This application is directed to fire-rated wall construction components for use in building construction joints.
Fire-rated wall construction components and assemblies are commonly used in the building construction industry. These components and assemblies are aimed at preventing fire, heat, and smoke from leaving one portion of a building or room and entering another, usually through vents, joints in walls, or other openings. The components can incorporate fire-retardant materials which substantially block the path of the fire, heat, and/or smoke for at least some period of time in accordance with certain standards, such as UL-2079 “Test For Fire-rated Building Joints”.
Conventional fire-rated wall construction components are typically labor intensive and expensive to install. One example of a conventional fire block arrangement includes using a fire-resistant material such as mineral wool stuffed in the gaps within a head-of-wall assembly including deflection gaps between the top of the wall boards and the ceiling. Once the gaps are filled with the fire block material, a flexible coating such as a spray-on elastomeric coating can cover the entire head-of-wall to secure the fire block material in place. Over time and cycles of movement the flexible coating may degrade and cause cracks or flaking. As a result, it is possible that the fire-resistant material may become dislodged and thereby reduce the effectiveness of the fire block.
One aspect of the present disclosure is a fire-rated component for a linear gap between a wall assembly and an adjacent structure. The component includes an elongate metal profile and a fire-rated board member. The elongate metal profile includes a vertical leg, an upper leg and a lower leg. The upper leg extends in a first direction from an upper edge of the vertical leg. The lower leg extends in the first direction from a lower edge of the vertical leg. The fire-rated board member is positioned within a space defined by the vertical leg, the upper leg and the lower leg to form a composite component.
According to another aspect, the upper leg includes a downward facing v-groove. According to another aspect, the upper leg includes an extended free end attachment leg. According to another aspect, an outward facing protrusion on the vertical leg rests against the drywall board of the framed wall assembly with the outward facing protrusion extending in a second direction, opposite the first direction. According to another aspect, the gypsum board member is adhesively attached with the vertical leg. According to another aspect, the lower leg includes a kick-out configured to retain a gypsum board member within the space. According to another aspect, the upper leg, the lower leg, the v-groove, and the kick-out are configured to exert a force against the gypsum board member to retain the gypsum board in the space. According to another aspect, the lower leg determines the thickness of the layer or layers of the gypsum board member. According to another aspect, the metal profile is formed from a unitary piece of sheet steel and bent to form the vertical leg. According to another aspect, the board member comprises a gypsum material.
In another aspect of the present disclosure, a building construction joint includes a wall assembly and an adjacent structure formed along a linear gap. A fire-rated component including an elongate metal profile and a fire-rated board member is positioned at a joint between the wall assembly and the adjacent structure to provide fire-blocking across the linear gap. According to another aspect, the adjacent structure is a ceiling and the wall assembly is a vertical wall.
The foregoing summaries are illustrative only and are not intended to be limiting. Other aspects, features, and advantages of the systems' devices and methods and/or other subject matter described in this application will become apparent in the teaching set forth below. The summaries provided introduce a selection of some of the concepts of this disclosure. The summary is not intended to identify key or essential features of any subject matter described herein.
Various examples are depicted in the accompanying drawings for illustrative purposes and should in no way be interpreted as limiting the scope of the examples. Various features of different disclosed examples can be combined to form additional examples which are part of this disclosure.
The head-of-wall assembly 100 can generally include an overhead structure or ceiling 105. The ceiling 105 can be generally formed in a horizontal plane and/or include one or more flutes or grooves therein. The ceiling 105 can be a floor of a higher level of a building. The head-of-wall assembly 100 can include a header track or channel 107. The channel 107 can include a web 107a to which are attached one or more flanges 107b, 107c. The first and second flanges 107b, 107c can extend from opposite ends of the web 107a in the same direction to form a generally u-shaped cross section. Optionally, the channel 107 can be a deep leg header track.
One or more studs 109 forming the wall can be received within the channel 107 between the first and second flanges 107b, 107c. The first and second flanges 107b, 107c can include slots to which fasteners can be received to attach the channel 107 with the studs 109. The slots can be oriented generally orthogonal to a length of the channel 107. The studs 109 can be attached with the channel 107 via fasteners through the slots of the flanges 107b, 107c.
