Fire or sound blocking components and wall assemblies with fire or sound blocking components

Information

  • Patent Grant
  • 11873636
  • Patent Number
    11,873,636
  • Date Filed
    Friday, September 3, 2021
    3 years ago
  • Date Issued
    Tuesday, January 16, 2024
    11 months ago
  • Inventors
  • Original Assignees
    • CEMCO, LLC (City of Industry, CA, US)
  • Examiners
    • Adamos; Theodore V
    Agents
    • Knobbe, Martens, Olson & Bear, LLP
  • CPC
  • Field of Search
    • CPC
    • E04B1/948
    • E04B1/944
    • E04B1/6801
    • E04B1/6815
    • E04B2/7411
    • E04B2/7409
    • E04B2/825
  • International Classifications
    • E04B1/94
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
Fire or sound blocking components are configured to resist the transmission of fire, heat or sound through a gap in a wall assembly. The components can be elongate and have a profile of a consistent cross-sectional shape along the length of the component. In some arrangements, the component is configured to provide fire or sound blocking to a dynamic head-of-wall joint of a wall assembly. In other arrangements, the component is configured to provide fire or sound blocking to a reveal gap within or along an edge of a wall assembly.
Description
BACKGROUND
Field

The present disclosure relates to fire-resistant or sound-resistant building structures. In particular, the present disclosure relates to a fire or sound blocking wall assemblies and related components.


Description of Related Art

Fire-rated or sound-rated construction components and assemblies are commonly used in the construction industry. These components and assemblies are aimed at inhibiting or preventing fire, heat, smoke or sound from leaving one room or other portion of a building and entering another room or portion of a building. The fire, heat, smoke or sound usually moves between rooms through vents, joints in walls, or other openings. The fire-rated components often incorporate fire-retardant materials that substantially block the path of the fire, heat or smoke for at least some period of time. Intumescent materials work well for this purpose, because they swell and char when exposed to flames helping to create a barrier to the fire, heat, and/or smoke. Similarly, sound-rated components block sound from moving between rooms.


A wall assembly commonly used in the construction industry includes a header track, bottom track, a plurality of wall studs and a plurality of wall board members, possibly among other components. A typical header track resembles a generally U-shaped (or some other similarly shaped) elongated channel capable of receiving or covering the ends of wall studs and holding the wall studs in place. The header track also permits the wall assembly to be coupled to an upper horizontal support structure, such as a ceiling or floor of a higher level floor of a multi-level building.


One particular wall joint with a high potential for allowing fire, heat, smoke or sound to pass from one room to another is the joint between the top of a wall and the ceiling, which can be referred to as a head-of-wall joint. In modern multi-story or multi-level buildings, the head-of-wall joint is often a dynamic joint in which relative movement between the ceiling and the wall is permitted. This relative movement is configured to accommodate deflection in the building due to loading of the ceiling or seismic forces. One conventional method for creating a fire-rated head-of-wall joint is to stuff a fire-resistant mineral wool material into the head-of-wall joint and then spray an elastomeric material over the joint to retain the mineral wool in place. This conventional construction of a fire-rated head-of-wall joint is time-consuming, expensive and has other disadvantages.


Another feature that requires fire protection is an aesthetic reveal feature within or along an edge of a wall. A reveal is a gap within or along a top, bottom or side edge of the wall. Conventionally, the reveal is created by using an additional cosmetic layer of wall board over top of one or more underlying layers of wall board. The underlying layer(s) provide the desired fire rating to the wall—including to the reveal gap. However, this method of creating a cosmetic reveal requires nearly an entire extra layer of wall board material.


SUMMARY

The systems, methods and devices described herein have innovative aspects, no single one of which is indispensable or solely responsible for their desirable attributes. Without limiting the scope of the claims, some of the advantageous features will now be summarized.


An aspect of the present disclosure involves a fire-blocking element including a profile. The profile has a first leg and a second leg. The first leg and the second leg are arranged to form a generally L-shaped structure in cross-section. The first leg is configured to extend along an upper edge of an outward-facing surface of wall board of a wall in use. The second leg is configured to extend along the end surface of the wall board in use. The first leg comprises an array of openings configured to receive joint compound. A gasket element is configured to contact an overhead structure associated with the wall in use. The gasket element is compressible to conform to an irregular surface of the overhead structure. A fire-blocking material strip is located on the second leg of the profile. The fire-blocking material strip is located on an opposite side of the gasket element relative to the first leg.


In some configurations, the gasket element is a bubble gasket having a wall that defines an interior space.


In some configurations, the bubble gasket is hollow.


In some configurations, the bubble gasket comprises multi layers of vinyl and/or foil tape to restrict the passage of heat.


In some configurations, the fire-blocking material strip is an intumescent material.


In some configurations, a portion of the fire-blocking strip extends beyond a free edge of the second leg.


In some configurations, the fire-blocking strip is located on the interior or exterior side of the second leg.


In some configurations, a free edge of the second leg defines an upturned kickout configured to flex relative to a remainder of the second leg.


In some configurations, a wall assembly includes any of the fire-blocking elements described above.


An aspect of the present disclosure involves an elongate fire-blocking element including a first leg and a second leg. The first leg and the second leg are arranged to form a generally L-shaped structure in cross-section. The first leg is configured to extend along an outward-facing surface of a wall component of a wall between the wall component and a wall board of the wall in use. The second leg is configured to be positioned between the wall component of the wall and an overhead structure in use. A gasket element is configured to contact the overhead structure in use. The gasket element is compressible to conform to an irregular surface of the overhead structure. A protruding rib is located on an interior surface of the first leg and extending in a lengthwise direction of the elongate fire-blocking element. The protruding rib is configured to contact the wall component. The protruding rib is spaced from a free end of the first leg to create a space between a lower portion of the first leg and the wall component in use.


In some configurations, at least the first leg, the second leg and the protruding rib are formed as a unitary structure.


In some configurations, the unitary structure is made from vinyl, plastic, rubber or a combination thereof.


In some configurations, the second leg is shorter than the first leg.


In some configurations, the second leg is tapered increasing in thickness in a direction from a free end toward a corner between the first leg and the second leg such that the second leg can be friction fit between the wall component and the overhead structure.


In some configurations, the gasket element is a bubble gasket having a wall that defines an interior space.


In some configurations, a wall assembly includes any of the elongate fire-blocking elements described above.


In some configurations, the wall component is a slotted header track and the protruding rib is located above the slots of the slotted header track.


An aspect of the present disclosure involves a fire-blocking element including a profile comprising a first leg and a second leg arranged to form a generally L-shaped structure when viewed from the end or in cross-section. The first leg is configured to extend along an upper edge of an outward-facing or exposed surface of wall board of a wall in use. The second leg is configured to extend along the return of the free open edge of the wall board in use. The first leg is covered by joint compound and may include features that facilitate the use of joint compound. A gasket element is disposed on an exterior surface of the second leg and is configured to contact a ceiling or other overhead structure associated with the wall. The wall of the gasket element is compressible so that the gasket element can conform to the ceiling or other overhead structure. A free edge of the second leg defines an upturned kickout configured to flex relative to a remainder of the second leg.


In some configurations, the free edge is configured to contact a header track of the wall assembly.


In some configurations, a fire-blocking material strip is located on the second leg.


In some configurations, the first leg, the second leg and the gasket element are formed as a unitary structure.


An aspect of the present disclosure involves a fire-rated wall assembly with an architectural reveal including a first wall board member having a first wall board surface and a first end surface and a second wall board member having a second wall board surface and a second end surface. The first end surface and the second end surface face each other and define a reveal gap therebetween. A fire-block wall component includes a first layer and a fire-resistant material attached to the first layer. The fire-resistant material strip is an intumescent material that expands in response to heat. The first layer includes a central portion and a pair of flanges extending therefrom in opposite directions. The central portion includes a first side panel, a second side panel, and a central panel. The central panel being generally orthogonal with respect to the first and second side panels. The fire-resistant material is attached on exterior surfaces of the first and second side panels and the fire-block wall component is installed within the reveal gap with the fire-resistant material facing the first and second end surfaces of the first and second wall board members. The pair of flanges are attached to the first and second wall board surfaces.


In some configurations, the central portion defines a width between the first and second side panels, the width being between ¼ and 3 inches.


In some configurations, the central portion defines a rectangular cross-sectional shape.


In some configurations, the intumescent material is configured to expand across the deflection gap in a perpendicular direction relative to the first and second end surfaces of the first and second wall board members.


An aspect of the present disclosure involves a fire-rated wall assembly with an architectural reveal including a wall board member having an outer surface and an end surface. The wall board member at least partially defines a reveal gap. A Z-shaped fire-block wall component includes a first layer that is Z-shaped. The first layer has a reveal leg, a central leg, and an attachment leg. A fire-resistant material is attached to the central leg. The Z-shaped fire-block wall component is installed with the fire-resistant material located between the central leg and the end surface of the wall board. The reveal leg is located within the reveal gap. The perforated leg is attached to the outer surface of the wall board member.


In some configurations, the central portion defines a width between the first and second side panels, the width being between ¼ and 3 inches.


In some configurations, the central portion defines a rectangular cross-sectional shape.


In some configurations, the fire-resistant material is an intumescent material configured to expand across the reveal gap in a perpendicular direction relative to the end surface of the wall board member.


In some configurations, the wall board member cooperates with another wall board member, an overhead structure or a floor to define the reveal gap.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through the use of the accompanying drawings.



FIG. 1 is an end view of an elongate fire-blocking bead element.



FIG. 2 is a sectional view of a wall assembly incorporating the fire-blocking bead element of FIG. 1.



FIG. 3 is the sectional view of the wall assembly of FIG. 2 illustrating a profile portion of the bead element melting away and an intumescent material portion expanding.



FIG. 4a illustrates a first alternative profile shape for a fire-blocking bead element.



FIG. 4b illustrates a second alternative profile shape for a fire-blocking bead element.



FIG. 5 is an end view of an elongate fire-blocking element having a gasket and a fire-resistant material supported by a profile in the form of an angle.



FIG. 6 is a sectional view of a wall assembly incorporating the fire-blocking element of FIG. 5.



FIG. 7 is a perspective view of an elongate fire-blocking bead element having a gasket and a fire-resistant material supported by a profile in the form of an angle.



FIG. 8 is an end view of the fire-blocking bead element of FIG. 7.



FIG. 9 is a sectional view of a wall assembly incorporating the fire-blocking bead element of FIGS. 7 and 8.



FIG. 10 is an end view of another fire-blocking bead element having a gasket and a fire-resistant material supported by a profile in the form of an angle, in which the fire-resistant material is located on an interior surface of the angle.



FIG. 11 is an end view of yet another fire-blocking bead element having a fire-resistant material supported by a profile in the form of an angle and a gasket supported at an inset location on the angle.



FIG. 12 is a sectional view of a wall assembly incorporating the fire-blocking bead element of FIG. 11.



FIG. 13 is an end view of a sound blocking bead element having a gasket supported by a profile in the form of an angle.



FIG. 14 is a sectional view of a wall assembly incorporating the sound blocking bead element of FIG. 13.



FIG. 15 is a top view of the wall assembly of FIG. 14.



FIG. 16 is an end view of a fire-blocking reveal having a V-shape and incorporating a fire-resistant material.



FIG. 17 is a sectional view of a wall assembly incorporating the fire-blocking reveal of FIG. 16.



FIG. 18 is an end view of a fire-blocking reveal having a U-shape and incorporating a fire-resistant material.



FIG. 19 is a sectional view of a wall assembly incorporating the fire-blocking reveal of FIG. 18.



