The present disclosure relates to fire-resistant or sound-resistant building structures. In particular, the present disclosure relates to a fire or sound blocking wall assemblies and related components.
Fire-rated or sound-rated construction components and assemblies are commonly used in the construction industry. These components and assemblies are aimed at inhibiting or preventing fire, heat, smoke or sound from leaving one room or other portion of a building and entering another room or portion of a building. The fire, heat, smoke or sound usually moves between rooms through vents, joints in walls, or other openings. The fire-rated components often incorporate fire-retardant materials that substantially block the path of the fire, heat or smoke for at least some period of time. Intumescent materials work well for this purpose, because they swell and char when exposed to flames helping to create a barrier to the fire, heat, and/or smoke. Similarly, sound-rated components block sound from moving between rooms.
A wall assembly commonly used in the construction industry includes a header track, bottom track, a plurality of wall studs and a plurality of wall board members, possibly among other components. A typical header track resembles a generally U-shaped (or some other similarly shaped) elongated channel capable of receiving or covering the ends of wall studs and holding the wall studs in place. The header track also permits the wall assembly to be coupled to an upper horizontal support structure, such as a ceiling or floor of a higher level floor of a multi-level building.
One particular wall joint with a high potential for allowing fire, heat, smoke or sound to pass from one room to another is the joint between the top of a wall and the ceiling, which can be referred to as a head-of-wall joint. In modern multi-story or multi-level buildings, the head-of-wall joint is often a dynamic joint in which relative movement between the ceiling and the wall is permitted. This relative movement is configured to accommodate deflection in the building due to loading of the ceiling or seismic forces. One conventional method for creating a fire-rated head-of-wall joint is to stuff a fire-resistant mineral wool material into the head-of-wall joint and then spray an elastomeric material over the joint to retain the mineral wool in place. This conventional construction of a fire-rated head-of-wall joint is time-consuming, expensive and has other disadvantages.
Another feature that requires fire protection is an aesthetic reveal feature within or along an edge of a wall. A reveal is a gap within or along a top, bottom or side edge of the wall. Conventionally, the reveal is created by using an additional cosmetic layer of wall board over top of one or more underlying layers of wall board. The underlying layer(s) provide the desired fire rating to the wall—including to the reveal gap. However, this method of creating a cosmetic reveal requires nearly an entire extra layer of wall board material.
The systems, methods and devices described herein have innovative aspects, no single one of which is indispensable or solely responsible for their desirable attributes. Without limiting the scope of the claims, some of the advantageous features will now be summarized.
An aspect of the present disclosure involves a fire-blocking element including a profile. The profile has a first leg and a second leg. The first leg and the second leg are arranged to form a generally L-shaped structure in cross-section. The first leg is configured to extend along an upper edge of an outward-facing surface of wall board of a wall in use. The second leg is configured to extend along the end surface of the wall board in use. The first leg comprises an array of openings configured to receive joint compound. A gasket element is configured to contact an overhead structure associated with the wall in use. The gasket element is compressible to conform to an irregular surface of the overhead structure. A fire-blocking material strip is located on the second leg of the profile. The fire-blocking material strip is located on an opposite side of the gasket element relative to the first leg.
In some configurations, the gasket element is a bubble gasket having a wall that defines an interior space.
In some configurations, the bubble gasket is hollow.
In some configurations, the bubble gasket comprises multi layers of vinyl and/or foil tape to restrict the passage of heat.
In some configurations, the fire-blocking material strip is an intumescent material.
In some configurations, a portion of the fire-blocking strip extends beyond a free edge of the second leg.
In some configurations, the fire-blocking strip is located on the interior or exterior side of the second leg.
In some configurations, a free edge of the second leg defines an upturned kickout configured to flex relative to a remainder of the second leg.
In some configurations, a wall assembly includes any of the fire-blocking elements described above.
An aspect of the present disclosure involves an elongate fire-blocking element including a first leg and a second leg. The first leg and the second leg are arranged to form a generally L-shaped structure in cross-section. The first leg is configured to extend along an outward-facing surface of a wall component of a wall between the wall component and a wall board of the wall in use. The second leg is configured to be positioned between the wall component of the wall and an overhead structure in use. A gasket element is configured to contact the overhead structure in use. The gasket element is compressible to conform to an irregular surface of the overhead structure. A protruding rib is located on an interior surface of the first leg and extending in a lengthwise direction of the elongate fire-blocking element. The protruding rib is configured to contact the wall component. The protruding rib is spaced from a free end of the first leg to create a space between a lower portion of the first leg and the wall component in use.
In some configurations, at least the first leg, the second leg and the protruding rib are formed as a unitary structure.
In some configurations, the unitary structure is made from vinyl, plastic, rubber or a combination thereof.
In some configurations, the second leg is shorter than the first leg.
In some configurations, the second leg is tapered increasing in thickness in a direction from a free end toward a corner between the first leg and the second leg such that the second leg can be friction fit between the wall component and the overhead structure.
In some configurations, the gasket element is a bubble gasket having a wall that defines an interior space.
In some configurations, a wall assembly includes any of the elongate fire-blocking elements described above.
In some configurations, the wall component is a slotted header track and the protruding rib is located above the slots of the slotted header track.
An aspect of the present disclosure involves a fire-blocking element including a profile comprising a first leg and a second leg arranged to form a generally L-shaped structure when viewed from the end or in cross-section. The first leg is configured to extend along an upper edge of an outward-facing or exposed surface of wall board of a wall in use. The second leg is configured to extend along the return of the free open edge of the wall board in use. The first leg is covered by joint compound and may include features that facilitate the use of joint compound. A gasket element is disposed on an exterior surface of the second leg and is configured to contact a ceiling or other overhead structure associated with the wall. The wall of the gasket element is compressible so that the gasket element can conform to the ceiling or other overhead structure. A free edge of the second leg defines an upturned kickout configured to flex relative to a remainder of the second leg.
In some configurations, the free edge is configured to contact a header track of the wall assembly.
In some configurations, a fire-blocking material strip is located on the second leg.
In some configurations, the first leg, the second leg and the gasket element are formed as a unitary structure.
An aspect of the present disclosure involves a fire-rated wall assembly with an architectural reveal including a first wall board member having a first wall board surface and a first end surface and a second wall board member having a second wall board surface and a second end surface. The first end surface and the second end surface face each other and define a reveal gap therebetween. A fire-block wall component includes a first layer and a fire-resistant material attached to the first layer. The fire-resistant material strip is an intumescent material that expands in response to heat. The first layer includes a central portion and a pair of flanges extending therefrom in opposite directions. The central portion includes a first side panel, a second side panel, and a central panel. The central panel being generally orthogonal with respect to the first and second side panels. The fire-resistant material is attached on exterior surfaces of the first and second side panels and the fire-block wall component is installed within the reveal gap with the fire-resistant material facing the first and second end surfaces of the first and second wall board members. The pair of flanges are attached to the first and second wall board surfaces.
In some configurations, the central portion defines a width between the first and second side panels, the width being between ¼ and 3 inches.
In some configurations, the central portion defines a rectangular cross-sectional shape.
In some configurations, the intumescent material is configured to expand across the deflection gap in a perpendicular direction relative to the first and second end surfaces of the first and second wall board members.
An aspect of the present disclosure involves a fire-rated wall assembly with an architectural reveal including a wall board member having an outer surface and an end surface. The wall board member at least partially defines a reveal gap. A Z-shaped fire-block wall component includes a first layer that is Z-shaped. The first layer has a reveal leg, a central leg, and an attachment leg. A fire-resistant material is attached to the central leg. The Z-shaped fire-block wall component is installed with the fire-resistant material located between the central leg and the end surface of the wall board. The reveal leg is located within the reveal gap. The perforated leg is attached to the outer surface of the wall board member.
In some configurations, the central portion defines a width between the first and second side panels, the width being between ¼ and 3 inches.
In some configurations, the central portion defines a rectangular cross-sectional shape.
In some configurations, the fire-resistant material is an intumescent material configured to expand across the reveal gap in a perpendicular direction relative to the end surface of the wall board member.
In some configurations, the wall board member cooperates with another wall board member, an overhead structure or a floor to define the reveal gap.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through the use of the accompanying drawings.
Embodiments of systems, components and methods of assembly and manufacture will now be described with reference to the accompanying figures, wherein like numerals refer to like or similar elements throughout. Although several embodiments, examples and illustrations are disclosed below, it will be understood by those of ordinary skill in the art that the inventions described herein extends beyond the specifically disclosed embodiments, examples and illustrations, and can include other uses of the inventions and obvious modifications and equivalents thereof. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner simply because it is being used in conjunction with a detailed description of certain specific embodiments of the inventions. In addition, embodiments of the inventions can comprise several novel features and no single feature is solely responsible for its desirable attributes or is essential to practicing the inventions herein described.