One or more wall board members (e.g., gypsum drywall) 111, 113 can be attached with the studs 109 to form the wall. Assembly of the wall boards 111, 113 with the studs 109 can define a deflection gap 101 between the ceiling 105 and upper ends of the wall boards 111, 113. The deflection gap 101 can vary in width depending on the relative position of the wall (e.g., wall boards 111, 113 and the studs 109) and the ceiling 105. The head-of-wall assembly 100 can cycle between a more closed position (such as the fully closed position in
The head-of-wall assembly 100 can include a fire-rated composite component 10. The composite component 10 can generally be configured to cover the deflection gap 101 to provide fire, smoke, heat and/or sound insulation and facilitate unencumbered movement of the joint. The component 10 can include an elongate metal profile 12 and a board member 14. The board member 14 can comprise a fire-rated material, such as a gypsum drywall material. In certain implementations, the board member 14 can adhesively attached or otherwise mechanically secured with the metal profile 12 to form the composite component 10.
The composite component 10 can be installed over the outer surface of the wall boards 111, 113 and/or the flanges 107b, 107c on the framed wall assembly once the drywall assembly is completed. The component 10 can be attached with the ceiling 105 by one or more fasteners 103, such as metal screws, adhesives, staples or other fasteners. The fasteners 103 can extend through the metal profile 12. The fire board member 14 can insulate the metal profile 12, while the metal profile 12 provides a constant fire block as it will not melt during the fire test of UL 2079. The combination of these two materials provides long lasting fire protection. In addition, drywall used in the board member 14 is less expensive than other fire-resistant materials, such as intumescent materials, that are often used in head-of-wall assemblies or other gaps of a building construction joint.
The metal profile 12 can come in standard lengths (e.g., 10′, 12′, etc.). As shown further in the cross-section of
The upper leg 24 can couple with the vertical leg 16 at a corner 34. The upper leg 24 can generally form perpendicular angle with the vertical leg 16. The upper leg 24 can extend from the corner 34 in a first (e.g., rightward) direction. The upper leg 24 can be a horizontal leg. The upper leg 24 can be approximately 1.5″-3.5″ in length.
The upper leg 24 can include a groove 22. The groove 22 can be shaped as a v-groove, u-groove, or other form factor. The groove 22 can include an open end facing upwards and outwards. The groove 22 can provide structural strength to the metal profile 12 and to the upper leg 24. Other retention features and/or strengthening features could also be used. The groove 22 can extend downwardly towards the lower leg 20. The groove 22 can divide the upper leg into an inner portion 25 and an outer portion 26. The inner portion 25 can be in-line with the outer portion 26. The inner portion 25 can have a width W1 from the corner to the groove 22 (e.g., approximately 0.625″). The outer portion 26 can include an attachment portion of the metal profile 12. The outer portion 26 can have a width of approximately 1.25″. The attachment can include one or more holes or other mechanism to allow an installer to attach the metal profile 12 to the ceiling 105 (or other adjoining structure).
The lower leg 20 can couple with the vertical leg 16 at a corner 30. The lower leg 20 can generally form perpendicular angle with the vertical leg 16. The lower leg 20 can extend from the corner 30 in the first (e.g., rightward) direction. The lower leg 20 can extend in the same direction as the upper leg 24. The lower leg 20 can be a horizontal leg.
The lower leg 20 can include a kick-out 32. The kickout 32 can be on a free end of the lower leg 20. The kickout 32 can include an upturned retention lip or portion of the lower leg 20 (e.g., towards the upper leg 24). The kick-out 32 can be angled upwardly towards the upper leg 24. The lower leg 20 can include a width W2 from the corner 30 to the free end or the kickout 32. The width W2 can optionally be the same as the width W1.
The lower leg 20, the vertical leg 16, and the upper leg 24 can form an inner, partially enclosed space. The inner space can receive and secure the board member 14. The board member 14 can comprise a fire-rated drywall member. The board member 14 can comprise one or more layers of material. The board member 14 can be a rip of drywall comprising a gypsum material. The board member 14 can include a generally rectangular-shaped profile. The board member 14 can nest within the inner space between the upper leg 24, the vertical leg 16, and the lower leg 20. Preferably, the width W1 of the upper leg 24 and the width W2 of the lower leg 20 can be sized to accommodate a width W3 of the board member 14. The kickout 32 and/or the groove 22 can exert an inward force on the board member 14 to help retain the board member 14 within the inner space and/or against the vertical leg 16. In certain implementations, the width W1 can be the same as width W2 and correspond to the width W3 of the board member 14. The widths W1, W2 can limit the W3 of the board member 14 that can be used in the composite component 10.
An interior side of the board member 14 can be glued to the vertical leg 16 with an adhesive or secured with a mechanical fastener. The adhesive can secure the board member 14 within the inner space of the metal profile 12. The kickout 32 and/or groove 22 can also retain the board member in place within the metal profile and ensure it will not fall out during a fire that may compromise the adhesive. The groove 22 and/or kickout 32 can be shaped in any suitable shape for retention of the board member 14 and/or strengthening of the composite 10.