FIG. 20 is the sectional view of the wall assembly of FIG. 19 illustrating expansion of the fire-resistant material.



FIG. 21 is a perspective view of a head-of-wall fire-blocking reveal.



FIG. 22 is a sectional view of a wall assembly incorporating the fire-blocking reveal of FIG. 21.



FIG. 23 is a sectional view of a wall assembly incorporating a fire-blocking reveal similar to the reveal of FIGS. 21 and 22, except in a vertical orientation.



FIG. 24 is a sectional view of a wall assembly incorporating a fire-blocking reveal similar to the reveal of FIGS. 21 and 22, except in a base-of-wall location.





DETAILED DESCRIPTION

Embodiments of systems, components and methods of assembly and manufacture will now be described with reference to the accompanying figures, wherein like numerals refer to like or similar elements throughout. Although several embodiments, examples and illustrations are disclosed below, it will be understood by those of ordinary skill in the art that the inventions described herein extends beyond the specifically disclosed embodiments, examples and illustrations, and can include other uses of the inventions and obvious modifications and equivalents thereof. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner simply because it is being used in conjunction with a detailed description of certain specific embodiments of the inventions. In addition, embodiments of the inventions can comprise several novel features and no single feature is solely responsible for its desirable attributes or is essential to practicing the inventions herein described.


Certain terminology may be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “above” and “below” refer to directions in the drawings to which reference is made. Terms such as “front,” “back,” “left,” “right,” “rear,” and “side” describe the orientation and/or location of portions of the components or elements within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the components or elements under discussion. Moreover, terms such as “first,” “second,” “third,” and so on may be used to describe separate components. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.


Fire-Blocking Component and Related Wall Assemblies


An aspect of the present disclosure relates to a component, which can be referred to as a fire-blocking bead. In some configurations, the component can have at least a first leg and a second leg arranged to form a generally L-shaped structure when viewed from the end or in cross-section. The first leg is configured to extend along an upper edge of an outward-facing or exposed surface of wall board of a wall in use. The second leg is configured to extend along an upper end surface of the wall board in use. In a finished wall assembly, the first leg can be covered by joint compound and may include features (e.g., an array of openings) that facilitate attachment to the wall board and/or the use of joint compound. The component may also include a gasket element configured to contact and/or create a seal with a ceiling or other overhead structure associated with the wall. In some configurations, the gasket element is a bubble gasket having a wall that defines an interior air space. The wall of the bubble gasket can be compressible so that the bubble gasket can conform to the ceiling or other overhead structure. The bubble gasket can be hollow (e.g., filled with atmospheric air or another gas, which can be pressurized or not). The bubble gasket can be located on the second leg. The bubble gasket can be located at or near a corner or transition between the first leg and the second leg. The bead element can also include a fire-blocking material. In some configurations, the fire-blocking material is located on the second leg. The bubble gasket can be located between the fire-blocking material and the corner or the first leg. In some configurations, the fire-blocking material is located at or near a free end portion of the second leg. The bubble gasket can be set back from the corner to create a recessed reveal along the second leg. One or both of the fire-blocking material and the bubble gasket can be located on an upward-facing or outward-facing surface of the bead element. The fire-blocking material can be an intumescent material, such as an intumescent material strip or intumescent foam. Intumescent materials expand under exposure to elevated temperatures, but expansion alone may not provide a proper seal against fire, and smoke. It can be important to effectively contain the expanded intumescent material within the head of wall joint so that it does not expand in a manner that will allow it to fall out of the joint. Another aspect of the present disclosure is a wall assembly incorporating one or more of the above-described fire-blocking bead elements.



FIG. 1 illustrates a fire-blocking bead element or component 100. The bead element 100 can be constructed in whole or in part from a suitable polymer material, such as a vinyl. The illustrated bead element 100 includes a first leg 102 and a second leg 104 arranged to form a generally L-shaped profile structure 106 when viewed from the end or in cross-section. In the illustrated arrangement the first leg 102 is slightly set back from an attached edge of the second leg 104 to create a space to receive joint compound such that an outer surface of the joint compound ends up flush with the outer or attached edge of the second leg 104. In other arrangements, the profile 106 can include additional legs or portions.



FIG. 2 illustrates the bead element 100 incorporated into a wall assembly 50 having a head-of-wall arrangement. The illustrated wall assembly 50 is an interior wall of a well-known stud wall arrangement having a dynamic head-of-wall. The wall assembly 50 includes a bottom track (not shown), a header track 52, and a plurality of studs 54 that extend between and have ends attached to the bottom track and the header track 52. One or more pieces of wall board 56 (e.g., gypsum board or drywall) is attached to the studs 54 and bottom track so that the wall board 56, studs 54 and bottom track are free to move relative to the header track 52 and an overhead structure 58 to which the header track 52 is attached. The overhead structure 58 can be a ceiling or a floor of a higher-level floor of a multi-story building.


The first leg 102 of the component 100 is configured to extend along an upper edge of an outward-facing or exposed surface of the wall board 56 in use, as shown in FIG. 2. The second leg 104 is configured to extend along an upper end surface of the wall board 56 in use, as shown in FIG. 2. In a finished wall assembly 50, the first leg 102 can be covered by joint compound 60 and may include features (e.g., an array of openings) that facilitate attachment of the component 100 to the wall board 56 and/or the use of the joint compound 60.


In some configurations, the bead element 100 can also include a gasket portion or gasket element 120 configured to contact and/or create a seal with the ceiling 58 or other overhead structure associated with the wall 50, as shown in FIG. 2. In some configurations, the gasket element is in the form of a bubble gasket 120, which has a wall that defines an interior space. The wall of the bubble gasket 120 can be compressible so that the bubble gasket 120 can conform to the ceiling 58 or other overhead structure. That is, the bubble gasket 120 preferably conforms to irregularities in the ceiling 58 or other overhead structure to maintain a seal with the ceiling 58. In addition, the bubble gasket 120 is configured to accommodate relative movement between the wall 50 and the ceiling 58 that causes variations in the size of the deflection gap. Preferably, the bubble gasket 120 is configured to maintain a seal or at least a substantial seal with the ceiling 58 despite relative movement between the wall 50 and the ceiling 58.


The bubble gasket 120 can be hollow (e.g., filled with atmospheric air or another gas, which can be pressurized or not) or filled with a non-gas substance (e.g., compressible foam). In the illustrated arrangement, the bubble gasket 120 is unitarily-formed with the first leg 102 and/or the second leg 104. In other arrangements, the bubble gasket 120 can be formed separately from the first leg 102 and/or the second leg 104 and affixed thereto. In some configurations, the bubble gasket 120 is co-extruded with the first leg 102 and the second leg 104. The bubble gasket 120 can be the same or a different material from the first leg 102 and/or the second leg 104. In some configurations, the first leg 102 and the second leg 104 are constructed from a vinyl material, or a similar material. The bubble gasket 120 can be constructed of a vinyl material or can be another suitable material, such as an elastomeric or rubber-like material. The bubble gasket 120 can have a different wall thickness (e.g., smaller or larger wall thickness) than one or both of the first leg 102 and/or the second leg 104. Any one or combination of the first leg 102, the second leg 104, and the bubble gasket 120 could also have multiple layers, which can include a vinyl (or similar) layer and a foil (or similar, preferably metal or metalized) layer (e.g., foil tape).


The bubble gasket 120 can be located only on the second leg 104. The bubble gasket 120 can be located at or near a corner or transition between the first leg 102 and the second leg 104. In such configurations, a portion of the bubble gasket 120 can be aligned with or substantially aligned with the first leg 102. As used herein, the bubble gasket 120 being substantially aligned with the first leg 102 means that the relevant portion of the bubble gasket 120 is configured to be aligned with a surface of the joint compound 60 in an installed configuration. In some arrangements, the bubble gasket 120 includes a planar or substantially planar wall that faces outwardly as installed. However, other cross-sectional shapes of the bubble gasket 120 are also possible. Furthermore, in other arrangements, the bubble gasket 120 can be set back along the second leg 104 such that it is spaced rearwardly or inwardly from an exposed surface of the wall board 56 and/or joint compound 60.


The bead element 100 can also include a fire-blocking material 130. In some configurations, the fire-blocking material 130 is located on the second leg 104. The second leg 104 can have a portion located inward (relative to an exposed surface of the wall 50) of the bubble gasket 120 on which the fire-blocking material 130 is located. In other words, the bubble gasket 120 can be located between the fire-blocking material 130 and the corner or the first leg 102. In some configurations, the fire-blocking material 130 is located at or near a free end portion of the second leg 104. One or both of the fire-blocking material 130 and the bubble gasket 120 can be located on an upward-facing or outward-facing surface of the bead element 100. The fire-blocking material 130 can be an intumescent material, such as an intumescent material adhesive strip, an intumescent paint or an intumescent foam. As is known, an intumescent material expands in response to elevated temperature to create a fire-blocking char.


As used herein, a fire-blocking material, component or arrangement provides greater fire-blocking properties than some or all of the surrounding building materials, such as the wall board 56, for example. A fire-blocking material, component or arrangement preferably permits the associated structure to achieve a fire rating by passing relevant fire tests, such as but not limited to relevant UL fire tests or other relevant fire rating tests or standards (e.g., UL-2079). Similarly, a sound blocking material, component or arrangement provides greater sounding blocking properties than the surrounding building materials or than conventional arrangements. A sound blocking material preferably permits the associated structure to achieve a sound rating (e.g., Sound Transmission Class (STC) ratings) that is higher than a standard metal stud wall assembly. Fire-blocking or sound blocking is not intended to require the prevention of heat, smoke, fire or sound passage across the wall.


The illustrated bead element 100 is well-suited for use in a wall assembly having a single layer of wall board 56. The bead element 100 can be elongate and have a consistent cross-sectional shape throughout its length. The length can be selected to provide a compromise between ease of manufacture/storage/shipping and wall length coverage in use. Suitable lengths can be between about 8 feet and about 16 feet, for example and without limitation. In some configurations, a width of the bubble gasket 120 and a width of the intumescent material 130 (or a portion of the second leg 104 located inward of the bubble gasket 120) can be equal or substantially equal (e.g., about one-quarter or five-sixteenths inch). In wall assemblies having additional layers of wall board 56, a width (or cross-sectional length) of the second leg 104 may be increased. In some configurations, the width (or cross-sectional length) of the second leg 104 can be approximately equal to the total thickness of the wall board 58. In such arrangements, the width of the bubble gasket 120 and the width of the intumescent material 130 can be the same as one another and/or the same as in the bead element 100 configured for a single layer of wall board 56. Alternatively, a width of one or both of the bubble gasket 120 and the intumescent material 130 can be increased. A height of the bubble gasket 120 can be equal to or slightly greater than a desired maximum deflection gap of the associated wall assembly 50. In some cases, the height of the bubble gasket 120 can be between about one-half inch to about one inch.



FIG. 3 illustrates the bead element 100 in the wall assembly 50 at an elevated temperature. The profile 106 portion and/or bubble gasket 120 of the bead element 100 are illustrated in dashed line indicating that they are starting to melt away. The intumescent strip 130 is illustrated as expanding. Preferably, expansion of the intumescent strip 130 begins before one or both of the profile 106 portion and the bubble gasket 120 fully melt or dissipate.



FIGS. 4a and 4b illustrates additional embodiments of the bead element 100. These bead elements 100 may be similar in many respects to the bead elements described above and are described below with an emphasis on the differences relative to the previously-described bead elements. Therefore, features that are not described below can be the same as or similar to the corresponding features of the other embodiments described herein, or can be of another suitable arrangement.