Certain terminology may be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “above” and “below” refer to directions in the drawings to which reference is made. Terms such as “front,” “back,” “left,” “right,” “rear,” and “side” describe the orientation and/or location of portions of the components or elements within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the components or elements under discussion. Moreover, terms such as “first,” “second,” “third,” and so on may be used to describe separate components. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
Fire-Blocking Component and Related Wall Assemblies
An aspect of the present disclosure relates to a component, which can be referred to as a fire-blocking bead. In some configurations, the component can have at least a first leg and a second leg arranged to form a generally L-shaped structure when viewed from the end or in cross-section. The first leg is configured to extend along an upper edge of an outward-facing or exposed surface of wall board of a wall in use. The second leg is configured to extend along an upper end surface of the wall board in use. In a finished wall assembly, the first leg can be covered by joint compound and may include features (e.g., an array of openings) that facilitate attachment to the wall board and/or the use of joint compound. The component may also include a gasket element configured to contact and/or create a seal with a ceiling or other overhead structure associated with the wall. In some configurations, the gasket element is a bubble gasket having a wall that defines an interior air space. The wall of the bubble gasket can be compressible so that the bubble gasket can conform to the ceiling or other overhead structure. The bubble gasket can be hollow (e.g., filled with atmospheric air or another gas, which can be pressurized or not). The bubble gasket can be located on the second leg. The bubble gasket can be located at or near a corner or transition between the first leg and the second leg. The bead element can also include a fire-blocking material. In some configurations, the fire-blocking material is located on the second leg. The bubble gasket can be located between the fire-blocking material and the corner or the first leg. In some configurations, the fire-blocking material is located at or near a free end portion of the second leg. The bubble gasket can be set back from the corner to create a recessed reveal along the second leg. One or both of the fire-blocking material and the bubble gasket can be located on an upward-facing or outward-facing surface of the bead element. The fire-blocking material can be an intumescent material, such as an intumescent material strip or intumescent foam. Intumescent materials expand under exposure to elevated temperatures, but expansion alone may not provide a proper seal against fire, and smoke. It can be important to effectively contain the expanded intumescent material within the head of wall joint so that it does not expand in a manner that will allow it to fall out of the joint. Another aspect of the present disclosure is a wall assembly incorporating one or more of the above-described fire-blocking bead elements.
The first leg 102 of the component 100 is configured to extend along an upper edge of an outward-facing or exposed surface of the wall board 56 in use, as shown in
In some configurations, the bead element 100 can also include a gasket portion or gasket element 120 configured to contact and/or create a seal with the ceiling 58 or other overhead structure associated with the wall 50, as shown in
The bubble gasket 120 can be hollow (e.g., filled with atmospheric air or another gas, which can be pressurized or not) or filled with a non-gas substance (e.g., compressible foam). In the illustrated arrangement, the bubble gasket 120 is unitarily-formed with the first leg 102 and/or the second leg 104. In other arrangements, the bubble gasket 120 can be formed separately from the first leg 102 and/or the second leg 104 and affixed thereto. In some configurations, the bubble gasket 120 is co-extruded with the first leg 102 and the second leg 104. The bubble gasket 120 can be the same or a different material from the first leg 102 and/or the second leg 104. In some configurations, the first leg 102 and the second leg 104 are constructed from a vinyl material, or a similar material. The bubble gasket 120 can be constructed of a vinyl material or can be another suitable material, such as an elastomeric or rubber-like material. The bubble gasket 120 can have a different wall thickness (e.g., smaller or larger wall thickness) than one or both of the first leg 102 and/or the second leg 104. Any one or combination of the first leg 102, the second leg 104, and the bubble gasket 120 could also have multiple layers, which can include a vinyl (or similar) layer and a foil (or similar, preferably metal or metalized) layer (e.g., foil tape).
The bubble gasket 120 can be located only on the second leg 104. The bubble gasket 120 can be located at or near a corner or transition between the first leg 102 and the second leg 104. In such configurations, a portion of the bubble gasket 120 can be aligned with or substantially aligned with the first leg 102. As used herein, the bubble gasket 120 being substantially aligned with the first leg 102 means that the relevant portion of the bubble gasket 120 is configured to be aligned with a surface of the joint compound 60 in an installed configuration. In some arrangements, the bubble gasket 120 includes a planar or substantially planar wall that faces outwardly as installed. However, other cross-sectional shapes of the bubble gasket 120 are also possible. Furthermore, in other arrangements, the bubble gasket 120 can be set back along the second leg 104 such that it is spaced rearwardly or inwardly from an exposed surface of the wall board 56 and/or joint compound 60.
The bead element 100 can also include a fire-blocking material 130. In some configurations, the fire-blocking material 130 is located on the second leg 104. The second leg 104 can have a portion located inward (relative to an exposed surface of the wall 50) of the bubble gasket 120 on which the fire-blocking material 130 is located. In other words, the bubble gasket 120 can be located between the fire-blocking material 130 and the corner or the first leg 102. In some configurations, the fire-blocking material 130 is located at or near a free end portion of the second leg 104. One or both of the fire-blocking material 130 and the bubble gasket 120 can be located on an upward-facing or outward-facing surface of the bead element 100. The fire-blocking material 130 can be an intumescent material, such as an intumescent material adhesive strip, an intumescent paint or an intumescent foam. As is known, an intumescent material expands in response to elevated temperature to create a fire-blocking char.
As used herein, a fire-blocking material, component or arrangement provides greater fire-blocking properties than some or all of the surrounding building materials, such as the wall board 56, for example. A fire-blocking material, component or arrangement preferably permits the associated structure to achieve a fire rating by passing relevant fire tests, such as but not limited to relevant UL fire tests or other relevant fire rating tests or standards (e.g., UL-2079). Similarly, a sound blocking material, component or arrangement provides greater sounding blocking properties than the surrounding building materials or than conventional arrangements. A sound blocking material preferably permits the associated structure to achieve a sound rating (e.g., Sound Transmission Class (STC) ratings) that is higher than a standard metal stud wall assembly. Fire-blocking or sound blocking is not intended to require the prevention of heat, smoke, fire or sound passage across the wall.
The illustrated bead element 100 is well-suited for use in a wall assembly having a single layer of wall board 56. The bead element 100 can be elongate and have a consistent cross-sectional shape throughout its length. The length can be selected to provide a compromise between ease of manufacture/storage/shipping and wall length coverage in use. Suitable lengths can be between about 8 feet and about 16 feet, for example and without limitation. In some configurations, a width of the bubble gasket 120 and a width of the intumescent material 130 (or a portion of the second leg 104 located inward of the bubble gasket 120) can be equal or substantially equal (e.g., about one-quarter or five-sixteenths inch). In wall assemblies having additional layers of wall board 56, a width (or cross-sectional length) of the second leg 104 may be increased. In some configurations, the width (or cross-sectional length) of the second leg 104 can be approximately equal to the total thickness of the wall board 58. In such arrangements, the width of the bubble gasket 120 and the width of the intumescent material 130 can be the same as one another and/or the same as in the bead element 100 configured for a single layer of wall board 56. Alternatively, a width of one or both of the bubble gasket 120 and the intumescent material 130 can be increased. A height of the bubble gasket 120 can be equal to or slightly greater than a desired maximum deflection gap of the associated wall assembly 50. In some cases, the height of the bubble gasket 120 can be between about one-half inch to about one inch.
With respect to
The bead element 100 of
The bead element 100 includes a gasket element 120, which can be in the form of a bubble gasket 120 such as those described herein. The bubble gasket 120 extends upwardly from an upper surface of the second leg 104 with the bead element 100 oriented as employed in a head-of-wall gap. In the illustrated arrangement, the bubble gasket 120 is located at or adjacent a corner defined between the first leg 102 and the second leg 104. The illustrated bubble gasket 120 has one end connected to the first leg 102 and one end connected to the second leg 104. However, in some arrangements, both ends can be connected to a single one of the first leg 102 and the second leg 104.
In the illustrated arrangement, the bubble gasket 120 includes a planar or substantially planar portion, which can be arranged to be in the same plane as or parallel to the first leg 102. That is, the planar portion can be aligned with or substantially aligned with the first leg 102. Such an arrangement can provide an attractive finished appearance to the head-of-wall gap without the need for additional finishing elements or substances. Alternatively, the bubble gasket 120 can have other suitable shapes, such as square, round or oval. The profile 106, including the bubble gasket 120, can be constructed from any suitable material, such as vinyl, PVC, rubber or rubber-like (e.g., elastomeric) materials. The bubble gasket 120 can be formed separately from the profile 106 and secured thereto or can be formed as a unitary structure. In some cases, the bubble gasket 120 is co-extruded with the profile 106. Such an arrangement avoids the need to separately secure a sealing element to the profile.
In some configurations, the bead element 100 is used to seal a head-of-wall gap and does not provide a fire rating. However, the illustrated bead element 100 includes a fire-resistant material in the form of a material strip 130. The material strip 130 is elongate and has a width that is the same as or greater than a thickness of the strip 130. In some configurations, the fire-resistant material is an intumescent material or other similar material that expands in response to elevated temperatures to create a fire-block (e.g., a fire-blocking char). The intumescent material strip 130 projects beyond a free edge of the leg on which it is secured.
In the illustrated arrangement, the intumescent material strip 130 is secured to the second leg 104 and at least a portion of the intumescent material strip 130 extends beyond an edge of the second leg 104 such that the intumescent material strip 130 contacts the header track 52 or other component of the wall assembly 50 interior of the wall board 56, as illustrated in
The bead element 100 can have dimensions suitable for the intended purpose. The bead element 100 of
As noted above, the bubble gasket 120 can be left exposed in the finished wall assembly 50. As also described above, the first leg 102 of the profile 106 is typically covered by joint compound 60 during the finishing of the wall board 56. The bubble gasket 120 is capable of permitting movement of the wall studs 54 and wall board 56 relative to the header track 52 and ceiling 58. The bubble gasket 120 can collapse and recover in response to such movement that causes changes in the size of the head-of-wall gap over repeated cycles without cracking or other significant degradation. In contrast, other head-of-wall gap fire-blocking or sealing solutions require a sealant to be applied to the head-of-wall gap, which sealant can be prone to cracking and separating from the ceiling 58 or the wall board 56.
Another benefit of the disclosed arrangements is that the bead element 100 is well-suited to being exposed to a typical construction environment. For example, the integrated or unitary structure of the bead element 100 inhibits or prevents separation of the bubble gasket 120 from the profile 106. With some existing head-of-wall gap fire-blocking or sealing solutions, especially those utilizing fire sealant, the fire sealant can separate from the underlying support structure creating a separation crack that can allow the passages of smoke, heat or sound. Furthermore, the materials from which the bead element 100 is constructed are capable of exposure to moisture. Accordingly, the bead element 100 can be stored outdoors, while many other head-of-wall gap fire-blocking or sealing solutions, especially those utilizing foam sealing elements, must be stored indoors to avoid damage from exposure to moisture or ultraviolet rays.
