This invention relates to a fire igniter, and more particularly to a fire igniter capable of starting a fire without the need for a match, lighter, or other flame source.
Typically, a flame is required in order to start a fire. However, in some circumstances, such as wet conditions, it is difficult if not impossible to produce a flame using a match. Other flame sources, such as fueled lighters, can be forgotten, misplaced, or run out of fuel.
The present invention provides a fire igniter that does not require a manually produced flame source in order to start a fire. The invention is particularly useful in emergency circumstances, or in wilderness or remote environments when it is desired to start a fire but a match, lighter, or other flame source is unavailable. It is understood, however, that the present invention may be used anytime it is desired to start a fire.
The subject matter disclosed herein relates to a fire igniter that uses a chemical reaction to provide a flame that can be used to start a fire. The fire igniter of the present invention uses two components which, when mixed together, result in rapid oxidation that provides a flame. The components may be surrounded by a flammable material that is ignited by the flame and burns for a period of time. When the fire igniter is surrounded by other flammable material, such as dry leaves, wood or the like, the flame is capable of igniting a fire.
The components may be packaged so as to maintain the components separate and from each other until needed. At that time, the components can be quickly mixed together so as to react with each other create a flame, and to thereby ignite adjacent flammable material, in one embodiment, the components consist of a liquid and a powder, which have chemical properties that enable them to rapidly oxidize when mixed together. Representatively, the liquid component may be glycerin and the powder component may be potassium permanganate. The liquid component may be contained within a vial, such as of the type that can be crushed in order to release its contents. The powder component may be contained within a sleeve along with the vial, so that the vial, powder component and sleeve together make up a fuel cell.
In one embodiment, the fuel cell may be contained within an outer cover, which assembles such components into a package. In turn, the package may be contained within a waterproof enclosure. In one embodiment, flammable material may be contained within the package along with the fuel cell, and the flammable material is ignited when the fuel cell is broken to mix the components together to create a flame.
In an alternate embodiment, the fuel cell may be contained within a protective housing, which may be formed of a pair of housing sections that are releasably secured together to define an interior compartment within which the fuel cell is contained. The housing sections are separable to enable the fuel cell to be removed from the interior compartment. Flammable material may be positioned around the fuel cell by the user after the fuel cell has been removed from the interior compartment. The flammable material is then ignited by the flame that results from the fuel cell being broken by the user.
In another embodiment, the fuel cell and flammable material may be contained within an actuable housing assembly that acts as both a package and an actuator. Representatively, the actuable housing assembly may be in the form of a base that receives the fuel cell and the flammable material, and a cover that is positioned over the base. The cover normally overlies the base in a closed position, in which the actuable housing formed by the cover and base is configured to protect the fuel cell. The cover can be moved relative to the base from the closed position to an armed position, which positions the cover over the fuel cell. The cover can thereafter be moved from the armed position to an actuating position, in which actuating structure associated with the cover comes into contact with the fuel cell to rupture the vial. This functions to mix the liquid and powdered components together, resulting in a flame that ignites flammable material. which may be positioned within the housing assembly or around it. The sleeve, base and cover may be formed of a material that can be consumed in combustion, such as a consumable plastic material. The cover and base include a number of vents that allow air flow to the interior of the housing during combustion.
These and other objects, advantages, and features of the invention will become apparent to those skilled in the art from the detailed description and the accompanying drawings. It should be understood, however, that the detailed description and accompanying drawings, while indicating a representative embodiment of the present invention, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
Various exemplary embodiments of the subject matter disclosed herein are illustrated in the accompanying drawings in which like reference numerals represent like parts throughout, and in which:
a-30f comprise a set of orthogonal views of the base of
a-32f comprise a set of orthogonal views of the cover of
In describing embodiments of the invention which are illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended that the invention be limited to the specific terms so selected and it is understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose.
The various features and advantageous details of the subject matter disclosed herein are explained more fully with reference to the non-limiting embodiments described in detail in the following description.