With respect to FIG. 4a, an outermost portion of the gasket element 120 is set back from the corner or the outer edge of the second leg 104. Such an arrangement provides a space or reveal above the upper end of the wall board 56 (FIG. 2). In the illustrated arrangement, the gasket element 120 is a single wall construction having an edge (or end in cross-section) connected to the second leg 104 and a free edge (or end). The gasket element 120 is planar or substantially planar and is oriented perpendicular or substantially perpendicular to the second leg 104. However, in other arrangements, the gasket element 120 could have multiple walls or wall portions that connect to the profile 106 at two or more locations to define an enclosed interior space.



FIG. 4b illustrated a bead element 100 having a slightly curved single wall gasket element 120. In the illustrated arrangement, the gasket element 120 is located at or near the corner between the first leg 102 and the second leg 104 or at the outer edge of the second leg 104. Accordingly, the gasket element 120 can be align with or substantially aligned with the first leg 102. The gasket element 120 is oriented perpendicular or substantially perpendicular to the second leg 104. In other arrangements, the gasket element 120 could be set back along the second leg 104 and/or could have multiple walls or wall portions that connect to the profile 106 at two or more locations to define an enclosed interior space.



FIGS. 5 and 6 illustrate another fire-blocking bead element 100 and a wall assembly 50 incorporating the bead element 100. The bead element 100 is similar in many respects to the bead elements described above and is described below with an emphasis on the differences relative to the previously-described bead elements. Therefore, features that are not described below can be the same as or similar to the corresponding features of the other embodiments described herein, or can be of another suitable arrangement.


The bead element 100 of FIGS. 5 and 6 includes a first leg 102 and a second leg 104 that cooperate to form a profile 106. In the illustrated arrangement, the profile 106 is in the form of an angle 106 and is made up in whole or a substantial entirety by the first leg 102 and the second leg 104. However, in other arrangements, the profile 106 can include additional legs or portions. In the illustrated arrangement, the first leg 102 and the second leg 104 are oriented perpendicular or substantially perpendicular to one another.


The bead element 100 includes a gasket element 120, which can be in the form of a bubble gasket 120 such as those described herein. The bubble gasket 120 extends upwardly from an upper surface of the second leg 104 with the bead element 100 oriented as employed in a head-of-wall gap. In the illustrated arrangement, the bubble gasket 120 is located at or adjacent a corner defined between the first leg 102 and the second leg 104. The illustrated bubble gasket 120 has one end connected to the first leg 102 and one end connected to the second leg 104. However, in some arrangements, both ends can be connected to a single one of the first leg 102 and the second leg 104.


In the illustrated arrangement, the bubble gasket 120 includes a planar or substantially planar portion, which can be arranged to be in the same plane as or parallel to the first leg 102. That is, the planar portion can be aligned with or substantially aligned with the first leg 102. Such an arrangement can provide an attractive finished appearance to the head-of-wall gap without the need for additional finishing elements or substances. Alternatively, the bubble gasket 120 can have other suitable shapes, such as square, round or oval. The profile 106, including the bubble gasket 120, can be constructed from any suitable material, such as vinyl, PVC, rubber or rubber-like (e.g., elastomeric) materials. The bubble gasket 120 can be formed separately from the profile 106 and secured thereto or can be formed as a unitary structure. In some cases, the bubble gasket 120 is co-extruded with the profile 106. Such an arrangement avoids the need to separately secure a sealing element to the profile.


In some configurations, the bead element 100 is used to seal a head-of-wall gap and does not provide a fire rating. However, the illustrated bead element 100 includes a fire-resistant material in the form of a material strip 130. The material strip 130 is elongate and has a width that is the same as or greater than a thickness of the strip 130. In some configurations, the fire-resistant material is an intumescent material or other similar material that expands in response to elevated temperatures to create a fire-block (e.g., a fire-blocking char). The intumescent material strip 130 projects beyond a free edge of the leg on which it is secured.


In the illustrated arrangement, the intumescent material strip 130 is secured to the second leg 104 and at least a portion of the intumescent material strip 130 extends beyond an edge of the second leg 104 such that the intumescent material strip 130 contacts the header track 52 or other component of the wall assembly 50 interior of the wall board 56, as illustrated in FIG. 6. Such an arrangement can advantageously create a seal or a substantial seal between the bead element 100 and the header track 52 or other wall structure. In some configurations, the intumescent material strip 130 can contact the header track 52 above any stud-attachment slots when used in connection with a slotted header track. In situations in which fire-blocking is not needed or desired, the intumescent material strip 130 can be replaced with a non-expanding or non-fire-blocking material that functions to create a seal and not a fire-block.


The bead element 100 can have dimensions suitable for the intended purpose. The bead element 100 of FIG. 5, for example, can have a width of one and one-quarter inches for each of the first leg 102 and the second leg 104 when configured for use with two layers of wall board 56. In other arrangements, the width of the second leg 104 can be adjusted for the number of layers of wall board 56 present in the wall assembly 50 (e.g., five-eighths inch or one and seven-eighths inches). A height of the bubble gasket 120 can be one-half inch and a width of the intumescent material strip 130 can be one-half inch.



FIG. 6 illustrates a wall assembly 50 incorporating a pair of the bead elements 100 of FIG. 5. The right side of the wall assembly 50 illustrates the bead element 100 in an installed orientation in the absence of and prior to an elevated temperature. The left side of the wall assembly 50 illustrates the bead element 100 at or after an elevated temperature with the intumescent material strip 130 expanding or expanded to at least partially or fully seal the head-of-wall gap. Under some circumstances, the bubble gasket 120 may melt or otherwise deteriorate or disintegrate. However, preferably, the intumescent material strip 130 has expanded to seal the head-of-wall gap prior to the complete deterioration or disintegration of the bubble gasket 120.


As noted above, the bubble gasket 120 can be left exposed in the finished wall assembly 50. As also described above, the first leg 102 of the profile 106 is typically covered by joint compound 60 during the finishing of the wall board 56. The bubble gasket 120 is capable of permitting movement of the wall studs 54 and wall board 56 relative to the header track 52 and ceiling 58. The bubble gasket 120 can collapse and recover in response to such movement that causes changes in the size of the head-of-wall gap over repeated cycles without cracking or other significant degradation. In contrast, other head-of-wall gap fire-blocking or sealing solutions require a sealant to be applied to the head-of-wall gap, which sealant can be prone to cracking and separating from the ceiling 58 or the wall board 56.


Another benefit of the disclosed arrangements is that the bead element 100 is well-suited to being exposed to a typical construction environment. For example, the integrated or unitary structure of the bead element 100 inhibits or prevents separation of the bubble gasket 120 from the profile 106. With some existing head-of-wall gap fire-blocking or sealing solutions, especially those utilizing fire sealant, the fire sealant can separate from the underlying support structure creating a separation crack that can allow the passages of smoke, heat or sound. Furthermore, the materials from which the bead element 100 is constructed are capable of exposure to moisture. Accordingly, the bead element 100 can be stored outdoors, while many other head-of-wall gap fire-blocking or sealing solutions, especially those utilizing foam sealing elements, must be stored indoors to avoid damage from exposure to moisture or ultraviolet rays.


Versions of the bead element 100 having a unitary structure can be manufactured at a lower cost than solutions requiring assembly of multiple components. The fire-blocking or intumescent material element 130 is concealed and protected by the bubble gasket 120 in use. The bubble gasket 120 can be painted, whereas solutions utilizing foam elements must be covered with joint tape and joint compound before painting is possible. Such arrangements are prone to cracking. The bubble gasket 120 can create an air barrier, whereas at least some foam elements can permit the passage of air. The bubble gasket 120 can also receive a printed UL or other certification indication for ease of inspection. Foam elements are more difficult or impossible to mark in a legible manner.



FIGS. 7-9 illustrate another fire-blocking bead element 100 and a wall assembly 50 incorporating the bead element 100. The bead element 100 is similar in many respects to the bead elements described above and is described below with an emphasis on the differences relative to the previously-described bead elements. Therefore, features that are not described below can be the same as or similar to the corresponding features of the other embodiments described herein, or can be of another suitable arrangement.


The bead element 100 includes a first leg 102 and a second leg 104 that cooperate to form a profile or angle 106. The bead element 100 also includes a gasket element or bubble gasket 120, which can be configured as discussed in connection with any embodiment herein. The bead element 100 also includes an internal seal structure 140. The internal seal structure 140 is configured to form a seal or at least a substantial seal with the header track 52 or other corresponding portion of the wall assembly 50 in a manner similar to the intumescent material strip 130 in the embodiment of FIGS. 5 and 6.


In the illustrated arrangement, the internal seal structure 140 is in the form of a kickout or bent end portion. The kickout 140 is curved and upturned in the illustrated embodiment. The kickout 140 extends from the second leg 104 upward or in a direction opposite that of the first leg 102. Preferably, the kickout 140 is flexible relative to the second leg 104. In some cases, a hinge arrangement may be provided to facilitate movement of the kickout 140 relative to the second leg 104. The hinge arrangement can comprise thinned material regions within or near the junction between the second leg 104 and the kickout 140. In other arrangements, a different wall thickness and/or different material can be used in the kickout 140 to create the greater relative flexibility compared to the first leg 102. In some configurations, the material of one or both of the bubble gasket 120 and the kickout 140 can have a 68-72 (e.g., 70) Shore A durometer.


As illustrated, the intumescent strip 130 can be located adjacent the kickout 140. In the illustrated arrangement, the intumescent strip 130 is located on an upper surface of the second leg 104 in between the kickout 140 and the bubble gasket 120. The intumescent strip 130 can be spaced from one or both of the kickout 140 and the bubble gasket 120.


The illustrated bead element 100 includes a tear off strip 110 that is co-planar with the second leg 104 and extends outwardly from the corner of the first leg 102 and the second leg 104 in a direction opposite the second leg 104. The tear off strip 110 is connected to the remainder of the profile 106 by a thin portion, which allows the tear off strip 110 to be easily removed by hand or with a hand tool, such as pliers. The tear off strip 110 inhibits or prevents joint compound from covering the bubble gasket 120 and/or entering the deflection gap. Once the joint compound has been applied, the tear off strip 110 can be removed.


The bead element 100 can have suitable dimensions for the desired application. The bead element 100 of FIGS. 7 and 8, for example, can have a width of one and one-eighth inches for the first leg 102 and one-half inch or one and one-eighth inches for the second leg 104 when configured for use with one or two layers of wall board 56 respectively. The kickout 140 can have a width or linear dimension in the plane of the second leg 104 of one-quarter inch. In other arrangements, the width of the second leg 104 can be adjusted for the number of layers of wall board 56 present in the wall assembly 50. A height of the bubble gasket 120 can be one-half inch. A width of the intumescent material strip 130 can be five-sixteenth inch and a thickness of the intumescent material strip 130 can be one and one-half millimeters.



FIG. 9 illustrates the bead element 100 incorporated in a wall assembly 50. When installed, the kickout 140 contacts the slotted header track 52 just above the open slots of the track leg. With the kickout 140 in contact with the leg of the header track 52, a seal is created between the bead element 100 and the header track 52 that inhibits or prevents the passage of air, smoke or sound through the open slots of the header track 52. The intumescent material strip 130 is positioned between the kickout 140 and the bubble gasket 120 and is protected from the elements.



FIGS. 10-12 illustrate two additional fire-blocking bead elements 100 and a wall assembly 50 incorporating one of the bead elements 100. The bead elements 100 are similar in many respects to the bead elements described above and is described below with an emphasis on the differences relative to the previously-described bead elements. Therefore, features that are not described below can be the same as or similar to the corresponding features of the other embodiments described herein, or can be of another suitable arrangement.