Versions of the bead element 100 having a unitary structure can be manufactured at a lower cost than solutions requiring assembly of multiple components. The fire-blocking or intumescent material element 130 is concealed and protected by the bubble gasket 120 in use. The bubble gasket 120 can be painted, whereas solutions utilizing foam elements must be covered with joint tape and joint compound before painting is possible. Such arrangements are prone to cracking. The bubble gasket 120 can create an air barrier, whereas at least some foam elements can permit the passage of air. The bubble gasket 120 can also receive a printed UL or other certification indication for ease of inspection. Foam elements are more difficult or impossible to mark in a legible manner.
The bead element 100 includes a first leg 102 and a second leg 104 that cooperate to form a profile or angle 106. The bead element 100 also includes a gasket element or bubble gasket 120, which can be configured as discussed in connection with any embodiment herein. The bead element 100 also includes an internal seal structure 140. The internal seal structure 140 is configured to form a seal or at least a substantial seal with the header track 52 or other corresponding portion of the wall assembly 50 in a manner similar to the intumescent material strip 130 in the embodiment of
In the illustrated arrangement, the internal seal structure 140 is in the form of a kickout or bent end portion. The kickout 140 is curved and upturned in the illustrated embodiment. The kickout 140 extends from the second leg 104 upward or in a direction opposite that of the first leg 102. Preferably, the kickout 140 is flexible relative to the second leg 104. In some cases, a hinge arrangement may be provided to facilitate movement of the kickout 140 relative to the second leg 104. The hinge arrangement can comprise thinned material regions within or near the junction between the second leg 104 and the kickout 140. In other arrangements, a different wall thickness and/or different material can be used in the kickout 140 to create the greater relative flexibility compared to the first leg 102. In some configurations, the material of one or both of the bubble gasket 120 and the kickout 140 can have a 68-72 (e.g., 70) Shore A durometer.
As illustrated, the intumescent strip 130 can be located adjacent the kickout 140. In the illustrated arrangement, the intumescent strip 130 is located on an upper surface of the second leg 104 in between the kickout 140 and the bubble gasket 120. The intumescent strip 130 can be spaced from one or both of the kickout 140 and the bubble gasket 120.
The illustrated bead element 100 includes a tear off strip 110 that is co-planar with the second leg 104 and extends outwardly from the corner of the first leg 102 and the second leg 104 in a direction opposite the second leg 104. The tear off strip 110 is connected to the remainder of the profile 106 by a thin portion, which allows the tear off strip 110 to be easily removed by hand or with a hand tool, such as pliers. The tear off strip 110 inhibits or prevents joint compound from covering the bubble gasket 120 and/or entering the deflection gap. Once the joint compound has been applied, the tear off strip 110 can be removed.
The bead element 100 can have suitable dimensions for the desired application. The bead element 100 of
The bead element 100 of
In
Sound Gasket
In the 2012 IBC International Building Code, “Special Inspections” for firestop penetrations and joints went into effect for “High Rise Buildings” (structures greater than 75′ above fire department access) as well as Category III or IV buildings and/or ‘special occupancies’ under Chapter 17. Special Inspections will require visual and/or destructive Testing. Destructive testing is when the special inspector will wait until the firestop product is fully cured and then take a “coupon” (removal of field installed firestop sealant or fire spray) of the sealant/spray to verify its depth at multiple locations at the bond lines. The bond line would be either at the penetration or the perimeter joint of the substrate interface and waiting for sealant to become fully cured will take several weeks, which will greatly impact the project schedule. The Special Inspector would need to obtain the average Shrinkage Value of the material, which will be supplied by the sealant manufacturer and the inspector must compare that data with the actual removed sealant from the project. If the bond line is not securely adhered to both sides of the joint, or if the correct amount of sealant by volume is not installed per the manufacturer's recommendations, the sealant joint may fail inspection and the sealant will have to be removed and properly reinstalled.
This new requirement in the IBC is forcing builders to look to other means and methods for sealing joints. In general, field applied sealants have been the most common way to seal building joints from fire, smoke and sound. But over the years, sealants have proven to be problematic, which is one of the reasons for the intense scrutiny placed on building joints in the newly revised 2012 IBC. Sealants by nature will shrink as they cure, and when the sealant shrinks it tends to pull away from the drywall, breaking the bond line and leaving a visible separation crack. Separation cracks will allow smoke and sound to pass through the joint, therefore compromising the effectiveness of the building joint.
Compounding the problem is the framing screws that are used on the top (header) and bottom tracks to secure the vertical framing studs within the track. The head of the framing screws protrudes about three-thirty-seconds inch ( 3/32″) off the surface of the track. This protrusion causes the wall board to flare out away from the track as it passes over each framing screw. Framing screws are generally located every 16″ to 24″ on center along the length of the track. When the wall board flares out around the framing screws, gaps are created between the drywall and the track. Gaps result in sound flanking paths that can greatly reduce the STC sound performance of the wall. In addition, these gaps can create pathways for smoke to pass from one side of the wall to the other.
One or more embodiments disclosed herein create an improved seal for building joints that will not shrink or pull away from the drywall and do not rely on utilizing traditional sealant. In particular,
The profile 106 of the sound gasket 100 includes a protrusion, such as a protruding rib 150 on an interior surface of the first leg 102. Preferably, the rib 150 is continuous along the length of the profile or sound gasket 100. The rib 150 can be square in cross-sectional shape; however, other suitable shapes can also be used. The rib 150 is configured to contact the header track 52 and space at least a lower portion of the first leg 102 away from the header track 52 to accommodate a head of the stud fastener between the first leg 102 and the leg of the header track 52. As a result, the exterior surface of the first leg 102 creates a substantially planar surface against which the wall board 56 can seal, despite the presence of the fastener heads. The bubble gasket 120 creates a seal with the ceiling 58 so that the head-of-wall gap is adequately sealed against the transmission of sound.
Unlike the prior bead elements, the sound gasket 100 is installed underneath the wall board 56. That is, the sound gasket 100 is positioned between the header track 52 and the wall board 56. In some configurations, the sound gasket 100 is configured to be friction fit over the leg of the field installed top (header) and/or bottom track prior to installing the wall board 56 over the face of the framing studs 54. The hollow bubble gasket 120 located on the outer corner is flexible and able to conform to uneven overhead structures 58, such as post-tension concrete slabs. This seal is what inhibits or prevents smoke or sound from passing over the top web of the track as it is very difficult to secure the metal track to the overhead concrete slab in a manner that can provide a tight seal to prevent smoke or sound passage.
In some configurations, the horizontal second leg 104 is configured to work as a wedge, as the free end is thinner and gradually gets thicker toward the corner of the profile 106. When the second leg 104 of the sound gasket 100 is tapped into place over the web of the header or bottom track, the hollow bubble gasket 120 will also provide a locking mechanism as the hollow bubble gasket 120 conforms to the surface of the concrete and still allow flexibility so that the seal will stay in contact even as the building moves during construction.
The vertical first leg 102 covers the flange or leg of the metal framing track 52 and by doing so provides smoke and sound protection. This is advantageous since the header track 52 typically has a series of vertical slots to accommodate the stud fasteners, which if left unprotected will allow a great deal of smoke and sound to pass. The vertical first leg 102 of the sound gasket 100 provides a permanent seal to prevent smoke or sound from passing through the framing members, in contrast to sealants that tend to shrink, as described above.
In some configurations, the sound gasket 100 is constructed completely from vinyl, plastic, rubber or any combination thereof—or of other similar materials. These types of materials may not hold up well to elevated heat from a fire, but they will contribute greatly to smoke and sound rated walls. In metal stud framed sound wall assemblies it is desirable that the materials used remain flexible. The characteristics of the vinyl (plastic, rubber or similar material) sound gasket 100 will not change over time and, therefore, the STC sound ratings will not be compromised over time.
Fire-Rated Reveals
The fire-rated reveal 100 can be used for protecting an exterior or interior wall assembly 120. The wall assembly 120 can include a first wall board portion or member 136, a second wall board portion or member 138 and/or one or more studs 134. The wall assembly 120 can define a reveal gap 124. The reveal gap 124 can be a location in the wall that is absent of wall board or other backing material (e.g., between wall board members 136, 138). The reveal gap 124 can be oriented vertically, horizontally, or at an angle across the wall assembly 120, depending on the desired appearance.
The V-shaped central portion 122 can be installed within the reveal gap 124 of the wall assembly 120 between the ends and inset from the outer surface of the wall board members 136, 138. The flanges 116, 118 can be attached (e.g., with staples or other mechanical fasteners) to the respective wall board members 136, 138. Preferably, the flanges 116, 118 are perforated. That is, the flanges 116, 118 comprise a plurality of holes that allows joint compound to key into the holes to inhibit or prevent cracking of the joint compound. The fire-rated reveal 100 can provide a fire-block to the reveal gap 124 so that only one layer of wall board is necessary. In a prior art arrangement, a first layer of wall board would be arranged continuously without a gap and a second layer of wall board would be applied over the first layer and would include the reveal gap.
The fire-rated reveal 200 can be sold in standard lengths (e.g., 5′, 10′, 12′). The profile 206 of the fire-rated reveal 200 can be formed partially or entirely of vinyl, aluminum, steel or another suitable material. The profile 206 of the fire-rated reveal 200 can include one or more (e.g., a pair of) flanges 218, 220. Between the flanges 218, 220 can be a central portion 222. The central portion 222 can have a rectangular shaped cross-section. The central portion 222 can include a central panel 222a, a side panel 222b, and/or a side panel 222c. The side panels 222b, 222c can be orthogonal with respect to the central panel 222a. The side panels 222b and/or 222c can support or otherwise include the fire-resistant material 12.
