in opposite directions creates a thrust vortex 80 between the two nozzles, as shown in
In a wildfire operation, the portable tank unit 82 is brought to the site of the wildfire via helicopter. The tank unit 82 is slung via a tether line below the helicopter loitering at a stand off position adjacent a burning forest canopy, and the fog cloud is projected from the dual nozzles onto the burning canopy. As the fog cloud contacts the burning canopy it is turned into steam almost instantly, thus cooling the ambient temperature and removing a significant amount of heat from the area. It also blankets the area with a thick fog that removes a significant amount of oxygen from the burning canopy. The tank system 82 provides a fog pattern approximately 120 feet wide, and when loaded with 1500 gallons of water covers a path of approximately one-quarter mile in length.
The electrical power supply for the tank unit's self-contained drive motor 92 is located in the helicopter and is operated by one of the crew. The tank unit can also be mounted on a truck or off-road vehicle that can be deployed ahead of the fire. The tank system creates a dense fog cover at lower elevations beneath the canopy. This dense fog cools the ambient temperature and at the same time soaks the forest floor vegetation, thus reducing the fuel element of the fire triangle.
Although the invention has been described with reference to certain exemplary arrangements, it is to be understood that the forms of the invention shown and described are to be treated as preferred embodiments. Various changes, substitutions and modifications can be realized without departing from the spirit and scope of the invention as defined by the appended claims.
This is a divisional application of application Ser. No. 10/919,862, filed Aug. 17, 2004.
Number | Name | Date | Kind |
---|---|---|---|
540218 | Stanton | May 1895 | A |
674343 | Oakes | May 1901 | A |
843585 | Cole | Feb 1907 | A |
1761119 | Gouldbourn | Jun 1930 | A |
1953837 | Thorold et al. | Apr 1934 | A |
1959886 | Wadsworth | May 1934 | A |
2246797 | Geddes | Jun 1941 | A |
2413083 | Snowden et al. | Dec 1946 | A |
2526265 | Nulph | Oct 1950 | A |
2756829 | Phillips | Jul 1956 | A |
2813753 | Roberts | Nov 1957 | A |
2884075 | Poon | Apr 1959 | A |
2896861 | Hruby | Jul 1959 | A |
2979272 | Thorrez | Apr 1961 | A |
2990885 | Brazier | Jul 1961 | A |
3082960 | Swan | Mar 1963 | A |
3125297 | Copeland et al. | Mar 1964 | A |
3424250 | Thomae | Jan 1969 | A |
3661211 | Powers | May 1972 | A |
3713587 | Carson | Jan 1973 | A |
3731878 | Lubetzky et al. | May 1973 | A |
4291835 | Kaufman | Sep 1981 | A |
4582255 | Won | Apr 1986 | A |
4674686 | Trapp | Jun 1987 | A |
4697740 | Ivy | Oct 1987 | A |
4789099 | Hager | Dec 1988 | A |
4802535 | Bakke | Feb 1989 | A |
5104044 | Ratell, Jr. | Apr 1992 | A |
5211337 | Lukez | May 1993 | A |
D339846 | Magee | Sep 1993 | S |
5253716 | Mitchell | Oct 1993 | A |
5316218 | Bowen | May 1994 | A |
5351891 | Hansen et al. | Oct 1994 | A |
5409067 | Esposito et al. | Apr 1995 | A |
5540284 | Esposito et al. | Jul 1996 | A |
5655608 | Sundholm | Aug 1997 | A |
5699862 | Rey | Dec 1997 | A |
5833005 | Woolcock | Nov 1998 | A |
5918813 | Rucker | Jul 1999 | A |
6098642 | Crane | Aug 2000 | A |
6158521 | Klump | Dec 2000 | A |
6398136 | Smith | Jun 2002 | B1 |
6578796 | Maeda | Jun 2003 | B2 |
20020139543 | Baughman | Oct 2002 | A1 |
20030089507 | Carrier et al. | May 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20070181712 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10919862 | Aug 2004 | US |
Child | 11692067 | US |