Referring to
In assembly, the powdered component P is placed within the bag 30 along with the vial V containing the liquid component L and the bag 30 is then sealed, such as using a zipper-type closure. As can be appreciated, the vial V functions to maintain the liquid component L and the powdered component P separate from each other within the interior of the bag 30. The bag 30 is then rolled around the vial V and the powdered component P, and maintained in a rolled configuration, such as using a strip of tape 32. It is understood, however, that the vial V and powdered component P may be placed within any other satisfactory type of sleeve or other package or enclosure that maintains the two components in close proximity to each other, as desired.
When it is desired to use fire igniter 10 to start a fire, the user first gathers a quantity of flammable material, such as dry leaves, grass, twigs, straw or the like (commonly known as kindling), as well as larger flammable material such as branches or logs that will ultimately be burned. The user then withdraws fire igniter 10 from the package or other enclosure 12, and places it on a hard surface below the kindling. Any suitable object is then used to strike the fire igniter 10 with a force sufficient to break the vial V. For instance, the user may employ a rock, ax, hammer or the like, or may even step on the fire igniter, 10 using his or her shoe or boot. In any event, once the vial V is broken, the liquid component L is released from the interior of the vial V and mixes with the powdered component P. The mixing of the liquid component L and the powdered component P results in a chemical reaction that provides rapid oxidation and therefore produces a flame. The flame from the reaction of the two chemical components then ignites the flammable material 22 as well as the cover 24. The flames provided by the chemical reaction as well as burning of the flammable material 22 and cover 24 ignite the kindling surrounding the fire igniter 10 to start the fire.
As shown in
As shown in
Outer housing section 102 and inner housing section 104 are formed with releasable engagement structure that releasably secures outer housing section 102 and inner housing section 104 together. Representatively, the releasable engagement structure may be in the form of a pair of engagement tabs 126 that extend from the outer end of inner housing section side wall 118. The engagement tabs 126 extend outwardly from the outer end of side wall 118, and are defined by slits located on either side of each tab 126 that extend inwardly from the outer end of side wall 118. The slits may be configured to engage ribs 127 that extend inwardly from the inner surface of inner section side wall 118, and which are configured to guide tabs 126 into openings 112 when inner housing section 104 is inserted into outer housing section 102. Each tab 126 defines a shoulder 128 that overlies the end surface of outer housing section side wall 106 when outer housing section 102 and inner housing section 104 are assembled together. The tabs 126 extend through openings 112 in outer housing section end wall 108. The inner tabs 126 are each formed with an inner curved surface 130 that provides clearance with respect to the adjacent facing surface of end wall 108, shown at 132, and which enables tabs 126 to be flexed inwardly together when tabs 126 are subjected to a lateral pinching force in which tabs 126 are manually moved toward each other. In addition, the curved surfaces of tabs 126 engage the adjacent facing surfaces 132 of end wall 108 when tabs 126 are flexed inwardly toward each other, to provide an axial separating force that assists in separating inner housing section 104 from outer housing section 102.
In addition to the protective housing defined by outer housing section 102 and inner housing section 104, fire igniter 100 includes a fuel cell positioned within cavity 122. The fuel cell may be constructed as shown in connection with the embodiment of
In use, a user first disengages outer housing section 102 and inner housing section 104 as set forth above, by application of a pinching or squeezing force to tabs 126 that moves shoulders 128 of tabs 126 inwardly out of alignment with the end of outer housing section side wall 106, to release engagement inner housing section 104 from outer housing section 102. The user then separates outer housing section 102 and inner housing section 104 and removes the fuel cell from cavity 122. The user then places the fuel cell on the area where a fire is to be ignited, which may be any desired hard surface such as the ground, a rock, etc. The user places flammable material such as kindling around the fuel cell and applies a sharp striking force, to rupture or crush the fuel cell vial and cause the liquid and powder components to mix and thereby produce a flame that ignites the surrounding kindling and start a fire.