The bead element 100 of FIG. 10 includes a first leg 102 and a second leg 104 that cooperate to define a profile or angle 106. The bead element 100 also includes a gasket element or bubble gasket 120, which can be configured as discussed in connection with any embodiment herein. The bead element 100 further includes a fire-blocking or intumescent material strip 130. In the illustrated arrangement, the intumescent material strip 130 is located on an interior surface of the bead element 100 relative to the corner between the first leg 102 and the second leg 104. In particular, the intumescent material strip 130 is located on an interior or bottom surface of the second leg 104. In the illustrated arrangement, the intumescent material strip 130 is spaced from the corner and, in some configurations, is located at or near a free end of the second leg 104. By locating the intumescent material strip 130 on the bottom side of the second leg 104, or opposite the bubble gasket 120, the top side of the second leg 104 remains open such that the bubble gasket 120 can be located in any desired position. In some configurations, the intumescent material strip 130 can be utilized to create a seal with the header track, as in the embodiment of FIG. 5. The bead element 100 could also include a kickout 140, as in the embodiment of FIGS. 7 and 8.


In FIG. 10, the bubble gasket 120 is located at or adjacent the corner of the profile 106, in a position similar to the previous embodiments. In the bead element 100 of FIG. 11, the bubble gasket 120 is spaced away from the corner of the profile 106 along the second leg 104. The set back position of the bubble gasket 120 creates a recessed reveal in use, as described in connection with the embodiment of FIG. 4a. FIG. 12 illustrates the bead element 100 of FIG. 10 incorporated in a wall assembly.


Sound Gasket


In the 2012 IBC International Building Code, “Special Inspections” for firestop penetrations and joints went into effect for “High Rise Buildings” (structures greater than 75′ above fire department access) as well as Category III or IV buildings and/or ‘special occupancies’ under Chapter 17. Special Inspections will require visual and/or destructive Testing. Destructive testing is when the special inspector will wait until the firestop product is fully cured and then take a “coupon” (removal of field installed firestop sealant or fire spray) of the sealant/spray to verify its depth at multiple locations at the bond lines. The bond line would be either at the penetration or the perimeter joint of the substrate interface and waiting for sealant to become fully cured will take several weeks, which will greatly impact the project schedule. The Special Inspector would need to obtain the average Shrinkage Value of the material, which will be supplied by the sealant manufacturer and the inspector must compare that data with the actual removed sealant from the project. If the bond line is not securely adhered to both sides of the joint, or if the correct amount of sealant by volume is not installed per the manufacturer's recommendations, the sealant joint may fail inspection and the sealant will have to be removed and properly reinstalled.


This new requirement in the IBC is forcing builders to look to other means and methods for sealing joints. In general, field applied sealants have been the most common way to seal building joints from fire, smoke and sound. But over the years, sealants have proven to be problematic, which is one of the reasons for the intense scrutiny placed on building joints in the newly revised 2012 IBC. Sealants by nature will shrink as they cure, and when the sealant shrinks it tends to pull away from the drywall, breaking the bond line and leaving a visible separation crack. Separation cracks will allow smoke and sound to pass through the joint, therefore compromising the effectiveness of the building joint.


Compounding the problem is the framing screws that are used on the top (header) and bottom tracks to secure the vertical framing studs within the track. The head of the framing screws protrudes about three-thirty-seconds inch ( 3/32″) off the surface of the track. This protrusion causes the wall board to flare out away from the track as it passes over each framing screw. Framing screws are generally located every 16″ to 24″ on center along the length of the track. When the wall board flares out around the framing screws, gaps are created between the drywall and the track. Gaps result in sound flanking paths that can greatly reduce the STC sound performance of the wall. In addition, these gaps can create pathways for smoke to pass from one side of the wall to the other.


One or more embodiments disclosed herein create an improved seal for building joints that will not shrink or pull away from the drywall and do not rely on utilizing traditional sealant. In particular, FIG. 13 illustrates an embodiment of a bead element 100 in the form of a sound gasket. The sound gasket 100 is configured to create a seal at the head-of-wall gap to reduce the transmission of sound in comparison to an unsealed stud wall assembly or a traditionally sealed stud wall assembly in which the sealant has shrunk or separated, as described above. The sound gasket 100 is similar in many respects to the bead elements described above and is described below with an emphasis on the differences relative to the previously-described bead elements. Therefore, features that are not described below can be the same as or similar to the corresponding features of the other embodiments described herein, or can be of another suitable arrangement.



FIG. 13 is an end view of a cross-sectional view of the sound gasket 100, which has a first leg 102 and a second leg 104 that cooperate to form an L-shaped profile 106. The sound gasket 100 also include a sealing element, such as a bubble gasket 120. The illustrated bubble gasket 120 has a part-circular cross-sectional shape and has ends coupled to each of the first leg 102 and the second leg 104. The bubble gasket 120 encloses the outer surface of the corner between the first leg 102 and the second leg 104.


The profile 106 of the sound gasket 100 includes a protrusion, such as a protruding rib 150 on an interior surface of the first leg 102. Preferably, the rib 150 is continuous along the length of the profile or sound gasket 100. The rib 150 can be square in cross-sectional shape; however, other suitable shapes can also be used. The rib 150 is configured to contact the header track 52 and space at least a lower portion of the first leg 102 away from the header track 52 to accommodate a head of the stud fastener between the first leg 102 and the leg of the header track 52. As a result, the exterior surface of the first leg 102 creates a substantially planar surface against which the wall board 56 can seal, despite the presence of the fastener heads. The bubble gasket 120 creates a seal with the ceiling 58 so that the head-of-wall gap is adequately sealed against the transmission of sound.



FIGS. 14 and 15 illustrate the sound gasket 100 installed in a wall assembly 50. FIG. 14 is a side view of the wall assembly 50 and illustrates the space created by the rib 150, which accommodates the fastener head between the header track 52 and the first leg 102. FIG. 14 also illustrates the seal of the wall board 56 against the sound gasket 100 and the seal of the bubble gasket 120 against the ceiling 58. FIG. 15 is a top view of the wall assembly 50 illustrating how the sound gasket 100 accommodates the fastener heads, while providing a flat surface against which the wall board 56 can rest, and which avoids the situation in which the wall board flares out around the fastener heads as occurs in prior art constructions.


Unlike the prior bead elements, the sound gasket 100 is installed underneath the wall board 56. That is, the sound gasket 100 is positioned between the header track 52 and the wall board 56. In some configurations, the sound gasket 100 is configured to be friction fit over the leg of the field installed top (header) and/or bottom track prior to installing the wall board 56 over the face of the framing studs 54. The hollow bubble gasket 120 located on the outer corner is flexible and able to conform to uneven overhead structures 58, such as post-tension concrete slabs. This seal is what inhibits or prevents smoke or sound from passing over the top web of the track as it is very difficult to secure the metal track to the overhead concrete slab in a manner that can provide a tight seal to prevent smoke or sound passage.


In some configurations, the horizontal second leg 104 is configured to work as a wedge, as the free end is thinner and gradually gets thicker toward the corner of the profile 106. When the second leg 104 of the sound gasket 100 is tapped into place over the web of the header or bottom track, the hollow bubble gasket 120 will also provide a locking mechanism as the hollow bubble gasket 120 conforms to the surface of the concrete and still allow flexibility so that the seal will stay in contact even as the building moves during construction.


The vertical first leg 102 covers the flange or leg of the metal framing track 52 and by doing so provides smoke and sound protection. This is advantageous since the header track 52 typically has a series of vertical slots to accommodate the stud fasteners, which if left unprotected will allow a great deal of smoke and sound to pass. The vertical first leg 102 of the sound gasket 100 provides a permanent seal to prevent smoke or sound from passing through the framing members, in contrast to sealants that tend to shrink, as described above.


In some configurations, the sound gasket 100 is constructed completely from vinyl, plastic, rubber or any combination thereof—or of other similar materials. These types of materials may not hold up well to elevated heat from a fire, but they will contribute greatly to smoke and sound rated walls. In metal stud framed sound wall assemblies it is desirable that the materials used remain flexible. The characteristics of the vinyl (plastic, rubber or similar material) sound gasket 100 will not change over time and, therefore, the STC sound ratings will not be compromised over time.


Fire-Rated Reveals



FIGS. 16-24 illustrate several variations of a fire-blocking component, in the form of fire-rated reveal components, or fire-rated reveals. The fire-rated reveals are configured to cooperate with one or more pieces or sections of wall board to create an aesthetic reveal gap within or along the edge of a wall, preferably without requiring an extra layer of wall board. The fire-rated reveals generally include an elongate body or profile that carries a fire-resistant material, such as an intumescent strip.



FIGS. 16 and 17 illustrates an end view or cross-section of a fire-rated reveal 100 and a wall assembly 120 incorporating the fire-rated reveal 100, respectively. The fire-rated reveal 100 can provide a fire rating according to UL-2079 and ASTM E1966. The fire-rated reveal 100 can be sold in standard lengths (e.g., 5′, 10′, 12′). The profile 106 of the fire-rated reveal 100 can be formed partially or entirely of vinyl, aluminum, steel or another suitable material. The profile 106 can include a pair of flanges 116, 118. Between the flanges 116, 118, the fire-rated reveal 100 can include a V-shaped central portion 122. The V-shaped central portion 122 can support or otherwise include fire-resistant material 12. The fire-resistant material 12 can be included on one or both sides of the V-shaped central portion 122. The fire-resistant material 12 can be an intumescent material, such as an intumescent material strip.


The fire-rated reveal 100 can be used for protecting an exterior or interior wall assembly 120. The wall assembly 120 can include a first wall board portion or member 136, a second wall board portion or member 138 and/or one or more studs 134. The wall assembly 120 can define a reveal gap 124. The reveal gap 124 can be a location in the wall that is absent of wall board or other backing material (e.g., between wall board members 136, 138). The reveal gap 124 can be oriented vertically, horizontally, or at an angle across the wall assembly 120, depending on the desired appearance.


The V-shaped central portion 122 can be installed within the reveal gap 124 of the wall assembly 120 between the ends and inset from the outer surface of the wall board members 136, 138. The flanges 116, 118 can be attached (e.g., with staples or other mechanical fasteners) to the respective wall board members 136, 138. Preferably, the flanges 116, 118 are perforated. That is, the flanges 116, 118 comprise a plurality of holes that allows joint compound to key into the holes to inhibit or prevent cracking of the joint compound. The fire-rated reveal 100 can provide a fire-block to the reveal gap 124 so that only one layer of wall board is necessary. In a prior art arrangement, a first layer of wall board would be arranged continuously without a gap and a second layer of wall board would be applied over the first layer and would include the reveal gap.



FIGS. 18 and 19 illustrate an end view or cross-section of a fire-rated reveal 200 and a wall assembly 120 incorporating the fire-rated reveal 200. The fire-rated reveal 200 can be similar in many respects to the fire-rated reveal 100 and is described below with an emphasis on the differences relative to the fire-rated reveal 100. Therefore, features that are not described below can be the same as or similar to the corresponding features of the fire-rated reveal 100 or other embodiments of a fire-block component described herein, or can be of another suitable arrangement.


