FIRE-PREVENTION STRUCTURE FOR BUILDINGS

Information

  • Patent Application
  • 20090084061
  • Publication Number
    20090084061
  • Date Filed
    October 02, 2007
    17 years ago
  • Date Published
    April 02, 2009
    15 years ago
Abstract
A fire-prevention structure for buildings includes at least a first fire-prevention district, a fire-prevention floor slab, and a second fire-prevention district. The first fire-prevention district having at least a steel-structured story further includes a plurality of first steel columns and a plurality of first steel beams. The first steel column is a hollow rectangular column with an upper end opening. The first steel beam is connected to a lateral side of the first steel column. The fire-prevention floor slab is constructed on top of the first steel beams and partly inside the end opening of the first steel column. The second fire-prevention district having at least a steel-structured story further includes a plurality of second steel columns and a plurality of second steel beams. The second steel column has a lower end portion further extruding an engagement plate and an engagement column. The engagement plate is fixed to the fire-prevention floor slab through anchor bolting, and the engagement column is protruded into the end opening of the first steel column.
Description
BACKGROUND OF THE INVENTION

(1) Field of the Invention


The invention relates to a fire-prevention structure for buildings, and more particularly to a fire-prevention structure that can effectively isolate a fire in the building so as to avoid a possible catastrophe collapse of the building resulted from the fire.


(2) Description of the Prior Art


Due to limited space in the metropolitan area, skyscrapers have become an inevitable solution to the growing population. Major frames of most skyscrapers are steel structures, featuring in light weight, quick construction term and quality construction performance. Therefore, in constructing a skyscraper, the steel structure is superior to the steel-reinforced concrete structure.


Referring now to FIG. 1A and FIG. 1B, a typical structure for most of steel-structured buildings is elucidated by a schematic front view and a detail view on a joint area, respectively. The structure 1 includes a plurality of steel-structured stories 11, and each of the stories 11 further includes a plurality of steel columns 112, steel beams 114, and floor slabs 116. Generally, the butt welding of steel columns 112a and 112b between the stories 11 is a full permeation butt welding (FPBW). As shown, the steel beam 114 is jointed to a lateral side of the steel column 112, and the floor slab 116 is mounted upon the steel beam 114.


It is well known that a major disadvantage of the steel structure is its weak heat-resistance. In the conventional structure 1, the connection between the steel columns 112a, 112b or between the steel column 112a and the steel beam 114 is made by direct welding. As long as a fire to the steel-structured building, the temperature high to thousand degrees would quickly soften the steel structures. Further more, for the superior heat conductivity in steels, the local extreme-high temperature will be rapidly spread out to the whole steel structures of the building. As soon as any steel column 112 of the structure 1 begins to melt, a possible buckling would attack the steel column 112. Terribly, if the buckled steel column 112 cannot withstand the load contributed by the portion of the building above the steel column 112, a possible catastrophe collapse of the building, like the 911 tragedy in the world trade center, would be foreseen.


If there do occur a building collapse due to a fire, it can be expected that the loss in human life and the cost in economics would be too huge to be acceptable. In particular, as described above, it is fully understood that the major cause for a skyscraper to collapse in a fire or an explosion is the poor heat-resistance of the steel structure of the skyscraper. Hence, any fire-prevention effort in structure the skyscraper so as to control the damage resulted from a fire and to limit the scale of the fire is definitely worthwhile.


SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide a fire-prevention structure for buildings, by which, while meeting a fire, major heat of the fire can be limited in a specific region and thus a possible collapse of the building can be avoided.


In the present invention, the fire-prevention structure for buildings includes at least a first fire-prevention district, a fire-prevention floor slab, and a second fire-prevention district, in which the fire-prevention floor slab is constructed between the first fire-prevention district and the second fire-prevention district.


The first fire-prevention district further includes at least a steel-structured story. The steel-structured story has a plurality of first steel columns and a plurality of first steel beams. The first steel column is a hollow rectangular column with an end opening. The first steel beam is connected to a lateral side of the first column.


The fire-prevention floor slab includes a corrugated steel roof plate and a fire-resistant material. The corrugated steel roof plate is engaged with the first column. The fire-resistant material is layered on the corrugated steel roof plate and filled into the end opening of the first column. In the present invention, the fire-resistant material can be a steel-fiber reinforced concrete, a calcium silicate, or an asbestos.


The second fire-prevention district further includes at least a steel-structured story. The steel-structured story has a plurality of second steel columns and a plurality of second steel beams. The second steel column has a lower end portion further extruding an engagement plate and an engagement column. The engagement plate is fixed to the fire-prevention floor slab through anchor bolting, and the engagement column is protruded into the end opening of the first steel column. The engagement column further has a plurality of peripheral shear connectors to ensure the holding of the engagement column with the fire-resistant material inserted inside the end opening.


In the present invention, the fire-prevention structure is to divide the whole structure of the building into plural fire-prevention districts, in which any two adjacent fire-prevention districts, say the aforesaid first and second fire-prevention districts, are not directly engaged, but through the in-between fire-prevention floor slab. For the fire-prevention floor slab includes the fire-resistant material, the fire or explosion in any single fire-prevention district as well as the thermal energy therefrom can be controlled substantially within the incident fire-prevention district. Therefore, a catastrophe collapse to the afire building can be avoided, and the loss of the human life and properties from the fire can be reduced to a minimum.


All these objects are achieved by the fire-prevention structure for buildings described below.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be specified with reference to its preferred embodiment illustrated in the drawings, in which:



FIG. 1A shows a typical structure for most of conventional steel-structured buildings;



FIG. 1B shows a detail view on a joint area of FIG. 1A;



FIG. 2A is a schematic view of a preferred fire-prevention structure in accordance with the present invention; and



FIG. 2B is an enlarged view of area A of FIG. 2A.





