The present invention relates generally to fire protection devices and, more specifically, to sprinkler assemblies and the arrangement and operation of their components.
There are known automatic sprinklers that use an arrangement of lever members or pins in combination with a thermally responsive component and other internal components to support a seal assembly and form a fluid tight seal in the outlet of the sprinkler passageway in an unactuated state of the sprinkler. In U.S. Patent Publication No. 20100263883, an automatic sprinkler is shown in which a lever assembly is disposed against the sprinkler body to locate a bridge member for supporting a closure member in a sealed position. Other exemplary automatic sprinklers are shown in U.S. Pat. Nos. 6,367,559; 6,152,236; 5,664,630; 4,976,320 and 4,596,289.
Preferred embodiments of the sprinkler assembly provide for a fire protection sprinkler having a sprinkler frame, preferably formed from plastic, a seal assembly and a thermally sensitive trigger assembly to define the unactuated and actuated states of the sprinkler assembly. The trigger assembly includes a lever assembly and a thermally responsive element. The trigger assembly has a first configuration in the unactuated state of the sprinkler assembly to support and more preferably directly support the seal assembly and, in a second configuration of the lever assembly in an actuated state of the sprinkler assembly, to release the seal assembly. In preferred embodiments, the lever assembly forms a frictional engagement with the sprinkler frame, preferably a pivoted engagement and more preferably a snap fit engagement with the sprinkler frame.
One preferred embodiment of a sprinkler assembly includes a sprinkler frame having a proximal portion, a distal portion and an internal surface defining an internal fluid passageway having an inlet and an outlet extending axially through the proximal portion to the distal portion to define a central sprinkler axis of the frame. The distal portion of the sprinkler frame includes a plurality of surfaces to define a pair of chambers diametrically opposed about the passageway. The sprinkler assembly further preferably includes a seal assembly disposed in the outlet and a lever assembly. The lever assembly has a first configuration to support the seal assembly in the outlet and a second configuration to release the seal assembly from the outlet. The lever assembly preferably includes a pair of lever members in which each lever member has a first end and an opposite second end, wherein in the first configuration the first end is oriented such that a first portion of the first end forms a frictional engagement with the plurality of surfaces of one of the pair of chambers and a second portion of the first end engages the seal assembly. The frictional engagement is sufficient to support the seal assembly in an unactuated state of the sprinkler frame. In the second configuration, the first end is oriented such that the second portion of the first end is oriented out of engagement with the seal assembly.
Another preferred embodiment of the sprinkler assembly includes a sprinkler frame having a proximal portion, a distal portion and an internal surface defining an internal fluid passageway having an inlet and an outlet extending axially through the proximal portion to the distal portion to define a central sprinkler axis of the frame. The distal portion of the sprinkler frame includes a plurality of surfaces defining a pair of chambers diametrically opposed about the passageway. The preferred embodiment of the sprinkler assembly includes a seal assembly disposed in the outlet and a lever assembly having a first configuration to support the seal assembly in the outlet and a second configuration to release the seal assembly from the outlet. The preferred lever assembly includes a pair of lever members, in which each lever member has a first end and an opposite second end, the first end defining a receptacle for a pivoted engagement with the at least one of the plurality of surfaces defining the chamber. The at least one surface preferably includes a projection received in the receptacle.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the invention and, together with the general description given above and the detailed description given below, serve to explain the features of the exemplary embodiments of the invention.
Shown in
As seen in
In its first unactuated configuration and in order to support the seal assembly 50 in the sealed position, one end of the lever assembly 62 is preferably in pivoted engagement with a pair of diametrically opposed chambers 18a, 18b formed in the sprinkler frame 12 and more preferably formed at the distal end 16 of the sprinkler frame 12. The chambers 18a, 18b may partially circumscribe the sprinkler axis A-A. Alternatively or in addition to the two opposed chambers 18a, 18b, the sprinkler frame may define a single annular channel circumscribed about the sprinkler axis. The opposite end of the lever assembly 62 is preferably engaged with the thermally responsive element 64 to maintain the assembly 60 in its first configuration and engaged with the chambers 18. The lever assembly 62 preferably includes a pair of lever members 62. Each lever member 62 includes a first proximal end portion 62a for engaging the chambers 18a, 18b and a second distal end portion 62b for engaging the thermally responsive element 64 in the first configuration of the trigger assembly 60.
Referring to
The assembly sprinkler 10 is preferably pressure rated to maintain a static fluid pressure of about 500 pounds per square inch (psi). Thus, the first configuration of the trigger assembly 60 maintains the seal assembly 50 in the sealed position within the outlet 20b under a static fluid pressure load preferably of up to 500 pounds per square inch (psi). Therefore, provided the lever members 62 are oriented in their first configuration and prevented from pivoting within the chambers 18, the arrangement of the lever members 62 and thermally responsive element 64 provides a structure sufficient to maintain the sealed position of the closure assembly 50.