In the embodiment illustrated in
In use, a user first disengages outer housing section 202 and inner housing section 204 in a similar manner as set forth above with respect to fire igniter 100. The user then separates outer housing section 202 and inner housing section 204 and removes fuel cell 210 from cavity 212. The user then places fuel cell 210 on the area where a fire is to be ignited, which may be any desired hard surface such as the ground, a rock, etc. The user places flammable material such as kindling around fuel cell 210 and applies a sharp striking force to side wall 226 of fuel cell outer section 224. This functions to move side wall 226 inwardly in a forceful, impactful manner against inner fuel cell section sidewall 232, to rupture or crush the inner fuel cell section 230 and cause the liquid and powder components of fuel cell 210 to mix and thereby produce a flame that ignites the surrounding kindling and start a fire.
Referring to
Representatively, the liquid component may comprise a mixture of glycerin, alcohols and an acid. In one embodiment, the liquid component consists of 50% glycerin, 30% isopropyl alcohol, 15% methanol and 5% acetic acid. When the fuel cell is activated, the mixed organic acid and potassium permanganate generate heat through a simple acid/base reaction, which is relatively independent of the ambient temperature. The acid/base reaction generates sufficient energy to meet the activation energy requirements of the primary potassium permanganate/glycerin reaction. With this arrangement, the potassium permanganate/glycerin reaction is able to work relatively quickly at lower temperatures. The acid also reacts with the byproduct of the potassium permanganate/glycerin reaction, and is consumed by the fire generated by the main reaction of potassium permanganate and glycerin. The isopropyl alcohol and methanol ensure that the liquid component is able to maintain the liquid form and at low temperatures.
As shown in
Side wall 330 of base 314 has a number of features that, as will be explained, cooperate with cover 316 for facilitating movement of cover 316 to various positions relative to base 314. In the illustrated embodiment, three sets of such features are provided about the periphery of side wall 330, although it is understood that fewer or more sets could be employed, as desired. One such set of features will be described in detail, with the understanding that the description relates equally to the remaining sets.
The noted features of side wall 330 include a U- or C-shaped guide slot 40 that defines a pair of parallel axial portions 342a, 342b that extend upwardly from shoulder 334, together with an arc portion 344 that extends between the upper ends of axial portions 342a, 342b. An axial guide slot 346 is located between axial portions 342a, 342b of guide slot 340. A detent protrusion 348 is located within guide slot 346 toward its lower end. A ramp 350 is spaced from axial portion 342b of guide slot 340, and includes an angled wall 352 terminating at a bottom edge 353. Side wall 330 further defines a number of divider sections 354, which are located between adjacent sets of features. Each divider section 354 includes a first edge 356 and a second edge 358. The first edge 356 of each divider section 354 is located adjacent the axial portion 342a of the guide slot 340 of the sets of features. The second edge 358 of each divider section 354 is located adjacent the ramp 350 of the next adjacent set of features. In this manner, each set of features is located between the first edge 356 of one of the divider sections 354 and the second edge 358 of the next adjacent divider section 354.
Bottom wall 328 of base 314 includes a series of arcuate slots 360, as well as a series of openings, 362 located between the facing ends of the slots 360.
Referring to
The noted features of cover 316 include an inwardly extending guide protrusion 370 and an inwardly extending tab 372. Guide protrusion 370 and tab 372 are spaced apart from each other a distance that corresponds to the distance between each axial portion 342a of one of guide slots 340 and the adjacent guide slot 346, which also corresponds to the distance between each axial portion 342b and the adjacent ramp 352. Tab 372 defines an angled wall 374 that terminates in an upper edge 376. Guide protrusion 370 is located in line with a recess 371 in side wall 366, and which extends into top wall 364 to form an opening in top wall 364. Similarly, 372 is located in line with the recess 373 in side wall 366, and which extends partially into top wall 364 to form an opening in top wall 364. The top wall openings defined by recesses 371, 373 provide the dual function of facilitating airflow into the interior of cover 316 as well as providing tooling clearance, such as during an injection molding operation.