The corner 30 can include an inward facing protrusion (e.g., towards the wall boards 111, 113) that sticks out further than the interior surface of the vertical leg 16 (e.g., approximately 0.125″). The inward facing protrusion can be formed of a bend in the metal of the metal profile 12. In the installed position with the head-of-wall assembly 100, the protrusion can provide a sealing point against one of the board members 111, 113 of the framed wall assembly. This protrusion can also allow the wall to cycle up and down, as is needed in order to pass the UL-2079 “Test For Fire-rated Building Joints” without causing any damage to the drywall on the framed wall assembly. In other configurations, one or both of the protrusion of the corner 30 and kickout 32 can be omitted.
In the installed configuration within the head-of-wall assembly 100, the board member 14 can be nested within the inner space of the metal profile 12. The upper leg 24 can abut against and attached with the ceiling 105 (e.g., by fastener 103). The vertical leg 16 can abut an upper end of the wall board 113 and cover the deflection gap 101. The protrusion of the corner 30 can abut the outer face of the wall board 113 to provide a seal therewith. The wall board 113 can cycle behind the installed composite component 10 between open and closed configurations.
Terms of orientation used herein, such as “top,” “bottom,” “proximal,” “distal,” “longitudinal,” “lateral,” and “end,” are used in the context of the illustrated example. However, the present disclosure should not be limited to the illustrated orientation. Indeed, other orientations are possible and are within the scope of this disclosure. Terms relating to circular shapes as used herein, such as diameter or radius, should be understood not to require perfect circular structures, but rather should be applied to any suitable structure with a cross-sectional region that can be measured from side-to-side. Terms relating to shapes generally, such as “circular,” “cylindrical,” “semi-circular,” or “semi-cylindrical” or any related or similar terms, are not required to conform strictly to the mathematical definitions of circles or cylinders or other structures, but can encompass structures that are reasonably close approximations.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain examples include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more examples.
Conjunctive language, such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain examples require the presence of at least one of X, at least one of Y, and at least one of Z.
The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, in some examples, as the context may dictate, the terms “approximately,” “about,” and “substantially,” may refer to an amount that is within less than or equal to 10% of the stated amount. The term “generally” as used herein represents a value, amount, or characteristic that predominantly includes or tends toward a particular value, amount, or characteristic. As an example, in certain examples, as the context may dictate, the term “generally parallel” can refer to something that departs from exactly parallel by less than or equal to 20 degrees. All ranges are inclusive of endpoints.
Several illustrative examples of construction joints have been disclosed. Although this disclosure has been described in terms of certain illustrative examples and uses, other examples and other uses, including examples and uses which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Components, elements, features, acts, or steps can be arranged or performed differently than described and components, elements, features, acts, or steps can be combined, merged, added, or left out in various examples. All possible combinations and subcombinations of elements and components described herein are intended to be included in this disclosure. No single feature or group of features is necessary or indispensable.
Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can in some cases be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.
Any portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in one example in this disclosure can be combined or used with (or instead of) any other portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in a different example or flowchart. The examples described herein are not intended to be discrete and separate from each other. Combinations, variations, and some implementations of the disclosed features are within the scope of this disclosure.
While operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Additionally, the operations may be rearranged or reordered in some implementations. Also, the separation of various components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, some implementations are within the scope of this disclosure.
Further, while illustrative examples have been described, any examples having equivalent elements, modifications, omissions, and/or combinations are also within the scope of this disclosure. Moreover, although certain aspects, advantages, and novel features are described herein, not necessarily all such advantages may be achieved in accordance with any particular example. For example, some examples within the scope of this disclosure achieve one advantage, or a group of advantages, as taught herein without necessarily achieving other advantages taught or suggested herein. Further, some examples may achieve different advantages than those taught or suggested herein.
Some examples have been described in connection with the accompanying drawings. The figures are drawn and/or shown to scale, but such scale should not be limiting, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed invention. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various examples can be used in all other examples set forth herein. Additionally, any methods described herein may be practiced using any device suitable for performing the recited steps.
For purposes of summarizing the disclosure, certain aspects, advantages and features of the inventions have been described herein. Not all, or any such advantages are necessarily achieved in accordance with any particular example of the inventions disclosed herein. No aspects of this disclosure are essential or indispensable. In many examples, the devices, systems, and methods may be configured differently than illustrated in the figures or description herein. For example, various functionalities provided by the illustrated modules can be combined, rearranged, added, or deleted. In some implementations, additional or different processors or modules may perform some or all of the functionalities described with reference to the examples described and illustrated in the figures. Many implementation variations are possible. Any of the features, structures, steps, or processes disclosed in this specification can be included in any example.