The fire-resistant material 12 can be in the form of one or more adhesive intumescent material strips applied to the central portion 222. Advantageously, the fire-resistant material 12 can have an expansion temperature that is below the melt temperature of the material of the profile 206 of the fire-rated reveal 200. In some implementations, vinyl melts at about 500° F. and aluminum at about 1200° F., while the intumescent expands at about 375° F. The fire-resistant material 12 can be attached on an outer side of the central portion 222 so that the fire-resistant material 12 faces the ends of the wall board members 136, 138. The central portion 222 can have a width W. The width W can be between one-quarter inch (¼″) and three inches (3″). However, the width W is not limited to this range.
The fire-rated reveal 200 can be installed within the wall assembly 120, as shown in
The central portion 222 can be installed within the reveal gap 124. The flanges 218, 220 can be attached (e.g., with adhesives and/or mechanical fasteners) with outer surfaces of the respective wall board members 136, 138. The flanges 218, 220 can be covered in joint compound (e.g., plaster or mud) to blend into the material of the wall board 136, 138.
The side panels 222b, 222c can be aligned with planar edges 136a, 136b of the wall board members 136, 138, respectively. The fire-resistant material 12 can be placed between the planar edges 136a, 136b of the wall board members 136, 138 and the panels 222b, 222c, respectively. As shown further in
Advantageously, the cross-sectional shape of the central portion 222 can be used to enhance the architectural appearance of the wall assembly 120. The rectangular cross-sectional shape of the central portion 222 can form a reveal. Desirably, as compared with the V-shaped central portion 122 of the fire-block 100, the central portion 222 does not visually narrow to a point. Moreover, the central portion 222 can be easier to clean because of the open orientation of the central panel 222a with the side panels 222b, 222c.
Fire-Rated Z-Shaped Reveal
The fire-rated reveal 300 can be sold in standard lengths (e.g., 5′, 10′, 12′). The fire-rated reveal 300 can provide fire rating according to UL-2079 and ASTM E1966. The reveal 300 can include a Z-shaped profile layer 304. The Z-shaped layer can be constructed in whole or in part from vinyl, aluminum, steel or other suitable material. The fire-rated reveal 300 can include a fire-resistant material 312. The fire-resistant material 312 can be an intumescent material. In some configurations, the fire-resistant material 312 is an adhesive intumescent material strip.
The Z-shaped layer 304 can include a lower flange 306, an upper flange 310 and/or a central flange 308. The central flange 308 can connect the upper flange 310 and the lower flange 306. The central flange 308 can be generally planar, although this is not required. The upper flange 310 can be generally planar, although this is not required. The central flange 308 can be connected at one end with the upper flange 310. The angle of connection between the upper flange 310 and the central flange 308 can be generally orthogonal. The lower flange 306 can be generally planar, although this is not required. The lower flange 306 can be connected on one end with the central flange 308. The central flange 308 can be generally orthogonal with the lower flange 306. The upper flange 310 and the lower flange 306 can be connected on opposite ends of the central flange 308. In other implementations, the upper and/or lower flanges 310, 306 can be at non-orthogonal angles with respect to the central flange 308.
The flanges 306, 308, 310 can have various lengths. The lengths can be between one-half inch (½″) and two inches (2″), although this is not required. The central flange 308 can be made available in varying lengths, which can be based on the number of layers of wall board 336 in the wall assembly 320. The lower flange 306 (in the illustrated orientation) can include a plurality of perforations 306a.
In a conventional fire-block for a control joint, fire sealant (e.g., mineral wool) would fill-in any gap in the control joint. Thus, architectural reveals cannot be fire-blocked using conventional methods without filling in the reveal gap. Here, the fire-rated reveal 300 can be used to fire-block architectural reveals that include a gap.
The wall assembly 320 can include a reveal gap 324. The reveal gap 324 can be between an upper end surface 336a of the wall board 336 and the fixed structure 332. The reveal gap 324 can have a height H1. In a dynamic head-of-wall arrangement, the height H1 of the reveal gap 324 can be variable as the wall board 336 and the studs 334 move with respect to the header track 335 and the fixed structure 332.
The fire-rated reveal 300 can be installed at least partially within the reveal gap 324. The fire-rated reveal 300 can be installed in a single step application. For example, the fire-rated reveal 300 can be adhered or fastened to the wall board 336. The central flange 308 can be installed within the reveal gap 324. The central flange 308 and/or the fire-resistant material 312 can rest on an upper end surface 336a of the wall board 336. The fire-resistant material 312 can be placed on an unexposed side of the central flange 308 adjacent the end 336a of the wall board 336. The central flange 308 can be positioned parallel with the upper end 336a of the drywall. The central flange 308 can run parallel with the upper end 336a.
The upper flange 310 can be installed within the reveal gap 324. An upper end 310a of the upper flange 310 can contact the fixed structure 332. The upper flange 310 can have a height H2 from the central flange 308. The height H2 can be related to the maximum opening width of the reveal gap 324 (e.g., height H1). In some configurations, the height H2 will be slightly smaller than the height H1 to account for the thicknesses of the fire-resistant material 312 and the central flange 308. The upper flange 310 can be flexible with respect to the central flange 308. Accordingly, as the reveal gap 324 narrows (H1 decreases), the upper flange 310 can flex to maintain contact with the fixed structure 332. In other applications, the reveal gap 324 can be a constant size and the upper flange 310 can be relatively or substantially rigid.
The lower flange 306 can be placed against an outer surface of the wall board 336. A joint compound 319 or other suitable finishing material can be applied to the wall board 336 over the lower flange 306 to mask its appearance. The joint compound 319 can engage the perforations 306a to improve the connection between the joint compound 319 and the lower leg 306 and/or to prevent cracking.
The fire-resistant material 312 can expand in response to being heated. The expansion can move upwardly (e.g., perpendicularly) from the upper end 336a towards the fixed structure 332. The expansion can occur between the upper flange 310 and the header track 335 or the force of the expansion can move the central flange 308 and upper flange 310 fully or partially out of the reveal gap 324. In some cases, the profile 304 will begin to melt or disintegrate, which can facilitate expansion of the fire-resistant material 312. The expansion of the fire-resistant material 312 can substantially or fully close and seal the reveal gap 324 against the passage of fire or smoke for at least a period of time.
The Z-shaped fire-rated reveal 300 can be used in or modified for use in a variety of reveals or other gaps in a construction. For example,
It should be emphasized that many variations and modifications may be made to the herein-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims. Moreover, any of the steps described herein can be performed simultaneously or in an order different from the steps as ordered herein. Moreover, as should be apparent, the features and attributes of the specific embodiments disclosed herein may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
Moreover, the following terminology may have been used herein. The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an item includes reference to one or more items. The term “ones” refers to one, two, or more, and generally applies to the selection of some or all of a quantity. The term “plurality” refers to two or more of an item. The term “about” or “approximately” means that quantities, dimensions, sizes, formulations, parameters, shapes and other characteristics need not be exact, but may be approximated and/or larger or smaller, as desired, reflecting acceptable tolerances, conversion factors, rounding off, measurement error and the like and other factors known to those of skill in the art. The term “substantially” means that the recited characteristic, parameter, or value need not be achieved exactly, but that deviations or variations, including for example, tolerances, measurement error, measurement accuracy limitations and other factors known to those of skill in the art, may occur in amounts that do not preclude the effect the characteristic was intended to provide.
Numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also interpreted to include all of the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but should also be interpreted to also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3 and 4 and sub-ranges such as “about 1 to about 3,” “about 2 to about 4” and “about 3 to about 5,” “1 to 3,” “2 to 4,” “3 to 5,” etc. This same principle applies to ranges reciting only one numerical value (e.g., “greater than about 1”) and should apply regardless of the breadth of the range or the characteristics being described. A plurality of items may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary. Furthermore, where the terms “and” and “or” are used in conjunction with a list of items, they are to be interpreted broadly, in that any one or more of the listed items may be used alone or in combination with other listed items. The term “alternatively” refers to selection of one of two or more alternatives, and is not intended to limit the selection to only those listed alternatives or to only one of the listed alternatives at a time, unless the context clearly indicates otherwise.
This application is a continuation of U.S. patent application Ser. No. 16/541,951, filed Aug. 15, 2019, which claims benefit of U.S. Provisional Patent Application No. 62/764,883 filed Aug. 16, 2018, U.S. Provisional Patent Application No. 62/775,801 filed Dec. 5, 2018, U.S. Provisional Patent Application No. 62/780,059, filed Dec. 14, 2018, and U.S. Provisional Patent Application No. 62/870,933, filed Jul. 5, 2019. The entire disclosure of each of the above items is hereby made part of this specification as if set forth fully herein and incorporated by reference for all purposes, for all that it contains.