DESCRIPTION OF THE PREFERRED EMBODIMENT

The invention disclosed herein is directed to a fire-prevention building for buildings. In the following description, numerous details are set forth in order to provide a thorough understanding of the present invention. It will be appreciated by one skilled in the art that variations of these specific details are possible while still achieving the results of the present invention. In other instance, well-known components are not described in detail in order not to unnecessarily obscure the present invention.


Referring now to FIG. 2A, a preferred fire-prevention structure 2 for buildings in accordance with the present invention is schematically illustrated. The fire-prevention structure 2 for buildings has a plurality of steel-structured stories 22. Each of the stories 22 includes a plurality of steel column 222 and a plurality of steel beam 224. A floor slab is mounted to separate the adjacent stories 22. In the present invention, the whole structure 2 is divided into a plurality of fire-prevention districts 3. Each of the fire-prevention districts 3 includes at least one steel-structured story 22. Between the adjacent fire-prevention districts 3, a fire-prevention floor slab 226 is mounted. That is to say that, between the fire-prevention districts 3, the floor slab between stories 22 is made as the fire-prevention floor slab 226 of the present invention. In FIG. 2A, only the fire-prevention floor slabs 226 are illustrated, but the floor slabs between the adjacent stories 22 are not particularly shown.


In FIG. 2B, an enlarged view upon a typical conjunction (area A in FIG. 2A) between two consecutive fire-prevention districts 3 of the present invention is shown. In this conjunction, the lower fire-prevention district 3 is labeled as a first fire-prevention district 31, the upper fire-prevention district 3 is labeled as a second fire-prevention district 33, and the fire-prevention floor slab 226 in FIG. 2A is relabeled as the fire-prevention floor slab 32 herein.


As shown in FIG. 2B, the first fire-prevention district 31 having at least a steel-structured stories includes a plurality of first steel columns 311 and a plurality of first steel beams 312. The first steel column 311 is a hollow rectangular column with an upper end opening 313. The first steel beam 312 is connected to a lateral side of the first column 311. The fire-prevention floor slab 32 includes a corrugated steel roof plate 321 and a fire-resistant material 322. The corrugated steel roof plate 321 is engaged with the first column 311. The fire-resistant material 322 is layered on the corrugated steel roof plate 321 and also partly filled into the end opening 313 of the first column 311. In the present invention, the fire-resistant material 322 can be a steel-fiber reinforced concrete, a calcium silicate, an asbestos, or any the like. The second fire-prevention district 33 also having at least a steel-structured story includes a plurality of second steel columns 331 and a plurality of second steel beams (not shown in FIG. 2B). The second steel column 331 structured as an I beam or a hollow rectangular beam has a lower end portion further extruding an engagement plate 332 and an engagement column 333. The engagement plate 332 is fixed to the fire-prevention floor slab 32 through anchor bolts 334, and the engagement column 333 is protruded downward into the end opening 313 of the first steel column 311. The engagement column 333 further has a plurality of peripheral shear connectors 335 to ensure the holding between the engagement column 333 and the fire-resistant material 322 inserted inside the end opening 313.


In the present invention, the fire-prevention structure is to divide the whole structure 2 of the building into a plurality of the fire-prevention districts 3, in which, for example in FIG. 2B, the steel columns 311 and 331 of the consecutive fire-prevention districts 31 and 33 respectively are not directly engaged, but are engaged through the in-between fire-prevention floor slab 32. For the fire-prevention floor slab 32 includes the fire-resistant material 322, so a fire or an explosion in any single fire-prevention district (say, the second fire-prevention district 33) won't be propagated easily to the neighboring fire-prevention districts. Consequently, the first steel column 311 of the first fire-prevention district 31 won't be buckled from the heat in the second fire-prevention district 33. Therefore, a catastrophe collapse to the afire second fire-prevention district 33 won't lead to a catastrophe collapse of the building, and thus loss in human life and properties from the fire or explosion in a single fire-prevention district can be reduced to a minimum.


While the present invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be without departing from the spirit and scope of the present invention.

Claims
  • 1. A fire-prevention structure for buildings, comprising: a first fire-prevention district, having at least a steel-structured story, further including a plurality of first steel columns and a plurality of first steel beams, the first steel column being formed as a hollow rectangular column and having an upper end opening, the first steel beam being connected to a lateral side of the respective first steel column;a fire-prevention floor slab, constructed on top of the first steel beams and protruded partly into the end opening; anda second fire-prevention district, also having at least a steel-structured story, further including a plurality of second steel columns and a plurality of second steel beams, having a lower end portion to extrude downward an engagement plate and an engagement column, the engagement plate being fixed to the fire-prevention floor slab, the engagement column being protruded downward into the end opening of the first steel column.
  • 2. The fire-prevention structure for buildings according to claim 1, wherein said engagement plate and said fire-prevention floor slab are connected with a plurality of anchor bolts.
  • 3. The fire-prevention structure for buildings according to claim 1, wherein said engagement column has a plurality of peripheral shear connectors.
  • 4. The fire-prevention structure for buildings according to claim 1, wherein said fire-prevention floor slab further includes a corrugated steel roof plate and a fire-resistant material, the corrugated steel roof plate being engaged with said first steel column, the fire-resistant material being layered on the corrugated steel roof plate and also partly filled into said end opening of said first steel column.
  • 5. The fire-prevention structure for buildings according to claim 4, wherein said fire-resistant material is a steel-fiber reinforced concrete.
  • 6. The fire-prevention structure for buildings according to claim 4, wherein said fire-resistant material is a calcium silicate.
  • 7. The fire-prevention structure for buildings according to claim 4, wherein said fire-resistant material is an asbestos.