In summary, various examples of construction joints and related methods have been disclosed. This disclosure extends beyond the specifically disclosed examples to other alternative examples and/or other uses of the examples, as well as to certain modifications and equivalents thereof. Moreover, this disclosure expressly contemplates that various features and aspects of the disclosed examples can be combined with, or substituted for, one another. Accordingly, the scope of this disclosure should not be limited by the particular disclosed examples described above, but should be determined only by a fair reading of the claims.
This application claims the benefit of U.S. Application No. 62/942,423 filed on Dec. 2, 2019, the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
661832 | Wilkinson | Nov 1900 | A |
716628 | Dickey | Dec 1902 | A |
965595 | Nicholson | Jul 1910 | A |
1130722 | Fletcher | Mar 1915 | A |
1563651 | Pomerantz | Dec 1925 | A |
1719728 | Saunders | Jul 1929 | A |
2020576 | Runde | Nov 1935 | A |
2105771 | Holdsworth | Jan 1938 | A |
2114386 | Killion | Apr 1938 | A |
2218426 | Hulbert, Jr. | Oct 1940 | A |
2556878 | Kohlhaas | Jun 1951 | A |
2664739 | Marcy | Jan 1954 | A |
2683927 | Maronek | Jul 1954 | A |
2688927 | Nuebling | Sep 1954 | A |
2733786 | Drake | Feb 1956 | A |
2994114 | Black | Aug 1961 | A |
3041682 | Alderfer | Jul 1962 | A |
3129792 | Gwynne | Apr 1964 | A |
3153467 | Nelsson | Oct 1964 | A |
3271920 | Downing, Jr. | Sep 1966 | A |
3309826 | Zinn | Mar 1967 | A |
3324615 | Zinn | Jun 1967 | A |
3346909 | Blackburn | Oct 1967 | A |
3355852 | Lally | Dec 1967 | A |
3397495 | Thompson | Aug 1968 | A |
3460302 | Cooper | Aug 1969 | A |
3481090 | Lizee | Dec 1969 | A |
3493460 | Windecker | Feb 1970 | A |
3495417 | Ratliff | Feb 1970 | A |
3537219 | Navarre | Nov 1970 | A |
3562985 | Nicosia | Feb 1971 | A |
3566559 | Dickson | Mar 1971 | A |
3600854 | Dallaire | Aug 1971 | A |
3604167 | Hays | Sep 1971 | A |
3609933 | Jahn et al. | Oct 1971 | A |
3648419 | Marks | Mar 1972 | A |
3668041 | Lonning | Jun 1972 | A |
3683569 | Holm | Aug 1972 | A |
3696569 | Didry | Oct 1972 | A |
3707819 | Calhoun et al. | Jan 1973 | A |
3713263 | Mullen | Jan 1973 | A |
3730477 | Wavrunek | May 1973 | A |
3744199 | Navarre | Jul 1973 | A |
3757480 | Young | Sep 1973 | A |
3786604 | Kramer | Jan 1974 | A |
3837126 | Voiturier et al. | Sep 1974 | A |
3839839 | Tillisch et al. | Oct 1974 | A |
3866370 | Guarino | Feb 1975 | A |
3908328 | Nelsson | Sep 1975 | A |
3921346 | Sauer et al. | Nov 1975 | A |
3922830 | Guarino et al. | Dec 1975 | A |
3934066 | Murch | Jan 1976 | A |
3935681 | Voiturier et al. | Feb 1976 | A |
3950912 | Lundberg | Apr 1976 | A |
3955330 | Wendt | May 1976 | A |
3964214 | Wendt | Jun 1976 | A |
3974607 | Balinski | Aug 1976 | A |
3976825 | Anderberg | Aug 1976 | A |
3998027 | Wendt | Dec 1976 | A |
4011704 | O'Konski | Mar 1977 | A |
4017090 | Cohen | Apr 1977 | A |
4103463 | Dixon | Aug 1978 | A |
4122203 | Stahl | Oct 1978 | A |
4130972 | Varlonga | Dec 1978 | A |