Number | Name | Date | Kind |
---|---|---|---|
661832 | Wilkinson | Nov 1900 | A |
716628 | Dickey | Dec 1902 | A |
965595 | Nicholson | Jul 1910 | A |
1130722 | Fletcher | Mar 1915 | A |
1563651 | Pomerantz | Dec 1925 | A |
1719728 | Saunders | Jul 1929 | A |
2020576 | Runde | Nov 1935 | A |
2105771 | Holdsworth | Jan 1938 | A |
2114386 | Killion | Apr 1938 | A |
2218426 | Hulbert, Jr. | Oct 1940 | A |
2556878 | Kohlhaas | Jun 1951 | A |
2664739 | Marcy | Jan 1954 | A |
2683927 | Maronek | Jul 1954 | A |
2688927 | Nuebling | Sep 1954 | A |
2733786 | Drake | Feb 1956 | A |
2994114 | Black | Aug 1961 | A |
3041682 | Alderfer et al. | Jul 1962 | A |
3129792 | Gwynne | Apr 1964 | A |
3153467 | Nelsson et al. | Oct 1964 | A |
3271920 | Downing, Jr. | Sep 1966 | A |
3309826 | Zinn | Mar 1967 | A |
3324615 | Zinn | Jun 1967 | A |
3346909 | Blackburn | Oct 1967 | A |
3355852 | Lally | Dec 1967 | A |
3397495 | Thompson | Aug 1968 | A |
3460302 | Cooper | Aug 1969 | A |
3481090 | Lizee | Dec 1969 | A |
3495417 | Ratliff | Feb 1970 | A |
3537219 | Navarre | Nov 1970 | A |
3562985 | Nicosia | Feb 1971 | A |
3566559 | Dickson | Mar 1971 | A |
3600854 | Dallaire et al. | Aug 1971 | A |
3604167 | Hays | Sep 1971 | A |
3609933 | Jahn et al. | Oct 1971 | A |
3648419 | Marks | Mar 1972 | A |
3668041 | Lonning | Jun 1972 | A |
3683569 | Holm | Aug 1972 | A |
3696569 | Didry | Oct 1972 | A |
3707819 | Calhoun et al. | Jan 1973 | A |
3713263 | Mullen | Jan 1973 | A |
3730477 | Wavrunek | May 1973 | A |
3744199 | Navarre | Jul 1973 | A |
3757480 | Young | Sep 1973 | A |
3786604 | Kramer | Jan 1974 | A |
3837126 | Voiturier et al. | Sep 1974 | A |
3839839 | Tillisch et al. | Oct 1974 | A |
3866370 | Guarino et al. | Feb 1975 | A |
3908328 | Nelsson | Sep 1975 | A |
3921346 | Sauer et al. | Nov 1975 | A |
3922830 | Guarino et al. | Dec 1975 | A |
3934066 | Murch | Jan 1976 | A |
3935681 | Voiturier et al. | Feb 1976 | A |
3955330 | Wendt | May 1976 | A |
3964214 | Wendt | Jun 1976 | A |
3974607 | Balinski | Aug 1976 | A |
3976825 | Anderberg | Aug 1976 | A |
3998027 | Wendt et al. | Dec 1976 | A |
4011704 | O'Konski | Mar 1977 | A |
4103463 | Dixon | Aug 1978 | A |
4122203 | Stahl | Oct 1978 | A |
4130972 | Varlonga | Dec 1978 | A |
4139664 | Rick | Feb 1979 | A |
4144335 | Edwards | Mar 1979 | A |
4144385 | Downing | Mar 1979 | A |
4152878 | Balinski | May 1979 | A |
4164107 | Kraemling et al. | Aug 1979 | A |
4178728 | Ortmanns et al. | Dec 1979 | A |
4197687 | Benoit | Apr 1980 | A |
4203264 | Kiefer et al. | May 1980 | A |
4205498 | Unayama | Jun 1980 | A |
4217731 | Saino | Aug 1980 | A |
4269890 | Breitling et al. | May 1981 | A |
4276332 | Castle | Jun 1981 | A |
4281494 | Weinar | Aug 1981 | A |
4283892 | Brown | Aug 1981 | A |
4295304 | Kim | Oct 1981 | A |
4318253 | Wedel | Mar 1982 | A |
4324835 | Keen | Apr 1982 | A |
4329820 | Wendt | May 1982 | A |
4356672 | Beckman et al. | Nov 1982 | A |
4361994 | Carver | Dec 1982 | A |
4424653 | Heinen | Jan 1984 | A |
4433732 | Licht et al. | Feb 1984 | A |
4434592 | Reneault et al. | Mar 1984 | A |
4437274 | Slocum et al. | Mar 1984 | A |
4454690 | Dixon | Jun 1984 | A |
4461120 | Hemmerling | Jul 1984 | A |
4467578 | Weinar | Aug 1984 | A |
4480419 | Crites | Nov 1984 | A |
4495238 | Adiletta | Jan 1985 | A |
4497150 | Wendt et al. | Feb 1985 | A |
4507901 | Carroll | Apr 1985 | A |
4509559 | Cheetham et al. | Apr 1985 | A |
4517782 | Shamszadeh | May 1985 | A |
4574454 | Dyson | Mar 1986 | A |
4575979 | Mariani | Mar 1986 | A |
4578913 | Eich | Apr 1986 | A |
4598516 | Groshong | Jul 1986 | A |
4622791 | Cook et al. | Nov 1986 | A |
4622794 | Geortner | Nov 1986 | A |
4632865 | Tzur | Dec 1986 | A |
4649089 | Thwaites | Mar 1987 | A |
4663204 | Langham | May 1987 | A |
4672785 | Salvo | Jun 1987 | A |
4709517 | Mitchell et al. | Dec 1987 | A |
4711183 | Handler et al. | Dec 1987 | A |
4723385 | Kallstrom | Feb 1988 | A |
4756945 | Gibb | Jul 1988 | A |
4761927 | O'Keeffe et al. | Aug 1988 | A |
4787767 | Wendt | Nov 1988 | A |
4798035 | Mitchell et al. | Jan 1989 | A |
4805364 | Smolik | Feb 1989 | A |
4810986 | Leupold | Mar 1989 | A |
4822659 | Anderson et al. | Apr 1989 | A |
4825610 | Gasteiger | May 1989 | A |
4830913 | Ortmans et al. | May 1989 | A |
4845904 | Menchetti | Jul 1989 | A |
4850173 | Beyer et al. | Jul 1989 | A |
4850385 | Harbeke | Jul 1989 | A |
4854096 | Smolik | Aug 1989 | A |
4854107 | Roberts | Aug 1989 | A |
4866898 | LaRoche et al. | Sep 1989 | A |
4881352 | Glockenstein | Nov 1989 | A |
4885884 | Schilger | Dec 1989 | A |
4897976 | Williams et al. | Feb 1990 | A |
4899510 | Propst | Feb 1990 | A |
4914880 | Albertini | Apr 1990 | A |
4918761 | Harbeke | Apr 1990 | A |
4930276 | Bawa et al. | Jun 1990 | A |
4935281 | Tolbert et al. | Jun 1990 | A |
4982540 | Thompson | Jan 1991 | A |
4986040 | Prewer et al. | Jan 1991 | A |
4987719 | Goodson, Jr. | Jan 1991 | A |
4992310 | Gelb et al. | Feb 1991 | A |
5010702 | Daw et al. | Apr 1991 | A |
5058342 | Crompton | Oct 1991 | A |
5090170 | Propst | Feb 1992 | A |
5094780 | von Bonin | Mar 1992 | A |
5103589 | Crawford | Apr 1992 | A |
5105594 | Kirchner | Apr 1992 | A |
5111579 | Andersen | May 1992 | A |
5125203 | Daw | Jun 1992 | A |
5127203 | Paquette | Jul 1992 | A |
5127760 | Brady | Jul 1992 | A |
5140792 | Daw et al. | Aug 1992 | A |
5146723 | Greenwood et al. | Sep 1992 | A |
5152113 | Guddas | Oct 1992 | A |
5155957 | Robertson et al. | Oct 1992 | A |
5157883 | Meyer | Oct 1992 | A |
5157887 | Watterworth, III | Oct 1992 | A |
5167876 | Lem | Dec 1992 | A |
5173515 | von Bonin et al. | Dec 1992 | A |
5203132 | Smolik | Apr 1993 | A |
5205099 | Grünhage et al. | Apr 1993 | A |
5212914 | Martin et al. | May 1993 | A |
5214894 | Glesser-Lott | Jun 1993 | A |
5222335 | Petrecca | Jun 1993 | A |
5228254 | Honeycutt, Jr. | Jul 1993 | A |
5244709 | Vanderstukken | Sep 1993 | A |
5279087 | Mann | Jan 1994 | A |
5279088 | Heydon | Jan 1994 | A |
5279091 | Williams et al. | Jan 1994 | A |
5282615 | Green et al. | Feb 1994 | A |
5285615 | Gilmour | Feb 1994 | A |
5307600 | Simon et al. | May 1994 | A |
5315804 | Attalla | May 1994 | A |
5319339 | Leupold | Jun 1994 | A |
5325651 | Meyer et al. | Jul 1994 | A |
5339577 | Snyder | Aug 1994 | A |
5347780 | Richards et al. | Sep 1994 | A |
5367850 | Nicholas | Nov 1994 | A |
5374036 | Rogers et al. | Dec 1994 | A |
5376429 | McGroarty | Dec 1994 | A |
5390458 | Menchetti | Feb 1995 | A |
5390465 | Rajecki | Feb 1995 | A |
5394665 | Johnson | Mar 1995 | A |
5412919 | Pellock et al. | May 1995 | A |
5433991 | Boyd, Jr. et al. | Jul 1995 | A |
5452551 | Charland et al. | Sep 1995 | A |
5454203 | Turner | Oct 1995 | A |
5456050 | Ward | Oct 1995 | A |
5460864 | Heitkamp | Oct 1995 | A |
5471791 | Keller | Dec 1995 | A |
5471805 | Becker | Dec 1995 | A |
5475961 | Menchetti | Dec 1995 | A |