The fire-rated reveal 200 can be sold in standard lengths (e.g., 5′, 10′, 12′). The profile 206 of the fire-rated reveal 200 can be formed partially or entirely of vinyl, aluminum, steel or another suitable material. The profile 206 of the fire-rated reveal 200 can include one or more (e.g., a pair of) flanges 218, 220. Between the flanges 218, 220 can be a central portion 222. The central portion 222 can have a rectangular shaped cross-section. The central portion 222 can include a central panel 222a, a side panel 222b, and/or a side panel 222c. The side panels 222b, 222c can be orthogonal with respect to the central panel 222a. The side panels 222b and/or 222c can support or otherwise include the fire-resistant material 12.


The fire-resistant material 12 can be in the form of one or more adhesive intumescent material strips applied to the central portion 222. Advantageously, the fire-resistant material 12 can have an expansion temperature that is below the melt temperature of the material of the profile 206 of the fire-rated reveal 200. In some implementations, vinyl melts at about 500° F. and aluminum at about 1200° F., while the intumescent expands at about 375° F. The fire-resistant material 12 can be attached on an outer side of the central portion 222 so that the fire-resistant material 12 faces the ends of the wall board members 136, 138. The central portion 222 can have a width W. The width W can be between one-quarter inch (¼″) and three inches (3″). However, the width W is not limited to this range.


The fire-rated reveal 200 can be installed within the wall assembly 120, as shown in FIG. 19. The fire-rated reveal 200 can be a single step application for fire-blocking the wall assembly 120. The fire-rated reveal 200 installed within the wall assembly 120 can meet the standards of UL-2079 and ASTM E1966.


The central portion 222 can be installed within the reveal gap 124. The flanges 218, 220 can be attached (e.g., with adhesives and/or mechanical fasteners) with outer surfaces of the respective wall board members 136, 138. The flanges 218, 220 can be covered in joint compound (e.g., plaster or mud) to blend into the material of the wall board 136, 138.


The side panels 222b, 222c can be aligned with planar edges 136a, 136b of the wall board members 136, 138, respectively. The fire-resistant material 12 can be placed between the planar edges 136a, 136b of the wall board members 136, 138 and the panels 222b, 222c, respectively. As shown further in FIG. 20, when there is a fire event, the fire-resistant material 12 can expand in a direction that is perpendicular to the planar edges 136a, 136b of the wall board members 136, 138. Accordingly, the reveal gap 124 can be efficiently closed by the expanding fire-resistant material 12.


Advantageously, the cross-sectional shape of the central portion 222 can be used to enhance the architectural appearance of the wall assembly 120. The rectangular cross-sectional shape of the central portion 222 can form a reveal. Desirably, as compared with the V-shaped central portion 122 of the fire-block 100, the central portion 222 does not visually narrow to a point. Moreover, the central portion 222 can be easier to clean because of the open orientation of the central panel 222a with the side panels 222b, 222c.


Fire-Rated Z-Shaped Reveal



FIGS. 21 and 22 illustrate a Z-shaped fire-rated reveal 300 and a wall assembly 320 incorporating the Z-shaped fire-rated reveal 300, respectively. The fire-rated reveal 300 can be similar in many respects to the fire-rated reveals 100 and 200, and is described below with an emphasis on the differences relative to the fire-rated reveals 100, 200. Therefore, features that are not described below can be the same as or similar to the corresponding features of the fire-rated reveal 100, 200 or other embodiments of a fire-block component described herein, or can be of another suitable arrangement.


The fire-rated reveal 300 can be sold in standard lengths (e.g., 5′, 10′, 12′). The fire-rated reveal 300 can provide fire rating according to UL-2079 and ASTM E1966. The reveal 300 can include a Z-shaped profile layer 304. The Z-shaped layer can be constructed in whole or in part from vinyl, aluminum, steel or other suitable material. The fire-rated reveal 300 can include a fire-resistant material 312. The fire-resistant material 312 can be an intumescent material. In some configurations, the fire-resistant material 312 is an adhesive intumescent material strip.


The Z-shaped layer 304 can include a lower flange 306, an upper flange 310 and/or a central flange 308. The central flange 308 can connect the upper flange 310 and the lower flange 306. The central flange 308 can be generally planar, although this is not required. The upper flange 310 can be generally planar, although this is not required. The central flange 308 can be connected at one end with the upper flange 310. The angle of connection between the upper flange 310 and the central flange 308 can be generally orthogonal. The lower flange 306 can be generally planar, although this is not required. The lower flange 306 can be connected on one end with the central flange 308. The central flange 308 can be generally orthogonal with the lower flange 306. The upper flange 310 and the lower flange 306 can be connected on opposite ends of the central flange 308. In other implementations, the upper and/or lower flanges 310, 306 can be at non-orthogonal angles with respect to the central flange 308.


The flanges 306, 308, 310 can have various lengths. The lengths can be between one-half inch (½″) and two inches (2″), although this is not required. The central flange 308 can be made available in varying lengths, which can be based on the number of layers of wall board 336 in the wall assembly 320. The lower flange 306 (in the illustrated orientation) can include a plurality of perforations 306a.


In a conventional fire-block for a control joint, fire sealant (e.g., mineral wool) would fill-in any gap in the control joint. Thus, architectural reveals cannot be fire-blocked using conventional methods without filling in the reveal gap. Here, the fire-rated reveal 300 can be used to fire-block architectural reveals that include a gap. FIG. 22 shows the reveal 300 installed within a head of wall assembly 320. The wall assembly 320 can include a fixed overhead structure 332, a header track 335, a plurality of studs 334, and/or a wall board 336. The wall board 336 can be connected to the studs 334. The studs 334 can be connected to the header track 335. The header track 335 can be a solid header track such that the wall board 336/studs 334 are fixed relative to the header track 335 or the header track 335 can be a slotted header track that allows movement between the wall board 336/studs 334 and the fixed structure 332.


The wall assembly 320 can include a reveal gap 324. The reveal gap 324 can be between an upper end surface 336a of the wall board 336 and the fixed structure 332. The reveal gap 324 can have a height H1. In a dynamic head-of-wall arrangement, the height H1 of the reveal gap 324 can be variable as the wall board 336 and the studs 334 move with respect to the header track 335 and the fixed structure 332.


The fire-rated reveal 300 can be installed at least partially within the reveal gap 324. The fire-rated reveal 300 can be installed in a single step application. For example, the fire-rated reveal 300 can be adhered or fastened to the wall board 336. The central flange 308 can be installed within the reveal gap 324. The central flange 308 and/or the fire-resistant material 312 can rest on an upper end surface 336a of the wall board 336. The fire-resistant material 312 can be placed on an unexposed side of the central flange 308 adjacent the end 336a of the wall board 336. The central flange 308 can be positioned parallel with the upper end 336a of the drywall. The central flange 308 can run parallel with the upper end 336a.


The upper flange 310 can be installed within the reveal gap 324. An upper end 310a of the upper flange 310 can contact the fixed structure 332. The upper flange 310 can have a height H2 from the central flange 308. The height H2 can be related to the maximum opening width of the reveal gap 324 (e.g., height H1). In some configurations, the height H2 will be slightly smaller than the height H1 to account for the thicknesses of the fire-resistant material 312 and the central flange 308. The upper flange 310 can be flexible with respect to the central flange 308. Accordingly, as the reveal gap 324 narrows (H1 decreases), the upper flange 310 can flex to maintain contact with the fixed structure 332. In other applications, the reveal gap 324 can be a constant size and the upper flange 310 can be relatively or substantially rigid.


The lower flange 306 can be placed against an outer surface of the wall board 336. A joint compound 319 or other suitable finishing material can be applied to the wall board 336 over the lower flange 306 to mask its appearance. The joint compound 319 can engage the perforations 306a to improve the connection between the joint compound 319 and the lower leg 306 and/or to prevent cracking.


The fire-resistant material 312 can expand in response to being heated. The expansion can move upwardly (e.g., perpendicularly) from the upper end 336a towards the fixed structure 332. The expansion can occur between the upper flange 310 and the header track 335 or the force of the expansion can move the central flange 308 and upper flange 310 fully or partially out of the reveal gap 324. In some cases, the profile 304 will begin to melt or disintegrate, which can facilitate expansion of the fire-resistant material 312. The expansion of the fire-resistant material 312 can substantially or fully close and seal the reveal gap 324 against the passage of fire or smoke for at least a period of time.


The Z-shaped fire-rated reveal 300 can be used in or modified for use in a variety of reveals or other gaps in a construction. For example, FIG. 23 shows a vertically oriented reveal in cross-section as viewed from above. The reveal 300 can be used in a vertical wall gap on one or both sides of the wall. FIG. 24 shows a base of wall assembly in cross-section. The reveal 300 can be used in a base of wall assembly on one or both sides of the wall. In such an arrangement, the reveal 300 is used in an upside-down orientation relative to the orientation of FIGS. 21 and 22.


Conclusion

It should be emphasized that many variations and modifications may be made to the herein-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims. Moreover, any of the steps described herein can be performed simultaneously or in an order different from the steps as ordered herein. Moreover, as should be apparent, the features and attributes of the specific embodiments disclosed herein may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.


Moreover, the following terminology may have been used herein. The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an item includes reference to one or more items. The term “ones” refers to one, two, or more, and generally applies to the selection of some or all of a quantity. The term “plurality” refers to two or more of an item. The term “about” or “approximately” means that quantities, dimensions, sizes, formulations, parameters, shapes and other characteristics need not be exact, but may be approximated and/or larger or smaller, as desired, reflecting acceptable tolerances, conversion factors, rounding off, measurement error and the like and other factors known to those of skill in the art. The term “substantially” means that the recited characteristic, parameter, or value need not be achieved exactly, but that deviations or variations, including for example, tolerances, measurement error, measurement accuracy limitations and other factors known to those of skill in the art, may occur in amounts that do not preclude the effect the characteristic was intended to provide.


Numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also interpreted to include all of the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but should also be interpreted to also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3 and 4 and sub-ranges such as “about 1 to about 3,” “about 2 to about 4” and “about 3 to about 5,” “1 to 3,” “2 to 4,” “3 to 5,” etc. This same principle applies to ranges reciting only one numerical value (e.g., “greater than about 1”) and should apply regardless of the breadth of the range or the characteristics being described. A plurality of items may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary. Furthermore, where the terms “and” and “or” are used in conjunction with a list of items, they are to be interpreted broadly, in that any one or more of the listed items may be used alone or in combination with other listed items. The term “alternatively” refers to selection of one of two or more alternatives, and is not intended to limit the selection to only those listed alternatives or to only one of the listed alternatives at a time, unless the context clearly indicates otherwise.

Claims
  • 1. An elongate fire-blocking bead element, comprising: a first leg;a second leg, the first leg and the second leg arranged to form a generally L-shaped structure in cross-section, the first leg configured to extend along an outward-facing surface of a wall board of a wall in use, the second leg configured to be positioned between the wall board of the wall and an overhead structure in use;the second leg further comprising a first portion and a second portion, the first portion connected to the first leg on one end and connected to the second portion on the other end, wherein the second portion is a kickout having a free edge on one end and connected to the first portion on the other end, wherein the free edge is configured to contact a wall component when in use;a fire blocking material strip located on the first portion of the second leg and configured to extend along a length of the first portion, wherein the fire blocking material strip comprises a first side and a second side opposite the first side, wherein the first side is connected to the first portion and the second side is exposed facing the overhead structure; anda gasket element between the fire blocking material strip and the first leg configured to contact the overhead structure in use, wherein the gasket element is compressible to conform to an irregular surface of the overhead structure.
  • 2. The elongate fire-blocking bead element of claim 1, wherein at least the first leg, and the second leg are formed as a unitary structure.
  • 3. The elongate fire-blocking bead element of claim 2, wherein the unitary structure is made from vinyl, plastic, rubber or a combination thereof.
  • 4. The elongate fire-blocking bead element of claim 1, wherein the second leg is shorter than the first leg.
  • 5. The elongate fire-blocking bead element of claim 4, wherein the first leg comprises a plurality of perforations.
  • 6. The elongate fire-blocking bead element of claim 1, wherein the gasket element is a bubble gasket having a wall that defines an interior space.
  • 7. A wall assembly comprising the elongate fire-blocking bead element of claim 1.
  • 8. The wall assembly of claim 7 further comprising a slotted header track, wherein the wall component is the slotted header track.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/541,951, filed Aug. 15, 2019, which claims benefit of U.S. Provisional Patent Application No. 62/764,883 filed Aug. 16, 2018, U.S. Provisional Patent Application No. 62/775,801 filed Dec. 5, 2018, U.S. Provisional Patent Application No. 62/780,059, filed Dec. 14, 2018, and U.S. Provisional Patent Application No. 62/870,933, filed Jul. 5, 2019. The entire disclosure of each of the above items is hereby made part of this specification as if set forth fully herein and incorporated by reference for all purposes, for all that it contains.