Referring again to
Referring to
Given the function of the first configuration of the lever assembly 62 to support the seal assembly 50 in the unactuated state, the thermally responsive element 64 and lever assembly 62 work together to load or seal the automatic sprinkler assembly 10 for its installation and use. To load the sprinkler, the lever assembly 62 and its heads 62a are preferably snap-fitted into the chambers 18 and rotated about its preferred notch 66c against, for example, a wall or ridge 19a of the distal end 16 of the frame 12 forming the chamber 18 and into supporting engagement with the seal assembly 50. With the levers properly oriented in the first configuration, the thermally responsive element 64 is preferably engaged and soldered about the distal end 62b of the lever members 62. The thermally responsive element 64 may be of a known configuration provided it is sufficiently responsive for the particular application and can support the lever assembly in its first configuration. Thus, the intermediate lever segment 62c shown connecting the lever ends 62a, 62b is of a preferred linear configuration. However other configurations are possible, for example curvilinear, provided the intermediate segment 62c can locate the first and second ends of the lever members 62 for coupling by the thermally responsive element 64, loading in the first configuration and permit operation of the sprinkler assembly in the second configuration of the lever assembly as described herein.
Upon exposure to a sufficient level of heat, the thermally sensitive material between the plate members 64a, 64b melts, thereby allowing the plate members to separate. Without the restraint of the thermal element 64, the lever members 62 are permitted to pivot (shown in dashed lines), to define the second configuration in which the lever assembly does not support the seal assembly 50. More particularly, the head end 62a is oriented such that the second portion 66b is out of contact or disengaged from the seal assembly 50 such that the seal assembly is released from its sealed position within the outlet 20b. The fluid discharge from the outlet 20b is able to eject the seal assembly 50 (shown in broken lines in
The embodiment of
Shown in the detailed view of
In each of the above described embodiments, the lever assembly 62, 162 is engaged with the chamber 18, 118 formed in the distal portion of the sprinkler frame 12, 112. Preferably, the sprinkler frame in each embodiment is formed from plastic, such as for example, Chlorinated Polyvinyl Chloride (CPVC) material, more specifically CPVC material per ASTM F442 and substantially similar to the material used to manufacture the BLAZEMASTER® CPVC sprinkler pipe and fittings as shown and described in the technical data sheet, TFP1915: “Blazemaster CPVC Sprinkler Pipe and Fittings Submittal Sheet” (June 2008). Alternatively, the sprinkler frame may be formed by alternate material, for example, cast from bronze. The sprinkler frame may include features, in addition to the chamber 18, 118, to facilitate installation and/or operation of the preferred lever assembly 62, 162. For example, the sprinkler frame 12, 112 may include a channel 23, 123 formed at the distal end 16 of the frame 12 bisecting the distal end 16 of the sprinkler frame 12 and in communication with the diametrically opposed chambers 18. Accordingly, the distal end 16 of the frame 12 can terminate distal of the outlet 20b without interfering with the pivot operation of the levers 62. Alternatively, the terminal end 16 of the sprinkler frame 12 can terminate just proximal of, distal of, or closely adjacent to the outlet 20b of the passageway 20.
With reference to
A preferred deflector assembly 30 preferably includes a proximal portion and a distal portion with an extension therebetween to couple and space the distal portion from the proximal portion. As shown, the proximal portion of the deflector assembly 30 defines a receiver portion 32 which preferably surrounds and more preferably circumferentially surrounds the sprinkler frame 12. The distal portion of the sprinkler assembly 30 includes a deflector member 34 configured for distribution of water discharged from the outlet 20b to address a fire. Extending between the receiver 32 and the deflector member 34 are one or more extension members 36. The extension member(s) 36 space the deflector member 34 from the receiver 32 and more particularly axially locate the deflector member from the outlet 20b. The deflector assembly 30 can be configured for relative translation with respect to the sprinkler frame 12. Alternatively, the deflector assembly 30 and its deflector member 34 can be fixed with respect to the outlet 20b.
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
This application is a 35 U.S.C. § 371 application of International Application No. PCT/US2014/025052 filed Mar.12, 2014,which claims the benefit of priority to U.S. Provisional Patent Application No. 61/782,401,filed Mar. 14, 2013, each of which is incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/025052 | 3/12/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/159766 | 10/2/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2591872 | Rider | Apr 1952 | A |
3195647 | Campbell | Jul 1965 | A |
4596289 | Johnson | Jun 1986 | A |
4976320 | Polan | Dec 1990 | A |
5664630 | Meyer et al. | Sep 1997 | A |
6152236 | Retzloff | Nov 2000 | A |
6367559 | Winebrenner | Apr 2002 | B1 |
20100263883 | Abels et al. | Oct 2010 | A1 |
Entry |
---|
International Search Report and Written Opinion for International Application PCT/US2014/025052, Applicant Tyco Fire Products LP, dated Oct. 2, 2014, 11 pages. |
Tyco Fire & Building Products, BlazeMaster® CPVC Fire Sprinkler Data Sheet TFP1915, Jun. 2008, 2 pages. |
Jan. 4, 2016 IFW of U.S. Appl. No. 61/782,401, filed Mar. 14, 2013. |
Number | Date | Country | |
---|---|---|---|
20160023030 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
61782401 | Mar 2013 | US |