4139664 | Wenrick | Feb 1979 | A |
4144335 | Edwards | Mar 1979 | A |
4144385 | Downing | Mar 1979 | A |
4152878 | Balinski | May 1979 | A |
4164107 | Kraemling et al. | Aug 1979 | A |
4178728 | Ortmanns et al. | Dec 1979 | A |
4197687 | Benoit | Apr 1980 | A |
4203264 | Kiefer et al. | May 1980 | A |
4205498 | Unayama | Jun 1980 | A |
4217731 | Saino | Aug 1980 | A |
4269890 | Breitling et al. | May 1981 | A |
4276332 | Castle | Jun 1981 | A |
4281494 | Weinar | Aug 1981 | A |
4283892 | Brown | Aug 1981 | A |
4295304 | Kim | Oct 1981 | A |
4318253 | Wedel | Mar 1982 | A |
4324835 | Keen | Apr 1982 | A |
4329820 | Wendt | May 1982 | A |
4356672 | Beckman et al. | Nov 1982 | A |
4361994 | Carver | Dec 1982 | A |
4424653 | Heinen | Jan 1984 | A |
4433732 | Licht et al. | Feb 1984 | A |
4434592 | Reneault et al. | Mar 1984 | A |
4437274 | Slocum et al. | Mar 1984 | A |
4454690 | Dixon | Jun 1984 | A |
4461120 | Hemmerling | Jul 1984 | A |
4467578 | Weinar | Aug 1984 | A |
4480419 | Crites | Nov 1984 | A |
4495238 | Adiletta | Jan 1985 | A |
4497150 | Wendt et al. | Feb 1985 | A |
4507901 | Carroll | Apr 1985 | A |
4509559 | Cheetham et al. | Apr 1985 | A |
4517782 | Shamszadeh | May 1985 | A |
4574454 | Dyson | Mar 1986 | A |
4575979 | Mariani | Mar 1986 | A |
4578913 | Eich | Apr 1986 | A |
4598516 | Groshong | Jul 1986 | A |
4622791 | Cook et al. | Nov 1986 | A |
4622794 | Geortner | Nov 1986 | A |
4632865 | Tzur | Dec 1986 | A |
4649089 | Thwaites | Mar 1987 | A |
4663204 | Langham | May 1987 | A |
4672785 | Salvo | Jun 1987 | A |
4709517 | Mitchell et al. | Dec 1987 | A |
4711183 | Handler et al. | Dec 1987 | A |
4723385 | Kallstrom | Feb 1988 | A |
4756945 | Gibb | Jul 1988 | A |
4761927 | O'Keeffe et al. | Aug 1988 | A |
4787767 | Wendt | Nov 1988 | A |
4798035 | Mitchell et al. | Jan 1989 | A |
4805364 | Smolik | Feb 1989 | A |
4810986 | Leupold | Mar 1989 | A |
4822659 | Anderson et al. | Apr 1989 | A |
4825610 | Gasteiger | May 1989 | A |
4830913 | Ortmans et al. | May 1989 | A |
4845904 | Menchetti | Jul 1989 | A |
4850173 | Beyer et al. | Jul 1989 | A |
4850385 | Harbeke | Jul 1989 | A |
4854096 | Smolik | Aug 1989 | A |
4854107 | Roberts | Aug 1989 | A |
4866898 | LaRoche et al. | Sep 1989 | A |
4881352 | Glockenstein | Nov 1989 | A |
4885884 | Schilger | Dec 1989 | A |
4897976 | Williams | Feb 1990 | A |
4899510 | Propst | Feb 1990 | A |
4914880 | Albertini | Apr 1990 | A |
4918761 | Harbeke | Apr 1990 | A |
4930276 | Bawa et al. | Jun 1990 | A |
4935281 | Tolbert et al. | Jun 1990 | A |
4982540 | Thompson | Jan 1991 | A |
4986040 | Prewer et al. | Jan 1991 | A |
4987719 | Goodson, Jr. | Jan 1991 | A |
4992310 | Gelb et al. | Feb 1991 | A |
5010702 | Daw et al. | Apr 1991 | A |
5058342 | Crompton | Oct 1991 | A |
5090170 | Propst | Feb 1992 | A |
5094780 | von Bonin | Mar 1992 | A |
5103589 | Crawford | Apr 1992 | A |
5105594 | Kirchner | Apr 1992 | A |
5111579 | Andersen | May 1992 | A |
5125203 | Daw | Jun 1992 | A |
5127203 | Paquette | Jul 1992 | A |
5127760 | Brady | Jul 1992 | A |
5140792 | Daw et al. | Aug 1992 | A |