US Referenced Citations (585)
Number Name Date Kind
661832 Wilkinson Nov 1900 A
716628 Dickey Dec 1902 A
965595 Nicholson Jul 1910 A
1130722 Fletcher Mar 1915 A
1563651 Pomerantz Dec 1925 A
1719728 Saunders Jul 1929 A
2020576 Runde Nov 1935 A
2105771 Holdsworth Jan 1938 A
2114386 Killion Apr 1938 A
2218426 Hulbert, Jr. Oct 1940 A
2556878 Kohlhaas Jun 1951 A
2664739 Marcy Jan 1954 A
2683927 Maronek Jul 1954 A
2688927 Nuebling Sep 1954 A
2733786 Drake Feb 1956 A
2994114 Black Aug 1961 A
3041682 Alderfer et al. Jul 1962 A
3129792 Gwynne Apr 1964 A
3153467 Nelsson et al. Oct 1964 A
3271920 Downing, Jr. Sep 1966 A
3309826 Zinn Mar 1967 A
3324615 Zinn Jun 1967 A
3346909 Blackburn Oct 1967 A
3355852 Lally Dec 1967 A
3397495 Thompson Aug 1968 A
3460302 Cooper Aug 1969 A
3481090 Lizee Dec 1969 A
3495417 Ratliff Feb 1970 A
3537219 Navarre Nov 1970 A
3562985 Nicosia Feb 1971 A
3566559 Dickson Mar 1971 A
3600854 Dallaire et al. Aug 1971 A
3604167 Hays Sep 1971 A
3609933 Jahn et al. Oct 1971 A
3648419 Marks Mar 1972 A
3668041 Lonning Jun 1972 A
3683569 Holm Aug 1972 A
3696569 Didry Oct 1972 A
3707819 Calhoun et al. Jan 1973 A
3713263 Mullen Jan 1973 A
3730477 Wavrunek May 1973 A
3744199 Navarre Jul 1973 A
3757480 Young Sep 1973 A
3786604 Kramer Jan 1974 A
3837126 Voiturier et al. Sep 1974 A
3839839 Tillisch et al. Oct 1974 A
3866370 Guarino et al. Feb 1975 A
3908328 Nelsson Sep 1975 A
3921346 Sauer et al. Nov 1975 A
3922830 Guarino et al. Dec 1975 A
3934066 Murch Jan 1976 A
3935681 Voiturier et al. Feb 1976 A
3955330 Wendt May 1976 A
3964214 Wendt Jun 1976 A
3974607 Balinski Aug 1976 A
3976825 Anderberg Aug 1976 A
3998027 Wendt et al. Dec 1976 A
4011704 O'Konski Mar 1977 A
4103463 Dixon Aug 1978 A
4122203 Stahl Oct 1978 A
4130972 Varlonga Dec 1978 A
4139664 Rick Feb 1979 A
4144335 Edwards Mar 1979 A
4144385 Downing Mar 1979 A
4152878 Balinski May 1979 A
4164107 Kraemling et al. Aug 1979 A
4178728 Ortmanns et al. Dec 1979 A
4197687 Benoit Apr 1980 A
4203264 Kiefer et al. May 1980 A
4205498 Unayama Jun 1980 A
4217731 Saino Aug 1980 A
4269890 Breitling et al. May 1981 A
4276332 Castle Jun 1981 A
4281494 Weinar Aug 1981 A
4283892 Brown Aug 1981 A
4295304 Kim Oct 1981 A
4318253 Wedel Mar 1982 A
4324835 Keen Apr 1982 A
4329820 Wendt May 1982 A
4356672 Beckman et al. Nov 1982 A
4361994 Carver Dec 1982 A
4424653 Heinen Jan 1984 A
4433732 Licht et al. Feb 1984 A
4434592 Reneault et al. Mar 1984 A
4437274 Slocum et al. Mar 1984 A
4454690 Dixon Jun 1984 A
4461120 Hemmerling Jul 1984 A
4467578 Weinar Aug 1984 A
4480419 Crites Nov 1984 A
4495238 Adiletta Jan 1985 A
4497150 Wendt et al. Feb 1985 A
4507901 Carroll Apr 1985 A
4509559 Cheetham et al. Apr 1985 A
4517782 Shamszadeh May 1985 A
4574454 Dyson Mar 1986 A
4575979 Mariani Mar 1986 A
4578913 Eich Apr 1986 A
4598516 Groshong Jul 1986 A
4622791 Cook et al. Nov 1986 A
4622794 Geortner Nov 1986 A
4632865 Tzur Dec 1986 A
4649089 Thwaites Mar 1987 A
4663204 Langham May 1987 A
4672785 Salvo Jun 1987 A
4709517 Mitchell et al. Dec 1987 A
4711183 Handler et al. Dec 1987 A
4723385 Kallstrom Feb 1988 A
4756945 Gibb Jul 1988 A
4761927 O'Keeffe et al. Aug 1988 A
4787767 Wendt Nov 1988 A
4798035 Mitchell et al. Jan 1989 A
4805364 Smolik Feb 1989 A
4810986 Leupold Mar 1989 A
4822659 Anderson et al. Apr 1989 A
4825610 Gasteiger May 1989 A
4830913 Ortmans et al. May 1989 A
4845904 Menchetti Jul 1989 A
4850173 Beyer et al. Jul 1989 A
4850385 Harbeke Jul 1989 A
4854096 Smolik Aug 1989 A
4854107 Roberts Aug 1989 A
4866898 LaRoche et al. Sep 1989 A
4881352 Glockenstein Nov 1989 A
4885884 Schilger Dec 1989 A
4897976 Williams et al. Feb 1990 A
4899510 Propst Feb 1990 A
4914880 Albertini Apr 1990 A
4918761 Harbeke Apr 1990 A
4930276 Bawa et al. Jun 1990 A
4935281 Tolbert et al. Jun 1990 A
4982540 Thompson Jan 1991 A
4986040 Prewer et al. Jan 1991 A
4987719 Goodson, Jr. Jan 1991 A
4992310 Gelb et al. Feb 1991 A
5010702 Daw et al. Apr 1991 A
5058342 Crompton Oct 1991 A
5090170 Propst Feb 1992 A
5094780 von Bonin Mar 1992 A
5103589 Crawford Apr 1992 A
5105594 Kirchner Apr 1992 A
5111579 Andersen May 1992 A
5125203 Daw Jun 1992 A
5127203 Paquette Jul 1992 A
5127760 Brady Jul 1992 A
5140792 Daw et al. Aug 1992 A
5146723 Greenwood et al. Sep 1992 A
5152113 Guddas Oct 1992 A
5155957 Robertson et al. Oct 1992 A
5157883 Meyer Oct 1992 A
5157887 Watterworth, III Oct 1992 A
5167876 Lem Dec 1992 A
5173515 von Bonin et al. Dec 1992 A
5203132 Smolik Apr 1993 A
5205099 Grünhage et al. Apr 1993 A
5212914 Martin et al. May 1993 A
5214894 Glesser-Lott Jun 1993 A
5222335 Petrecca Jun 1993 A
5228254 Honeycutt, Jr. Jul 1993 A
5244709 Vanderstukken Sep 1993 A
5279087 Mann Jan 1994 A
5279088 Heydon Jan 1994 A
5279091 Williams et al. Jan 1994 A
5282615 Green et al. Feb 1994 A
5285615 Gilmour Feb 1994 A
5307600 Simon et al. May 1994 A
5315804 Attalla May 1994 A
5319339 Leupold Jun 1994 A
5325651 Meyer et al. Jul 1994 A
5339577 Snyder Aug 1994 A
5347780 Richards et al. Sep 1994 A
5367850 Nicholas Nov 1994 A
5374036 Rogers et al. Dec 1994 A
5376429 McGroarty Dec 1994 A
5390458 Menchetti Feb 1995 A
5390465 Rajecki Feb 1995 A
5394665 Johnson Mar 1995 A
5412919 Pellock et al. May 1995 A
5433991 Boyd, Jr. et al. Jul 1995 A
5452551 Charland et al. Sep 1995 A
5454203 Turner Oct 1995 A
5456050 Ward Oct 1995 A
5460864 Heitkamp Oct 1995 A
5471791 Keller Dec 1995 A
5471805 Becker Dec 1995 A
5475961 Menchetti Dec 1995 A
5477652 Torrey et al. Dec 1995 A
5502937 Wilson Apr 1996 A
5505031 Heydon Apr 1996 A
5531051 Chenier, Jr. et al. Jul 1996 A
5552185 De Keyser Sep 1996 A
5592796 Landers Jan 1997 A
5604024 von Bonin Feb 1997 A
5607758 Schwartz Mar 1997 A
5644877 Wood Jul 1997 A
5687538 Frobosilo et al. Nov 1997 A
5689922 Daudet Nov 1997 A
5694726 Wu Dec 1997 A
5709821 von Bonin et al. Jan 1998 A
5724784 Menchetti Mar 1998 A
5735100 Campbell Apr 1998 A
5740635 Gil et al. Apr 1998 A
5740643 Huntley Apr 1998 A
5755066 Becker May 1998 A
5765332 Landin et al. Jun 1998 A
5787651 Horn et al. Aug 1998 A
5797233 Hascall Aug 1998 A
5798679 Pissanetzky Aug 1998 A
5806261 Huebner et al. Sep 1998 A
5820958 Swallow Oct 1998 A
5822935 Mitchell et al. Oct 1998 A
5870866 Herndon Feb 1999 A
5913788 Herren Jun 1999 A
5921041 Egri, II Jul 1999 A
5927041 Sedlmeier et al. Jul 1999 A
5930963 Nichols Aug 1999 A
5930968 Pullman Aug 1999 A
5945182 Fowler et al. Aug 1999 A
5950385 Herren Sep 1999 A
5968615 Schlappa Oct 1999 A
5968669 Liu et al. Oct 1999 A
5970672 Robinson Oct 1999 A
5974750 Landin et al. Nov 1999 A
5974753 Hsu Nov 1999 A
6023898 Josey Feb 2000 A
6058668 Herren May 2000 A
6061985 Kraus et al. May 2000 A
6110559 De Keyser Aug 2000 A
6116404 Heuft et al. Sep 2000 A
6119411 Mateu Gil et al. Sep 2000 A
6128874 Olson et al. Oct 2000 A
6128877 Goodman et al. Oct 2000 A
6131352 Barnes et al. Oct 2000 A
6151858 Ruiz et al. Nov 2000 A
6153668 Gestner et al. Nov 2000 A
6176053 St. Germain Jan 2001 B1
6182407 Turpin et al. Feb 2001 B1
6189277 Boscamp Feb 2001 B1
6207077 Burnell-Jones Mar 2001 B1
6207085 Ackerman Mar 2001 B1
6213679 Frobosilo et al. Apr 2001 B1
6216404 Vellrath Apr 2001 B1
6233888 Wu May 2001 B1
6256948 Van Dreumel Jul 2001 B1
6256960 Babcock et al. Jul 2001 B1
6256980 Lecordix et al. Jul 2001 B1
6279289 Soder et al. Aug 2001 B1
6305133 Cornwall Oct 2001 B1
6318044 Campbell Nov 2001 B1
6374558 Surowiecki Apr 2002 B1
6381913 Herren May 2002 B2
6405502 Cornwall Jun 2002 B1
6408578 Tanaka et al. Jun 2002 B1
6430881 Daudet et al. Aug 2002 B1
6470638 Larson Oct 2002 B1
6487825 Silik Dec 2002 B1
6574930 Kiser Jun 2003 B2