5477652 | Torrey et al. | Dec 1995 | A |
5502937 | Wilson | Apr 1996 | A |
5505031 | Heydon | Apr 1996 | A |
5531051 | Chenier, Jr. et al. | Jul 1996 | A |
5552185 | De Keyser | Sep 1996 | A |
5592796 | Landers | Jan 1997 | A |
5604024 | von Bonin | Feb 1997 | A |
5607758 | Schwartz | Mar 1997 | A |
5644877 | Wood | Jul 1997 | A |
5687538 | Frobosilo et al. | Nov 1997 | A |
5689922 | Daudet | Nov 1997 | A |
5694726 | Wu | Dec 1997 | A |
5709821 | von Bonin et al. | Jan 1998 | A |
5724784 | Menchetti | Mar 1998 | A |
5735100 | Campbell | Apr 1998 | A |
5740635 | Gil et al. | Apr 1998 | A |
5740643 | Huntley | Apr 1998 | A |
5755066 | Becker | May 1998 | A |
5765332 | Landin et al. | Jun 1998 | A |
5787651 | Horn et al. | Aug 1998 | A |
5797233 | Hascall | Aug 1998 | A |
5798679 | Pissanetzky | Aug 1998 | A |
5806261 | Huebner et al. | Sep 1998 | A |
5820958 | Swallow | Oct 1998 | A |
5822935 | Mitchell et al. | Oct 1998 | A |
5870866 | Herndon | Feb 1999 | A |
5913788 | Herren | Jun 1999 | A |
5921041 | Egri, II | Jul 1999 | A |
5927041 | Sedlmeier et al. | Jul 1999 | A |
5930963 | Nichols | Aug 1999 | A |
5930968 | Pullman | Aug 1999 | A |
5945182 | Fowler et al. | Aug 1999 | A |
5950385 | Herren | Sep 1999 | A |
5968615 | Schlappa | Oct 1999 | A |
5968669 | Liu et al. | Oct 1999 | A |
5970672 | Robinson | Oct 1999 | A |
5974750 | Landin et al. | Nov 1999 | A |
5974753 | Hsu | Nov 1999 | A |
6023898 | Josey | Feb 2000 | A |
6058668 | Herren | May 2000 | A |
6061985 | Kraus et al. | May 2000 | A |
6110559 | De Keyser | Aug 2000 | A |
6116404 | Heuft et al. | Sep 2000 | A |
6119411 | Mateu Gil et al. | Sep 2000 | A |
6128874 | Olson et al. | Oct 2000 | A |
6128877 | Goodman et al. | Oct 2000 | A |
6131352 | Barnes et al. | Oct 2000 | A |
6151858 | Ruiz et al. | Nov 2000 | A |
6153668 | Gestner et al. | Nov 2000 | A |
6176053 | St. Germain | Jan 2001 | B1 |
6182407 | Turpin et al. | Feb 2001 | B1 |
6189277 | Boscamp | Feb 2001 | B1 |
6207077 | Burnell-Jones | Mar 2001 | B1 |
6207085 | Ackerman | Mar 2001 | B1 |
6213679 | Frobosilo et al. | Apr 2001 | B1 |
6216404 | Vellrath | Apr 2001 | B1 |
6233888 | Wu | May 2001 | B1 |
6256948 | Van Dreumel | Jul 2001 | B1 |
6256960 | Babcock et al. | Jul 2001 | B1 |
6256980 | Lecordix et al. | Jul 2001 | B1 |
6279289 | Soder et al. | Aug 2001 | B1 |
6305133 | Cornwall | Oct 2001 | B1 |
6318044 | Campbell | Nov 2001 | B1 |
6374558 | Surowiecki | Apr 2002 | B1 |
6381913 | Herren | May 2002 | B2 |
6405502 | Cornwall | Jun 2002 | B1 |
6408578 | Tanaka et al. | Jun 2002 | B1 |
6430881 | Daudet et al. | Aug 2002 | B1 |
6470638 | Larson | Oct 2002 | B1 |
6487825 | Silik | Dec 2002 | B1 |
6574930 | Kiser | Jun 2003 | B2 |
6595383 | Pietrantoni | Jul 2003 | B2 |
6606831 | Degelsegger | Aug 2003 | B2 |
6647691 | Becker et al. | Nov 2003 | B2 |
6668499 | Degelsegger | Dec 2003 | B2 |
6679015 | Cornwall | Jan 2004 | B1 |
6688056 | Von Hoyningen Huene et al. | Feb 2004 | B2 |
6688499 | Zhang | Feb 2004 | B2 |
6698146 | Morgan et al. | Mar 2004 | B2 |
6705047 | Yulkowski | Mar 2004 | B2 |
6708627 | Wood | Mar 2004 | B1 |
6711871 | Beirise et al. | Mar 2004 | B2 |
6732481 | Stahl, Sr. | May 2004 | B2 |
6739926 | Riach et al. | May 2004 | B2 |
6748705 | Orszulak | Jun 2004 | B2 |
6783345 | Morgan et al. | Aug 2004 | B2 |
6792733 | Wheeler et al. | Sep 2004 | B2 |
6799404 | Spransy | Oct 2004 | B2 |
6843035 | Glynn | Jan 2005 | B1 |
6854237 | Surowiecki | Feb 2005 | B2 |
6871470 | Stover | Mar 2005 | B1 |
6951162 | Shockey et al. | Oct 2005 | B1 |
6996944 | Shaw | Feb 2006 | B2 |
7043880 | Morgan et al. | May 2006 | B2 |
7059092 | Harkins et al. | Jun 2006 | B2 |
7104024 | deGirolamo et al. | Sep 2006 | B1 |
7152385 | Morgan et al. | Dec 2006 | B2 |
7191845 | Loar | Mar 2007 | B2 |
7240905 | Stahl | Jul 2007 | B1 |
7251918 | Reif et al. | Aug 2007 | B2 |
7284355 | Becker et al. | Oct 2007 | B2 |
7302776 | Duncan et al. | Dec 2007 | B2 |
7398856 | Foster et al. | Jul 2008 | B2 |
7413024 | Simontacchi et al. | Aug 2008 | B1 |
7441565 | Imamura et al. | Oct 2008 | B2 |
7487591 | Harkins et al. | Feb 2009 | B2 |
7497056 | Surowiecki | Mar 2009 | B2 |
7506478 | Bobenhausen | Mar 2009 | B2 |
7513082 | Johnson | Apr 2009 | B2 |
7540118 | Jensen | Jun 2009 | B2 |
7594331 | Andrews et al. | Sep 2009 | B2 |
7603823 | Cann | Oct 2009 | B2 |
7610725 | Willert | Nov 2009 | B2 |
7617643 | Pilz et al. | Nov 2009 | B2 |
7681365 | Klein | Mar 2010 | B2 |
7685792 | Stahl, Sr. et al. | Mar 2010 | B2 |
7716891 | Radford | May 2010 | B2 |
7735295 | Surowiecki | Jun 2010 | B2 |
7752817 | Pilz et al. | Jul 2010 | B2 |
7775006 | Giannos | Aug 2010 | B2 |
7776170 | Yu et al. | Aug 2010 | B2 |
7797893 | Stahl, Sr. et al. | Sep 2010 | B2 |
7810295 | Thompson | Oct 2010 | B2 |
7814718 | Klein | Oct 2010 | B2 |
7827738 | Abrams et al. | Nov 2010 | B2 |
7836652 | Futterman | Nov 2010 | B2 |
7866108 | Klein | Jan 2011 | B2 |
7870698 | Tonyan et al. | Jan 2011 | B2 |
7921537 | Rodlin | Apr 2011 | B2 |
7921614 | Fortin et al. | Apr 2011 | B2 |
7941981 | Shaw | May 2011 | B2 |
7950198 | Pilz et al. | May 2011 | B2 |
7966778 | Klein | Jun 2011 | B2 |
7984592 | Iras | Jul 2011 | B1 |
8029345 | Messmer et al. | Oct 2011 | B2 |
8056293 | Klein | Nov 2011 | B2 |
8061099 | Andrews | Nov 2011 | B2 |
8062108 | Carlson et al. | Nov 2011 | B2 |
8069625 | Harkins et al. | Dec 2011 | B2 |
8074412 | Gogan et al. | Dec 2011 | B1 |
8074416 | Andrews | Dec 2011 | B2 |
8079188 | Swartz et al. | Dec 2011 | B2 |
8087205 | Pilz et al. | Jan 2012 | B2 |
8096084 | Studebaker et al. | Jan 2012 | B2 |
8100164 | Goodman et al. | Jan 2012 | B2 |
8132376 | Pilz et al. | Mar 2012 | B2 |
8136314 | Klein | Mar 2012 | B2 |
8151526 | Klein | Apr 2012 | B2 |
8181404 | Klein | May 2012 | B2 |
8225581 | Strickland et al. | Jul 2012 | B2 |
8281552 | Pilz et al. | Oct 2012 | B2 |
8286397 | Shaw | Oct 2012 | B2 |
8318304 | Valenziano | Nov 2012 | B2 |
8322094 | Pilz et al. | Dec 2012 | B2 |
8353139 | Pilz | Jan 2013 | B2 |
8375666 | Stahl, Jr. et al. | Feb 2013 | B2 |
8389107 | Riebel et al. | Mar 2013 | B2 |
8413394 | Pilz et al. | Apr 2013 | B2 |
8468759 | Klein | Jun 2013 | B2 |
8495844 | Johnson | Jul 2013 | B1 |
8499512 | Pilz et al. | Aug 2013 | B2 |
8541084 | Deiss et al. | Sep 2013 | B2 |
8544226 | Rubel | Oct 2013 | B2 |
8555566 | Pilz et al. | Oct 2013 | B2 |
8578672 | Mattox et al. | Nov 2013 | B2 |
8584415 | Stahl, Jr. et al. | Nov 2013 | B2 |
8590231 | Pilz | Nov 2013 | B2 |
8595999 | Pilz et al. | Dec 2013 | B1 |
8596019 | Aitken | Dec 2013 | B2 |
8601760 | Hilburn | Dec 2013 | B2 |
8607519 | Hilburn | Dec 2013 | B2 |
8640415 | Pilz et al. | Feb 2014 | B2 |
8646235 | Hilburn, Jr. | Feb 2014 | B2 |
8671632 | Pilz et al. | Mar 2014 | B2 |
8728608 | Maisch | May 2014 | B2 |
8782977 | Burgess | Jul 2014 | B2 |
8793947 | Pilz et al. | Aug 2014 | B2 |
8826599 | Stahl | Sep 2014 | B2 |