5146723 | Greenwood et al. | Sep 1992 | A |
5152113 | Guddas | Oct 1992 | A |
5155957 | Robertson et al. | Oct 1992 | A |
5157883 | Meyer | Oct 1992 | A |
5157887 | Watterworth, III | Oct 1992 | A |
5167876 | Lem | Dec 1992 | A |
5173515 | von Bonin et al. | Dec 1992 | A |
5203132 | Smolik | Apr 1993 | A |
5205099 | Grünhage et al. | Apr 1993 | A |
5212914 | Martin et al. | May 1993 | A |
5214894 | Glesser-Lott | Jun 1993 | A |
5222335 | Petrecca | Jun 1993 | A |
5228254 | Honeycutt, Jr. | Jul 1993 | A |
5244709 | Vanderstukken | Sep 1993 | A |
5279087 | Mann | Jan 1994 | A |
5279088 | Heydon | Jan 1994 | A |
5279091 | Williams et al. | Jan 1994 | A |
5282615 | Green et al. | Feb 1994 | A |
5285615 | Gilmour | Feb 1994 | A |
5307600 | Simon et al. | May 1994 | A |
5315804 | Attalla | May 1994 | A |
5319339 | Leupold | Jun 1994 | A |
5325651 | Meyer et al. | Jul 1994 | A |
5339577 | Snyder | Aug 1994 | A |
5347780 | Richards et al. | Sep 1994 | A |
5367850 | Nicholas | Nov 1994 | A |
5374036 | Rogers et al. | Dec 1994 | A |
5376429 | McGroarty | Dec 1994 | A |
5390458 | Menchetti | Feb 1995 | A |
5390465 | Rajecki | Feb 1995 | A |
5394665 | Johnson | Mar 1995 | A |
5412919 | Pellock et al. | May 1995 | A |
5433991 | Boyd, Jr. et al. | Jul 1995 | A |
5452551 | Charland et al. | Sep 1995 | A |
5454203 | Turner | Oct 1995 | A |
5456050 | Ward | Oct 1995 | A |
5460864 | Heitkamp | Oct 1995 | A |
5471791 | Keller | Dec 1995 | A |
5471805 | Becker | Dec 1995 | A |
5475961 | Menchetti | Dec 1995 | A |
5477652 | Torrey et al. | Dec 1995 | A |
5502937 | Wilson | Apr 1996 | A |
5505031 | Heydon | Apr 1996 | A |
5531051 | Chenier, Jr. et al. | Jul 1996 | A |
5552185 | De Keyser | Sep 1996 | A |
5592796 | Landers | Jan 1997 | A |
5604024 | von Bonin | Feb 1997 | A |
5607758 | Schwartz | Mar 1997 | A |
5644877 | Wood | Jul 1997 | A |
5687538 | Frobosilo et al. | Nov 1997 | A |
5689922 | Daudet | Nov 1997 | A |
5694726 | Wu | Dec 1997 | A |
5709821 | von Bonin et al. | Jan 1998 | A |
5724784 | Menchetti | Mar 1998 | A |
5735100 | Campbell | Apr 1998 | A |
5740635 | Gil et al. | Apr 1998 | A |
5740643 | Huntley | Apr 1998 | A |
5755066 | Becker | May 1998 | A |
5765332 | Landin et al. | Jun 1998 | A |
5787651 | Horn et al. | Aug 1998 | A |
5797233 | Hascall | Aug 1998 | A |
5798679 | Pissanetzky | Aug 1998 | A |
5806261 | Huebner et al. | Sep 1998 | A |
5820958 | Swallow | Oct 1998 | A |
5822935 | Mitchell et al. | Oct 1998 | A |
5870866 | Herndon | Feb 1999 | A |
5913788 | Herren | Jun 1999 | A |
5921041 | Egri, II | Jul 1999 | A |
5927041 | Sedlmeier et al. | Jul 1999 | A |
5930963 | Nichols | Aug 1999 | A |
5930968 | Pullman | Aug 1999 | A |
5945182 | Fowler et al. | Aug 1999 | A |
5950385 | Herren | Sep 1999 | A |
5968615 | Schlappa | Oct 1999 | A |
5968669 | Liu et al. | Oct 1999 | A |
5970672 | Robinson | Oct 1999 | A |
5974750 | Landin et al. | Nov 1999 | A |
5974753 | Hsu | Nov 1999 | A |
6023898 | Josey | Feb 2000 | A |
6058668 | Herren | May 2000 | A |
6061985 | Kraus et al. | May 2000 | A |