6595383 Pietrantoni Jul 2003 B2
6606831 Degelsegger Aug 2003 B2
6647691 Becker et al. Nov 2003 B2
6668499 Degelsegger Dec 2003 B2
6679015 Cornwall Jan 2004 B1
6688056 Von Hoyningen Huene et al. Feb 2004 B2
6688499 Zhang Feb 2004 B2
6698146 Morgan et al. Mar 2004 B2
6705047 Yulkowski Mar 2004 B2
6708627 Wood Mar 2004 B1
6711871 Beirise et al. Mar 2004 B2
6732481 Stahl, Sr. May 2004 B2
6739926 Riach et al. May 2004 B2
6748705 Orszulak Jun 2004 B2
6783345 Morgan et al. Aug 2004 B2
6792733 Wheeler et al. Sep 2004 B2
6799404 Spransy Oct 2004 B2
6843035 Glynn Jan 2005 B1
6854237 Surowiecki Feb 2005 B2
6871470 Stover Mar 2005 B1
6951162 Shockey et al. Oct 2005 B1
6996944 Shaw Feb 2006 B2
7043880 Morgan et al. May 2006 B2
7059092 Harkins et al. Jun 2006 B2
7104024 deGirolamo et al. Sep 2006 B1
7152385 Morgan et al. Dec 2006 B2
7191845 Loar Mar 2007 B2
7240905 Stahl Jul 2007 B1
7251918 Reif et al. Aug 2007 B2
7284355 Becker et al. Oct 2007 B2
7302776 Duncan et al. Dec 2007 B2
7398856 Foster et al. Jul 2008 B2
7413024 Simontacchi et al. Aug 2008 B1
7441565 Imamura et al. Oct 2008 B2
7487591 Harkins et al. Feb 2009 B2
7497056 Surowiecki Mar 2009 B2
7506478 Bobenhausen Mar 2009 B2
7513082 Johnson Apr 2009 B2
7540118 Jensen Jun 2009 B2
7594331 Andrews et al. Sep 2009 B2
7603823 Cann Oct 2009 B2
7610725 Willert Nov 2009 B2
7617643 Pilz et al. Nov 2009 B2
7681365 Klein Mar 2010 B2
7685792 Stahl, Sr. et al. Mar 2010 B2
7716891 Radford May 2010 B2
7735295 Surowiecki Jun 2010 B2
7752817 Pilz et al. Jul 2010 B2
7775006 Giannos Aug 2010 B2
7776170 Yu et al. Aug 2010 B2
7797893 Stahl, Sr. et al. Sep 2010 B2
7810295 Thompson Oct 2010 B2
7814718 Klein Oct 2010 B2
7827738 Abrams et al. Nov 2010 B2
7836652 Futterman Nov 2010 B2
7866108 Klein Jan 2011 B2
7870698 Tonyan et al. Jan 2011 B2
7921537 Rodlin Apr 2011 B2
7921614 Fortin et al. Apr 2011 B2
7941981 Shaw May 2011 B2
7950198 Pilz et al. May 2011 B2
7966778 Klein Jun 2011 B2
7984592 Iras Jul 2011 B1
8029345 Messmer et al. Oct 2011 B2
8056293 Klein Nov 2011 B2
8061099 Andrews Nov 2011 B2
8062108 Carlson et al. Nov 2011 B2
8069625 Harkins et al. Dec 2011 B2
8074412 Gogan et al. Dec 2011 B1
8074416 Andrews Dec 2011 B2
8079188 Swartz et al. Dec 2011 B2
8087205 Pilz et al. Jan 2012 B2
8096084 Studebaker et al. Jan 2012 B2
8100164 Goodman et al. Jan 2012 B2
8132376 Pilz et al. Mar 2012 B2
8136314 Klein Mar 2012 B2
8151526 Klein Apr 2012 B2
8181404 Klein May 2012 B2
8225581 Strickland et al. Jul 2012 B2
8281552 Pilz et al. Oct 2012 B2
8286397 Shaw Oct 2012 B2
8318304 Valenziano Nov 2012 B2
8322094 Pilz et al. Dec 2012 B2
8353139 Pilz Jan 2013 B2
8375666 Stahl, Jr. et al. Feb 2013 B2
8389107 Riebel et al. Mar 2013 B2
8413394 Pilz et al. Apr 2013 B2
8468759 Klein Jun 2013 B2
8495844 Johnson Jul 2013 B1
8499512 Pilz et al. Aug 2013 B2
8541084 Deiss et al. Sep 2013 B2
8544226 Rubel Oct 2013 B2
8555566 Pilz et al. Oct 2013 B2
8578672 Mattox et al. Nov 2013 B2
8584415 Stahl, Jr. et al. Nov 2013 B2
8590231 Pilz Nov 2013 B2
8595999 Pilz et al. Dec 2013 B1
8596019 Aitken Dec 2013 B2
8601760 Hilburn Dec 2013 B2
8607519 Hilburn Dec 2013 B2
8640415 Pilz et al. Feb 2014 B2
8646235 Hilburn, Jr. Feb 2014 B2
8671632 Pilz et al. Mar 2014 B2
8728608 Maisch May 2014 B2
8782977 Burgess Jul 2014 B2
8793947 Pilz et al. Aug 2014 B2
8826599 Stahl Sep 2014 B2
8871326 Flennert Oct 2014 B2
8938922 Pilz et al. Jan 2015 B2
8950132 Collins et al. Feb 2015 B2
8955275 Stahl, Jr. Feb 2015 B2
8973319 Pilz et al. Mar 2015 B2
9045899 Pilz et al. Jun 2015 B2
9127454 Pilz et al. Sep 2015 B2
9151042 Simon et al. Oct 2015 B2
9157232 Stahl, Jr. Oct 2015 B2
9163444 Fontijn et al. Oct 2015 B1
9206596 Robinson Dec 2015 B1
9284730 Klein Mar 2016 B2
9290932 Pilz et al. Mar 2016 B2
9290934 Pilz et al. Mar 2016 B2
9316133 Schnitta Apr 2016 B2
9371644 Pilz et al. Jun 2016 B2
9458628 Pilz et al. Oct 2016 B2
9481998 Pilz et al. Nov 2016 B2
9506246 Joseph et al. Nov 2016 B2
9512614 Klein et al. Dec 2016 B2
9523193 Pilz Dec 2016 B2
9551148 Pilz Jan 2017 B2
9616259 Pilz et al. Apr 2017 B2
9637914 Pilz et al. May 2017 B2
9683364 Pilz et al. Jun 2017 B2
9719253 Stahl, Jr. et al. Aug 2017 B2
9739052 Pilz et al. Aug 2017 B2
9739054 Pilz et al. Aug 2017 B2
9752318 Pilz Sep 2017 B2
9879421 Pilz Jan 2018 B2
9885178 Barnes et al. Feb 2018 B1
9909298 Pilz Mar 2018 B2
9931527 Pilz et al. Apr 2018 B2
9995039 Pilz et al. Jun 2018 B2
10000923 Pilz Jun 2018 B2
10010805 Maxam et al. Jul 2018 B2
10011983 Pilz et al. Jul 2018 B2
10077550 Pilz Sep 2018 B2
10166418 Förg et al. Jan 2019 B2
10174499 Tinianov et al. Jan 2019 B1
10184246 Pilz et al. Jan 2019 B2
10214901 Pilz et al. Feb 2019 B2
10227775 Pilz et al. Mar 2019 B2
10246871 Pilz Apr 2019 B2
10323409 Robinson Jun 2019 B1
10323411 Ackerman et al. Jun 2019 B2
10406389 Pilz et al. Sep 2019 B2
10472819 Klein et al. Nov 2019 B2
10494818 Maziarz Dec 2019 B2
10563399 Pilz et al. Feb 2020 B2
10619347 Pilz et al. Apr 2020 B2
10626598 Klein Apr 2020 B2
10669710 Förg Jun 2020 B2
10689842 Pilz Jun 2020 B2
10731338 Zemler et al. Aug 2020 B1
10753084 Pilz et al. Aug 2020 B2
10900223 Pilz Jan 2021 B2
10914065 Pilz Feb 2021 B2
10920416 Klein et al. Feb 2021 B2
10954670 Pilz Mar 2021 B2
11041306 Pilz et al. Jun 2021 B2
11060283 Pilz et al. Jul 2021 B2
11111666 Pilz Sep 2021 B2
11118346 Klein et al. Sep 2021 B2
11141613 Pilz et al. Oct 2021 B2
11162259 Pilz Nov 2021 B2
11230839 Klein et al. Jan 2022 B2
11268274 Pilz Mar 2022 B2
11313121 Quirijns et al. Apr 2022 B2
11421417 Pilz et al. Aug 2022 B2
11466449 Pilz et al. Oct 2022 B2
11486150 Stahl et al. Nov 2022 B2
11512464 Klein Nov 2022 B2
11560712 Pilz et al. Jan 2023 B2
11674304 Landreth et al. Jun 2023 B2
11697937 Campbell Jul 2023 B2
20020029535 Loper Mar 2002 A1
20020095908 Kiser Jul 2002 A1
20020160149 Garofalo Oct 2002 A1
20020170249 Yulkowski Nov 2002 A1
20030079425 Morgan et al. May 2003 A1
20030089062 Morgan et al. May 2003 A1
20030196401 Surowiecki Oct 2003 A1
20030213211 Morgan et al. Nov 2003 A1
20040010998 Turco Jan 2004 A1
20040016191 Whitty Jan 2004 A1
20040045234 Morgan et al. Mar 2004 A1
20040139684 Menendez Jul 2004 A1
20040149390 Monden et al. Aug 2004 A1
20040157012 Miller et al. Aug 2004 A1
20040211150 Bobenhausen Oct 2004 A1
20050031843 Robinson et al. Feb 2005 A1
20050183361 Frezza Aug 2005 A1
20050246973 Jensen Nov 2005 A1
20060032163 Korn Feb 2006 A1
20060096200 Daudet May 2006 A1
20060123723 Weir et al. Jun 2006 A1
20060137293 Klein Jun 2006 A1
20060213138 Milani et al. Sep 2006 A1
20060261223 Orndorff et al. Nov 2006 A1
20060277841 Majusiak Dec 2006 A1
20070056245 Edmondson Mar 2007 A1
20070068101 Weir et al. Mar 2007 A1
20070125027 Klein Jun 2007 A1
20070130873 Fisher Jun 2007 A1
20070193202 Rice Aug 2007 A1
20070261343 Stahl, Sr. et al. Nov 2007 A1
20080053013 Tollenaar Mar 2008 A1
20080087366 Yu et al. Apr 2008 A1
20080134589 Abrams et al. Jun 2008 A1
20080172967 Hilburn Jul 2008 A1
20080196337 Surowiecki Aug 2008 A1
20080250738 Howchin Oct 2008 A1
20090090074 Klein Apr 2009 A1
20090107064 Bowman Apr 2009 A1
20090197060 Cho Aug 2009 A1
20090223159 Colon Sep 2009 A1
20090282760 Sampson et al. Nov 2009 A1
20100199583 Behrens et al. Aug 2010 A1
20100266781 Kusinski et al. Oct 2010 A1
20110011019 Stahl, Jr. et al. Jan 2011 A1
20110041415 Esposito Feb 2011 A1
20110056163 Kure Mar 2011 A1
20110067328 Naccarato et al. Mar 2011 A1
20110099928 Klein et al. May 2011 A1
20110113709 Pilz et al. May 2011 A1
20110123801 Valenciano May 2011 A1
20110146180 Klein Jun 2011 A1
20110167742 Klein Jul 2011 A1