8871326 | Flennert | Oct 2014 | B2 |
8938922 | Pilz et al. | Jan 2015 | B2 |
8950132 | Collins et al. | Feb 2015 | B2 |
8955275 | Stahl, Jr. | Feb 2015 | B2 |
8973319 | Pilz et al. | Mar 2015 | B2 |
9045899 | Pilz et al. | Jun 2015 | B2 |
9127454 | Pilz et al. | Sep 2015 | B2 |
9151042 | Simon et al. | Oct 2015 | B2 |
9157232 | Stahl, Jr. | Oct 2015 | B2 |
9163444 | Fontijn et al. | Oct 2015 | B1 |
9206596 | Robinson | Dec 2015 | B1 |
9284730 | Klein | Mar 2016 | B2 |
9290932 | Pilz et al. | Mar 2016 | B2 |
9290934 | Pilz et al. | Mar 2016 | B2 |
9316133 | Schnitta | Apr 2016 | B2 |
9371644 | Pilz et al. | Jun 2016 | B2 |
9458628 | Pilz et al. | Oct 2016 | B2 |
9481998 | Pilz et al. | Nov 2016 | B2 |
9506246 | Joseph et al. | Nov 2016 | B2 |
9512614 | Klein et al. | Dec 2016 | B2 |
9523193 | Pilz | Dec 2016 | B2 |
9551148 | Pilz | Jan 2017 | B2 |
9616259 | Pilz et al. | Apr 2017 | B2 |
9637914 | Pilz et al. | May 2017 | B2 |
9683364 | Pilz et al. | Jun 2017 | B2 |
9719253 | Stahl, Jr. et al. | Aug 2017 | B2 |
9739052 | Pilz et al. | Aug 2017 | B2 |
9739054 | Pilz et al. | Aug 2017 | B2 |
9752318 | Pilz | Sep 2017 | B2 |
9879421 | Pilz | Jan 2018 | B2 |
9885178 | Barnes et al. | Feb 2018 | B1 |
9909298 | Pilz | Mar 2018 | B2 |
9931527 | Pilz et al. | Apr 2018 | B2 |
9995039 | Pilz et al. | Jun 2018 | B2 |
10000923 | Pilz | Jun 2018 | B2 |
10010805 | Maxam et al. | Jul 2018 | B2 |
10011983 | Pilz et al. | Jul 2018 | B2 |
10077550 | Pilz | Sep 2018 | B2 |
10166418 | Förg et al. | Jan 2019 | B2 |
10174499 | Tinianov et al. | Jan 2019 | B1 |
10184246 | Pilz et al. | Jan 2019 | B2 |
10214901 | Pilz et al. | Feb 2019 | B2 |
10227775 | Pilz et al. | Mar 2019 | B2 |
10246871 | Pilz | Apr 2019 | B2 |
10323409 | Robinson | Jun 2019 | B1 |
10323411 | Ackerman et al. | Jun 2019 | B2 |
10406389 | Pilz et al. | Sep 2019 | B2 |
10472819 | Klein et al. | Nov 2019 | B2 |
10494818 | Maziarz | Dec 2019 | B2 |
10563399 | Pilz et al. | Feb 2020 | B2 |
10619347 | Pilz et al. | Apr 2020 | B2 |
10626598 | Klein | Apr 2020 | B2 |
10669710 | Förg | Jun 2020 | B2 |
10689842 | Pilz | Jun 2020 | B2 |
10731338 | Zemler et al. | Aug 2020 | B1 |
10753084 | Pilz et al. | Aug 2020 | B2 |
10900223 | Pilz | Jan 2021 | B2 |
10914065 | Pilz | Feb 2021 | B2 |
10920416 | Klein et al. | Feb 2021 | B2 |
10954670 | Pilz | Mar 2021 | B2 |
11041306 | Pilz et al. | Jun 2021 | B2 |
11060283 | Pilz et al. | Jul 2021 | B2 |
11111666 | Pilz | Sep 2021 | B2 |
11118346 | Klein et al. | Sep 2021 | B2 |
11141613 | Pilz et al. | Oct 2021 | B2 |
11162259 | Pilz | Nov 2021 | B2 |
11230839 | Klein et al. | Jan 2022 | B2 |
11268274 | Pilz | Mar 2022 | B2 |
11313121 | Quirijns et al. | Apr 2022 | B2 |
11421417 | Pilz et al. | Aug 2022 | B2 |
11466449 | Pilz et al. | Oct 2022 | B2 |
11486150 | Stahl et al. | Nov 2022 | B2 |
11512464 | Klein | Nov 2022 | B2 |
11560712 | Pilz et al. | Jan 2023 | B2 |
11674304 | Landreth et al. | Jun 2023 | B2 |
11697937 | Campbell | Jul 2023 | B2 |
20020029535 | Loper | Mar 2002 | A1 |
20020095908 | Kiser | Jul 2002 | A1 |
20020160149 | Garofalo | Oct 2002 | A1 |
20020170249 | Yulkowski | Nov 2002 | A1 |
20030079425 | Morgan et al. | May 2003 | A1 |
20030089062 | Morgan et al. | May 2003 | A1 |
20030196401 | Surowiecki | Oct 2003 | A1 |
20030213211 | Morgan et al. | Nov 2003 | A1 |
20040010998 | Turco | Jan 2004 | A1 |
20040016191 | Whitty | Jan 2004 | A1 |
20040045234 | Morgan et al. | Mar 2004 | A1 |
20040139684 | Menendez | Jul 2004 | A1 |
20040149390 | Monden et al. | Aug 2004 | A1 |
20040157012 | Miller et al. | Aug 2004 | A1 |
20040211150 | Bobenhausen | Oct 2004 | A1 |
20050031843 | Robinson et al. | Feb 2005 | A1 |
20050183361 | Frezza | Aug 2005 | A1 |
20050246973 | Jensen | Nov 2005 | A1 |
20060032163 | Korn | Feb 2006 | A1 |
20060096200 | Daudet | May 2006 | A1 |
20060123723 | Weir et al. | Jun 2006 | A1 |
20060137293 | Klein | Jun 2006 | A1 |
20060213138 | Milani et al. | Sep 2006 | A1 |
20060261223 | Orndorff et al. | Nov 2006 | A1 |
20060277841 | Majusiak | Dec 2006 | A1 |
20070056245 | Edmondson | Mar 2007 | A1 |
20070068101 | Weir et al. | Mar 2007 | A1 |
20070125027 | Klein | Jun 2007 | A1 |
20070130873 | Fisher | Jun 2007 | A1 |
20070193202 | Rice | Aug 2007 | A1 |
20070261343 | Stahl, Sr. et al. | Nov 2007 | A1 |
20080053013 | Tollenaar | Mar 2008 | A1 |
20080087366 | Yu et al. | Apr 2008 | A1 |
20080134589 | Abrams et al. | Jun 2008 | A1 |
20080172967 | Hilburn | Jul 2008 | A1 |
20080196337 | Surowiecki | Aug 2008 | A1 |
20080250738 | Howchin | Oct 2008 | A1 |
20090090074 | Klein | Apr 2009 | A1 |
20090107064 | Bowman | Apr 2009 | A1 |
20090197060 | Cho | Aug 2009 | A1 |
20090223159 | Colon | Sep 2009 | A1 |
20090282760 | Sampson et al. | Nov 2009 | A1 |
20100199583 | Behrens et al. | Aug 2010 | A1 |
20100266781 | Kusinski et al. | Oct 2010 | A1 |
20110011019 | Stahl, Jr. et al. | Jan 2011 | A1 |
20110041415 | Esposito | Feb 2011 | A1 |
20110056163 | Kure | Mar 2011 | A1 |
20110067328 | Naccarato et al. | Mar 2011 | A1 |
20110099928 | Klein et al. | May 2011 | A1 |
20110113709 | Pilz et al. | May 2011 | A1 |
20110123801 | Valenciano | May 2011 | A1 |
20110146180 | Klein | Jun 2011 | A1 |
20110167742 | Klein | Jul 2011 | A1 |
20110185656 | Klein | Aug 2011 | A1 |
20110214371 | Klein | Sep 2011 | A1 |
20110247281 | Pilz et al. | Oct 2011 | A1 |
20110262720 | Riebel et al. | Oct 2011 | A1 |
20110274886 | Flennert | Nov 2011 | A1 |
20110302857 | McClellan et al. | Dec 2011 | A1 |
20120023846 | Mattox et al. | Feb 2012 | A1 |
20120180414 | Burgess | Jul 2012 | A1 |
20120247038 | Black | Oct 2012 | A1 |
20120266550 | Naccarato et al. | Oct 2012 | A1 |
20120297710 | Klein | Nov 2012 | A1 |
20130031856 | Pilz et al. | Feb 2013 | A1 |
20130118102 | Pilz | May 2013 | A1 |
20130118764 | Porter | May 2013 | A1 |
20130133844 | Smart et al. | May 2013 | A1 |
20130186020 | Pilz | Jul 2013 | A1 |
20130205694 | Stahl, Jr. | Aug 2013 | A1 |
20140075865 | Pilz | Mar 2014 | A1 |
20140219719 | Hensley et al. | Aug 2014 | A1 |
20140260017 | Noble, III | Sep 2014 | A1 |
20140345886 | Yano et al. | Nov 2014 | A1 |
20150086793 | Kreysler et al. | Mar 2015 | A1 |
20150135622 | Muenzenberger et al. | May 2015 | A1 |
20150135631 | Foerg | May 2015 | A1 |
20150275506 | Klein et al. | Oct 2015 | A1 |
20150275507 | Klein et al. | Oct 2015 | A1 |
20150275510 | Klein et al. | Oct 2015 | A1 |
20150354210 | Stahl, Jr. et al. | Dec 2015 | A1 |
20150368898 | Stahl, Jr. et al. | Dec 2015 | A1 |
20160016381 | Celis et al. | Jan 2016 | A1 |
20160017598 | Klein et al. | Jan 2016 | A1 |
20160017599 | Klein et al. | Jan 2016 | A1 |
20160201893 | Ksiezppolski | Jul 2016 | A1 |
20160265219 | Pilz | Sep 2016 | A1 |
20160296775 | Pilz et al. | Oct 2016 | A1 |
20160348357 | Smith et al. | Dec 2016 | A1 |
20170016227 | Klein | Jan 2017 | A1 |
20170175386 | Pilz | Jun 2017 | A1 |
20170198473 | Pilz | Jul 2017 | A1 |