6110559 | De Keyser | Aug 2000 | A |
6116404 | Heuft et al. | Sep 2000 | A |
6119411 | Mateu Gil et al. | Sep 2000 | A |
6128874 | Olson et al. | Oct 2000 | A |
6128877 | Goodman et al. | Oct 2000 | A |
6131352 | Barnes et al. | Oct 2000 | A |
6151858 | Ruiz et al. | Nov 2000 | A |
6153668 | Gestner et al. | Nov 2000 | A |
6176053 | St. Germain | Jan 2001 | B1 |
6182407 | Turpin et al. | Feb 2001 | B1 |
6189277 | Boscamp | Feb 2001 | B1 |
6207077 | Burnell-Jones | Mar 2001 | B1 |
6207085 | Ackerman | Mar 2001 | B1 |
6213679 | Frobosilo et al. | Apr 2001 | B1 |
6216404 | Vellrath | Apr 2001 | B1 |
6233888 | Wu | May 2001 | B1 |
6256948 | Van Dreumel | Jul 2001 | B1 |
6256960 | Babcock et al. | Jul 2001 | B1 |
6256980 | Lecordix et al. | Jul 2001 | B1 |
6279289 | Soder et al. | Aug 2001 | B1 |
6305133 | Cornwall | Oct 2001 | B1 |
6318044 | Campbell | Nov 2001 | B1 |
6374558 | Surowiecki | Apr 2002 | B1 |
6381913 | Herren | May 2002 | B2 |
6405502 | Cornwall | Jun 2002 | B1 |
6408578 | Tanaka et al. | Jun 2002 | B1 |
6430881 | Daudet et al. | Aug 2002 | B1 |
6470638 | Larson | Oct 2002 | B1 |
6487825 | Silik | Dec 2002 | B1 |
6574930 | Kiser | Jun 2003 | B2 |
6595383 | Pietrantoni | Jul 2003 | B2 |
6606831 | Degelsegger | Aug 2003 | B2 |
6647691 | Becker et al. | Nov 2003 | B2 |
6668499 | Degelsegger | Dec 2003 | B2 |
6679015 | Cornwall | Jan 2004 | B1 |
6688056 | von Hoyningen Huene et al. | Feb 2004 | B2 |
6688499 | Zhang | Feb 2004 | B2 |
6698146 | Morgan et al. | Mar 2004 | B2 |
6705047 | Yulkowski | Mar 2004 | B2 |
6708627 | Wood | Mar 2004 | B1 |
6711871 | Beirise et al. | Mar 2004 | B2 |
6732481 | Stahl, Sr. | May 2004 | B2 |
6739926 | Riach et al. | May 2004 | B2 |
6748705 | Orszulak | Jun 2004 | B2 |
6783345 | Morgan et al. | Aug 2004 | B2 |
6792733 | Wheeler et al. | Sep 2004 | B2 |
6799404 | Spransy | Oct 2004 | B2 |
6843035 | Glynn | Jan 2005 | B1 |
6854237 | Surowiecki | Feb 2005 | B2 |
6871470 | Stover | Mar 2005 | B1 |
6944997 | Verkamp | Sep 2005 | B2 |
6951162 | Shockey et al. | Oct 2005 | B1 |
6996944 | Shaw | Feb 2006 | B2 |
7043880 | Morgan et al. | May 2006 | B2 |
7059092 | Harkins et al. | Jun 2006 | B2 |
7104024 | deGirolamo et al. | Sep 2006 | B1 |
7152385 | Morgan et al. | Dec 2006 | B2 |
7191845 | Loar | Mar 2007 | B2 |
7240905 | Stahl | Jul 2007 | B1 |
7251918 | Reif et al. | Aug 2007 | B2 |
7284355 | Becker et al. | Oct 2007 | B2 |
7302776 | Duncan et al. | Dec 2007 | B2 |
7398856 | Foster et al. | Jul 2008 | B2 |
7413024 | Simontacchi et al. | Aug 2008 | B1 |
7441565 | Imamura et al. | Oct 2008 | B2 |
7487591 | Harkins et al. | Feb 2009 | B2 |
7497056 | Surowiecki | Mar 2009 | B2 |
7506478 | Bobenhausen | Mar 2009 | B2 |
7513082 | Johnson | Apr 2009 | B2 |
7540118 | Jensen | Jun 2009 | B2 |
7594331 | Andrews et al. | Sep 2009 | B2 |
7603823 | Cann | Oct 2009 | B2 |
7610725 | Willert | Nov 2009 | B2 |
7617643 | Pilz et al. | Nov 2009 | B2 |
7681365 | Klein | Mar 2010 | B2 |
7685792 | Stahl, Sr. et al. | Mar 2010 | B2 |
7716891 | Radford | May 2010 | B2 |
7735295 | Surowiecki | Jun 2010 | B2 |