In addition, cover 316 includes a number of striker tabs 378 that extend downwardly from top wall 364. In the illustrated embodiment, cover 316 is provided with two striker tabs 378, although it is understood that a single striker tab or any additional number of striker tabs may be employed. Striker tabs 378 are oriented parallel to each other and at an angle relative to a radius of cover 316.
The components of fire igniter 310 are first assembled together to create a compact, safe structure for packaging, shipment, storage and transport. In use, the components of tire igniter 310 can be operated to ignite fuel cell 318 to start a fire.
To assemble fire igniter 310, fuel cell 318 is positioned within the internal cavity 332 of base 314 such that is ends are received within cradles 338. Combustible material is placed into the void areas of base 314 around fuel cell 318, as well as between divider walls 336 and sidewall 330, if desired. The combustible material may be of any satisfactory type, such as a cotton-based quilting material, wood shavings, a wax and wood mixture, etc.
Cover 316 is then positioned over the assembled base 314 and fuel cell 318, such that each guide protrusions 370 is aligned with one of guide slot axial portions 342a, and the adjacent tab 372 is aligned with the adjacent guide slot 346. Cover 316 is then moved into engagement with base 314, such that the guide protrusions 370 move downwardly within guide slot axial portions 342a, and tabs 370 to move downwardly within guide slots 346. During such downward movement of cover 316 on to base 314, tabs 370 encounter detent protrusions 348, which resist downward movement of cover 316. Upon application of sufficient pressure to cover 316, tabs 370 can be moved over detent protrusions 348 to continue downward movement of cover 316 onto base 314 until the lower edge of cover sidewall 366 comes into contact with shoulder 334 of base bottom wall 328. During such downward movement of cover 316, striker tabs 378 our advanced into the spaces on either side of fuel cell 318, between fuel cell 318 and the adjacent divider walls 336. When cover 316 attains this position, as shown in
When it is desired to employ fire igniter 310 to start a fire, the user grasps cover 316 and moves it away from the closed position described above, to separate the lower edge of cover side wall 366 from shoulder 334. When tabs 370 come into contact with detent protrusions 348, as shown in
When the user has positioned cover 316 in the armed position of
As cover 316 is advanced onto base 314 as described, striker tabs 378 come into contact with outer barrel 322 of fuel cell 318, as shown in
During downward movement of cover 316 toward base 314 as described above, each tab 372 is advanced along the angled wall 352 of one of the ramps 350, and snaps over the bottom end of the angled wall 352 when cover 316 is moved to its fully closed position, as shown in
It can thus be appreciated that the unique construction of the housing 312 of fire igniter 310 enables fire igniter 310 to be safely assembled and packaged, ensuring that fuel cell 318 is not inadvertently ruptured. Housing 312 is formed of material having sufficient strength and thickness to resist inward deformation of top wall 364, and provides a strong, secure package. The unique construction of housing 312 also enables it to be moved first to an armed position before fuel-cell 318 is ruptured, and to be returned to the disarmed position if desired.
While a representative embodiment of the present invention is shown and described, it is contemplated that the invention also encompasses other types of packages that are normally closed for packaging, shipping and transport, and that can be socially moved to an armed position and then actuated.
It should be understood that the invention is not limited in its application to the details of construction and arrangements of the components set forth herein. The invention is capable of other embodiments and of being practiced or carried out in various ways. Variations and modifications of the foregoing are within the scope of the present invention. It also being understood that the invention disclosed and defined herein extends to all alternative combinations of two or more of the individual features mentioned or evident from the text and/or drawings. All of these different combinations constitute various alternative aspects of the present invention. The embodiments described herein explain the best modes known for practicing the invention and will enable others skilled in the art to utilize the invention.
This application claims priority in U.S. Provisional Patent Application No. 61/705,263 filed Sep. 25, 2012 and U.S. Provisional Patent Application No. 61/788,955, filed Mar. 15, 2013, the entirety of which are expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61705263 | Sep 2012 | US | |
61788955 | Mar 2013 | US |