20170234004 | Pilz | Aug 2017 | A1 |
20170234010 | Klein | Aug 2017 | A1 |
20170260741 | Ackerman et al. | Sep 2017 | A1 |
20170306615 | Klein et al. | Oct 2017 | A1 |
20180010333 | Foerg | Jan 2018 | A1 |
20180044913 | Klein et al. | Feb 2018 | A1 |
20180072922 | Canale | Mar 2018 | A1 |
20180171624 | Klein et al. | Jun 2018 | A1 |
20180171646 | Stahl | Jun 2018 | A1 |
20180195282 | Pilz | Jul 2018 | A1 |
20180291619 | Ackerman et al. | Oct 2018 | A1 |
20180347189 | Pilz | Dec 2018 | A1 |
20180363293 | Pilz | Dec 2018 | A1 |
20190284797 | Pilz | Sep 2019 | A1 |
20190284799 | Förg | Sep 2019 | A1 |
20190316350 | Pilz et al. | Oct 2019 | A1 |
20190323234 | Watanabe et al. | Oct 2019 | A1 |
20190323347 | Hensley et al. | Oct 2019 | A1 |
20190330842 | Pilz | Oct 2019 | A1 |
20190338513 | Pilz | Nov 2019 | A1 |
20190344103 | Pilz | Nov 2019 | A1 |
20200080300 | Pilz | Mar 2020 | A1 |
20200240140 | Pilz | Jul 2020 | A1 |
20200284030 | Pilz | Sep 2020 | A1 |
20200308829 | Hunsaker | Oct 2020 | A1 |
20200325679 | Pilz | Oct 2020 | A1 |
20200340240 | Pilz | Oct 2020 | A1 |
20200340242 | Pilz | Oct 2020 | A1 |
20200362551 | Klein et al. | Nov 2020 | A1 |
20210010257 | Klein et al. | Jan 2021 | A1 |
20210017761 | Klein et al. | Jan 2021 | A1 |
20210040731 | Pilz | Feb 2021 | A1 |
20210062502 | Archer et al. | Mar 2021 | A1 |
20210101319 | Klein et al. | Apr 2021 | A1 |
20210148112 | Klein | May 2021 | A1 |
20210164222 | Pilz | Jun 2021 | A1 |
20210189721 | Klein et al. | Jun 2021 | A1 |
20210254333 | Pilz | Aug 2021 | A1 |
20210285208 | Pilz | Sep 2021 | A1 |
20220010553 | Pilz et al. | Jan 2022 | A1 |
20220023684 | Pilz et al. | Jan 2022 | A1 |
20220042303 | Pilz | Feb 2022 | A1 |
20220056686 | Pilz | Feb 2022 | A1 |
20220098856 | Pilz | Mar 2022 | A1 |
20220106785 | Klein | Apr 2022 | A1 |
20220154456 | Griffith et al. | May 2022 | A1 |
20220162851 | Pilz | May 2022 | A1 |
20220259852 | Pilz | Aug 2022 | A1 |
20220268017 | Pilz | Aug 2022 | A1 |
20220349177 | Pilz | Nov 2022 | A1 |
20230114420 | Pilz et al. | Apr 2023 | A1 |
20230115315 | Pilz et al. | Apr 2023 | A1 |
20230203807 | Pilz et al. | Jun 2023 | A1 |
20230220665 | Pilz et al. | Jul 2023 | A1 |
Number | Date | Country |
---|---|---|
2234347 | Oct 1999 | CA |
2498537 | Aug 2006 | CA |
2711659 | Feb 2012 | CA |
2697295 | Dec 2013 | CA |
2736834 | Dec 2015 | CA |
2803439 | Mar 2017 | CA |
3010414 | Aug 2017 | CA |
2 961 638 | Sep 2017 | CA |
2827183 | Jul 2018 | CA |
3036429 | Sep 2019 | CA |
3041494 | Oct 2019 | CA |
2 802 579 | Mar 2020 | CA |
3058865 | Jul 2020 | CA |
3080978 | Nov 2020 | CA |
2645807 | Mar 1978 | DE |
60213279 | Jul 2007 | DE |
0 335 347 | Oct 1989 | EP |
0 346 126 | Dec 1989 | EP |
0509701 | Oct 1992 | EP |
3 196 376 | Jul 2017 | EP |
3 348 729 | Jul 2018 | EP |
3 556 957 | Oct 2019 | EP |
2 159 051 | Nov 1985 | GB |
2 239 213 | Jun 1991 | GB |
2411 212 | Aug 2005 | GB |
2 424 658 | Oct 2006 | GB |
2 494 721 | Mar 2013 | GB |
06-042090 | Feb 1994 | JP |
06-146433 | May 1994 | JP |
06-220934 | Aug 1994 | JP |
07-4620 | Jan 1995 | JP |
100664665 | Jan 2007 | KR |
WO 2003038206 | May 2003 | WO |
WO 2004071584 | Aug 2004 | WO |
WO 2007103331 | Sep 2007 | WO |
WO 2009026464 | Feb 2009 | WO |
WO 2013113734 | Aug 2013 | WO |
WO 2017129398 | Jan 2017 | WO |
WO 2019108295 | Jun 2019 | WO |
Entry |
---|
U.S. Appl. No. 17/303,173, filed May 21, 2021, Pilz et al. |
U.S. Appl. No. 17/453,158, filed Nov. 1, 2021, Pilz. |
U.S. Appl. No. 16/598,211, filed Oct. 10, 2019, Pilz. |
U.S. Appl. No. 17/001,422, filed Aug. 24, 2020, Pilz et al. |
U.S. Appl. No. 17/129,511, filed Dec. 21, 2020, Pilz. |
U.S. Appl. No. 17/304,451, filed Jun. 21, 2021, Pilz et al. |
U.S. Appl. No. 17/305,653, filed Jul. 12, 2021, Pilz et al. |
Australian Office Action, re AU Application No. 2019216678, dated May 15, 2020. |
Australian Office Action, re AU Application No. 2019213363, dated May 26, 2020. |
Australian Office Action, re AU Application No. 2019250152, dated Jul. 10, 2020. |
BlazeFrame 2009 catalog of products, available at least as of Mar. 4, 2010 from www.blazeframe.com, in 20 pages. |
Canadian First Office Action for Application No. 2,697,295, dated Sep. 21, 2011, in 4 pages. |
Canadian Second Office Action for Application No. 2,697,295, dated May 23, 2012, in 4 pages. |
Canadian Office Action for Application No. 2,827,183, dated Mar. 27, 2015 in 4 pages. |
Canadian Office Action for Application No. 2,827,183, dated Mar. 7, 2016 in 4 pages. |
Canadian Office Action for Applicaton No. 2,802,579, dated Jan. 3, 2019 in 3 pages. |
Canadian Office Action for Application No. 3,036,429, dated Apr. 8, 2020, in 4 pages. |
Canadian Office Action for Application No. 3,041,494, dated Aug. 13, 2020. |
Canadian Office Action re Application No. 3,052,184, dated Nov. 2, 2020. |
Catalog page from Stockton Products, printed from www.stocktonproducts.com, on Dec. 16, 2007, showing #5 Drip, in 1 page. |
ClarkDietrich Building Systems, Product Submittal Sheet, (FTSC) Flat Trail Vertical Slide Clip. CD-FTSC11 07/11. 1 page. |
DoubleTrackTM information sheets by Dietrich Metal Framing, in 2 pages; accessible on Internet Wayback Machine on Jul. 8, 2006. |
FireStikTM by CEMCO Brochure, published on www.firestik.us, in 18 pages; accessible on Internet Wayback Machine on Aug. 13, 2007. |
Information Disclosure Statement letter; U.S. Appl. No. 12/196,115, dated Aug. 4, 2011. |
International Search Report for Application No. PCT/US2008/073920, dated Apr. 9, 2009. |
“Intumescent Expansion Joint Seals”, Astroflame; http://www.astroflame.com/intumescent_expansionjoint_seals; Jul. 2011; 4 pages. |
James A. Klein's Answer, Affirmative Defenses and Counterclaims to Third Amended Complaint; U.S. District Court, Central District of California; Case No. 2:12-cv-10791-DDP-MRWx; Filed Sep. 17, 2014; pp. 1-37. |
Letter from Thomas E. Loop; counsel for defendant; Jun. 26, 2015. |
Expert Report of James William Jones and exhibits; Case No. CV12-10791 DDP (MRWx); May 18, 2015. |
Letter from Ann G. Schoen of Frost Brown Todd, LLC; Jun. 24, 2015. |
“System No. HW-D-0607”, May 6, 2010, Metacaulk, www.rectorseal.com, www.metacault.com; 2008 Underwriters Laboratories Inc.; 2 pages. |
“Wall Mounted Deflection Bead,” Trim-Tex Drywall Products; Oct. 9, 2016; 3 pages. |
Trim-Tex, Inc., TRIM-TEX Wall Mounted Deflection Bead Installation Instructions, 2 pages. [Undated. Applicant requests that the Examiner review and consider the reference as prior art for the purpose of examination.]. |
U.S. Appl. No. 18/150,111, filed Jan. 4, 2023, Pilz et al. |
Number | Date | Country | |
---|---|---|---|
20210396004 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62870933 | Jul 2019 | US | |
62780059 | Dec 2018 | US | |
62775801 | Dec 2018 | US | |
62764883 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16541951 | Aug 2019 | US |
Child | 17446947 | US |