20110185656 Klein Aug 2011 A1
20110214371 Klein Sep 2011 A1
20110247281 Pilz et al. Oct 2011 A1
20110262720 Riebel et al. Oct 2011 A1
20110274886 Flennert Nov 2011 A1
20110302857 McClellan et al. Dec 2011 A1
20120023846 Mattox et al. Feb 2012 A1
20120180414 Burgess Jul 2012 A1
20120247038 Black Oct 2012 A1
20120266550 Naccarato et al. Oct 2012 A1
20120297710 Klein Nov 2012 A1
20130031856 Pilz et al. Feb 2013 A1
20130118102 Pilz May 2013 A1
20130118764 Porter May 2013 A1
20130133844 Smart et al. May 2013 A1
20130186020 Pilz Jul 2013 A1
20130205694 Stahl, Jr. Aug 2013 A1
20140075865 Pilz Mar 2014 A1
20140219719 Hensley et al. Aug 2014 A1
20140260017 Noble, III Sep 2014 A1
20140345886 Yano et al. Nov 2014 A1
20150086793 Kreysler et al. Mar 2015 A1
20150135622 Muenzenberger et al. May 2015 A1
20150135631 Foerg May 2015 A1
20150275506 Klein et al. Oct 2015 A1
20150275507 Klein et al. Oct 2015 A1
20150275510 Klein et al. Oct 2015 A1
20150354210 Stahl, Jr. et al. Dec 2015 A1
20150368898 Stahl, Jr. et al. Dec 2015 A1
20160016381 Celis et al. Jan 2016 A1
20160017598 Klein et al. Jan 2016 A1
20160017599 Klein et al. Jan 2016 A1
20160201893 Ksiezppolski Jul 2016 A1
20160265219 Pilz Sep 2016 A1
20160296775 Pilz et al. Oct 2016 A1
20160348357 Smith et al. Dec 2016 A1
20170016227 Klein Jan 2017 A1
20170175386 Pilz Jun 2017 A1
20170198473 Pilz Jul 2017 A1
20170234004 Pilz Aug 2017 A1
20170234010 Klein Aug 2017 A1
20170260741 Ackerman et al. Sep 2017 A1
20170306615 Klein et al. Oct 2017 A1
20180010333 Foerg Jan 2018 A1
20180044913 Klein et al. Feb 2018 A1
20180072922 Canale Mar 2018 A1
20180171624 Klein et al. Jun 2018 A1
20180171646 Stahl Jun 2018 A1
20180195282 Pilz Jul 2018 A1
20180291619 Ackerman et al. Oct 2018 A1
20180347189 Pilz Dec 2018 A1
20180363293 Pilz Dec 2018 A1
20190284797 Pilz Sep 2019 A1
20190284799 Förg Sep 2019 A1
20190316350 Pilz et al. Oct 2019 A1
20190323234 Watanabe et al. Oct 2019 A1
20190323347 Hensley et al. Oct 2019 A1
20190330842 Pilz Oct 2019 A1
20190338513 Pilz Nov 2019 A1
20190344103 Pilz Nov 2019 A1
20200080300 Pilz Mar 2020 A1
20200240140 Pilz Jul 2020 A1
20200284030 Pilz Sep 2020 A1
20200308829 Hunsaker Oct 2020 A1
20200325679 Pilz Oct 2020 A1
20200340240 Pilz Oct 2020 A1
20200340242 Pilz Oct 2020 A1
20200362551 Klein et al. Nov 2020 A1
20210010257 Klein et al. Jan 2021 A1
20210017761 Klein et al. Jan 2021 A1
20210040731 Pilz Feb 2021 A1
20210062502 Archer et al. Mar 2021 A1
20210101319 Klein et al. Apr 2021 A1
20210148112 Klein May 2021 A1
20210164222 Pilz Jun 2021 A1
20210189721 Klein et al. Jun 2021 A1
20210254333 Pilz Aug 2021 A1
20210285208 Pilz Sep 2021 A1
20220010553 Pilz et al. Jan 2022 A1
20220023684 Pilz et al. Jan 2022 A1
20220042303 Pilz Feb 2022 A1
20220056686 Pilz Feb 2022 A1
20220098856 Pilz Mar 2022 A1
20220106785 Klein Apr 2022 A1
20220154456 Griffith et al. May 2022 A1
20220162851 Pilz May 2022 A1
20220259852 Pilz Aug 2022 A1
20220268017 Pilz Aug 2022 A1
20220349177 Pilz Nov 2022 A1
20230114420 Pilz et al. Apr 2023 A1
20230115315 Pilz et al. Apr 2023 A1
20230203807 Pilz et al. Jun 2023 A1
20230220665 Pilz et al. Jul 2023 A1
Foreign Referenced Citations (39)
Number Date Country
2234347 Oct 1999 CA
2498537 Aug 2006 CA
2711659 Feb 2012 CA
2697295 Dec 2013 CA
2736834 Dec 2015 CA
2803439 Mar 2017 CA
3010414 Aug 2017 CA
2 961 638 Sep 2017 CA
2827183 Jul 2018 CA
3036429 Sep 2019 CA
3041494 Oct 2019 CA
2 802 579 Mar 2020 CA
3058865 Jul 2020 CA
3080978 Nov 2020 CA
2645807 Mar 1978 DE
60213279 Jul 2007 DE
0 335 347 Oct 1989 EP
0 346 126 Dec 1989 EP
0509701 Oct 1992 EP
3 196 376 Jul 2017 EP
3 348 729 Jul 2018 EP
3 556 957 Oct 2019 EP
2 159 051 Nov 1985 GB
2 239 213 Jun 1991 GB
2411 212 Aug 2005 GB
2 424 658 Oct 2006 GB
2 494 721 Mar 2013 GB
06-042090 Feb 1994 JP
06-146433 May 1994 JP
06-220934 Aug 1994 JP
07-4620 Jan 1995 JP
100664665 Jan 2007 KR
WO 2003038206 May 2003 WO
WO 2004071584 Aug 2004 WO
WO 2007103331 Sep 2007 WO
WO 2009026464 Feb 2009 WO
WO 2013113734 Aug 2013 WO
WO 2017129398 Jan 2017 WO
WO 2019108295 Jun 2019 WO
Non-Patent Literature Citations (34)
Entry
U.S. Appl. No. 17/303,173, filed May 21, 2021, Pilz et al.
U.S. Appl. No. 17/453,158, filed Nov. 1, 2021, Pilz.
U.S. Appl. No. 16/598,211, filed Oct. 10, 2019, Pilz.
U.S. Appl. No. 17/001,422, filed Aug. 24, 2020, Pilz et al.
U.S. Appl. No. 17/129,511, filed Dec. 21, 2020, Pilz.
U.S. Appl. No. 17/304,451, filed Jun. 21, 2021, Pilz et al.
U.S. Appl. No. 17/305,653, filed Jul. 12, 2021, Pilz et al.
Australian Office Action, re AU Application No. 2019216678, dated May 15, 2020.
Australian Office Action, re AU Application No. 2019213363, dated May 26, 2020.
Australian Office Action, re AU Application No. 2019250152, dated Jul. 10, 2020.
BlazeFrame 2009 catalog of products, available at least as of Mar. 4, 2010 from www.blazeframe.com, in 20 pages.
Canadian First Office Action for Application No. 2,697,295, dated Sep. 21, 2011, in 4 pages.
Canadian Second Office Action for Application No. 2,697,295, dated May 23, 2012, in 4 pages.
Canadian Office Action for Application No. 2,827,183, dated Mar. 27, 2015 in 4 pages.
Canadian Office Action for Application No. 2,827,183, dated Mar. 7, 2016 in 4 pages.
Canadian Office Action for Applicaton No. 2,802,579, dated Jan. 3, 2019 in 3 pages.
Canadian Office Action for Application No. 3,036,429, dated Apr. 8, 2020, in 4 pages.
Canadian Office Action for Application No. 3,041,494, dated Aug. 13, 2020.
Canadian Office Action re Application No. 3,052,184, dated Nov. 2, 2020.
Catalog page from Stockton Products, printed from www.stocktonproducts.com, on Dec. 16, 2007, showing #5 Drip, in 1 page.
ClarkDietrich Building Systems, Product Submittal Sheet, (FTSC) Flat Trail Vertical Slide Clip. CD-FTSC11 07/11. 1 page.
DoubleTrackTM information sheets by Dietrich Metal Framing, in 2 pages; accessible on Internet Wayback Machine on Jul. 8, 2006.
FireStikTM by CEMCO Brochure, published on www.firestik.us, in 18 pages; accessible on Internet Wayback Machine on Aug. 13, 2007.
Information Disclosure Statement letter; U.S. Appl. No. 12/196,115, dated Aug. 4, 2011.
International Search Report for Application No. PCT/US2008/073920, dated Apr. 9, 2009.
“Intumescent Expansion Joint Seals”, Astroflame; http://www.astroflame.com/intumescent_expansionjoint_seals; Jul. 2011; 4 pages.
James A. Klein's Answer, Affirmative Defenses and Counterclaims to Third Amended Complaint; U.S. District Court, Central District of California; Case No. 2:12-cv-10791-DDP-MRWx; Filed Sep. 17, 2014; pp. 1-37.
Letter from Thomas E. Loop; counsel for defendant; Jun. 26, 2015.
Expert Report of James William Jones and exhibits; Case No. CV12-10791 DDP (MRWx); May 18, 2015.
Letter from Ann G. Schoen of Frost Brown Todd, LLC; Jun. 24, 2015.
“System No. HW-D-0607”, May 6, 2010, Metacaulk, www.rectorseal.com, www.metacault.com; 2008 Underwriters Laboratories Inc.; 2 pages.
“Wall Mounted Deflection Bead,” Trim-Tex Drywall Products; Oct. 9, 2016; 3 pages.
Trim-Tex, Inc., TRIM-TEX Wall Mounted Deflection Bead Installation Instructions, 2 pages. [Undated. Applicant requests that the Examiner review and consider the reference as prior art for the purpose of examination.].
U.S. Appl. No. 18/150,111, filed Jan. 4, 2023, Pilz et al.
Related Publications (1)
Number Date Country
20210396004 A1 Dec 2021 US
Provisional Applications (4)
Number Date Country
62870933 Jul 2019 US
62780059 Dec 2018 US
62775801 Dec 2018 US
62764883 Aug 2018 US
Continuations (1)
Number Date Country
Parent 16541951 Aug 2019 US
Child 17446947 US