7752817 | Pilz et al. | Jul 2010 | B2 |
7770348 | Tollenaar | Aug 2010 | B2 |
7775006 | Giannos | Aug 2010 | B2 |
7776170 | Yu et al. | Aug 2010 | B2 |
7797893 | Stahl, Sr. et al. | Sep 2010 | B2 |
7810295 | Thompson | Oct 2010 | B2 |
7814718 | Klein | Oct 2010 | B2 |
7827738 | Abrams et al. | Nov 2010 | B2 |
7836652 | Futterman | Nov 2010 | B2 |
7866108 | Klein | Jan 2011 | B2 |
7870698 | Tonyan et al. | Jan 2011 | B2 |
7921537 | Rodlin | Apr 2011 | B2 |
7921614 | Fortin et al. | Apr 2011 | B2 |
7941981 | Shaw | May 2011 | B2 |
7950198 | Pilz et al. | May 2011 | B2 |
7966778 | Klein | Jun 2011 | B2 |
7984592 | Jiras | Jul 2011 | B1 |
8029345 | Messmer et al. | Oct 2011 | B2 |
8056293 | Klein | Nov 2011 | B2 |
8061099 | Andrews | Nov 2011 | B2 |
8062108 | Carlson et al. | Nov 2011 | B2 |
8069625 | Harkins et al. | Dec 2011 | B2 |
8074412 | Gogan et al. | Dec 2011 | B1 |
8074416 | Andrews | Dec 2011 | B2 |
8079188 | Swartz | Dec 2011 | B2 |
8087205 | Pilz et al. | Jan 2012 | B2 |
8096084 | Studebaker | Jan 2012 | B2 |
8100164 | Goodman et al. | Jan 2012 | B2 |
8132376 | Pilz et al. | Mar 2012 | B2 |
8136314 | Klein | Mar 2012 | B2 |
8151526 | Klein | Apr 2012 | B2 |
8181404 | Klein | May 2012 | B2 |
8225581 | Strickland et al. | Jul 2012 | B2 |
8281552 | Pilz et al. | Oct 2012 | B2 |
8286397 | Shaw | Oct 2012 | B2 |
8318304 | Valenziano | Nov 2012 | B2 |
8322094 | Pilz et al. | Dec 2012 | B2 |
8353139 | Pilz | Jan 2013 | B2 |
8375666 | Stahl, Jr. et al. | Feb 2013 | B2 |
8389107 | Riebel et al. | Mar 2013 | B2 |
8413394 | Pilz et al. | Apr 2013 | B2 |
8468759 | Klein | Jun 2013 | B2 |
8495844 | Johnson | Jul 2013 | B1 |
8499512 | Pilz et al. | Aug 2013 | B2 |
8541084 | Deiss et al. | Sep 2013 | B2 |
8544226 | Rubel | Oct 2013 | B2 |
8555566 | Pilz et al. | Oct 2013 | B2 |
8578672 | Mattox et al. | Nov 2013 | B2 |
8584415 | Stahl, Jr. et al. | Nov 2013 | B2 |
8590231 | Pilz | Nov 2013 | B2 |
8595999 | Pilz et al. | Dec 2013 | B1 |
8596019 | Aitken | Dec 2013 | B2 |
8601760 | Hilburn | Dec 2013 | B2 |
8607519 | Hilburn | Dec 2013 | B2 |
8640415 | Pilz et al. | Feb 2014 | B2 |
8646235 | Hilburn, Jr. | Feb 2014 | B2 |
8671632 | Pilz et al. | Mar 2014 | B2 |
8728608 | Maisch | May 2014 | B2 |
8782977 | Burgess | Jul 2014 | B2 |
8793947 | Pilz et al. | Aug 2014 | B2 |
8826599 | Stahl | Sep 2014 | B2 |
8871326 | Flennert | Oct 2014 | B2 |
8938922 | Pilz et al. | Jan 2015 | B2 |
8950132 | Collins et al. | Feb 2015 | B2 |
8955275 | Stahl, Jr. | Feb 2015 | B2 |
8973319 | Pilz et al. | Mar 2015 | B2 |
9045899 | Pilz et al. | Jun 2015 | B2 |
9127454 | Pilz et al. | Sep 2015 | B2 |
9151042 | Simon et al. | Oct 2015 | B2 |
9157232 | Stahl, Jr. | Oct 2015 | B2 |
9163444 | Fontijn | Oct 2015 | B1 |
9206596 | Robinson | Dec 2015 | B1 |
9284730 | Klein | Mar 2016 | B2 |
9290932 | Pilz et al. | Mar 2016 | B2 |
9290934 | Pilz et al. | Mar 2016 | B2 |
9316133 | Schnitta | Apr 2016 | B2 |
9371644 | Pilz et al. | Jun 2016 | B2 |
9458628 | Pilz et al. | Oct 2016 | B2 |
9481998 | Pilz et al. | Nov 2016 | B2 |
9506246 | Joseph | Nov 2016 | B2 |
9512614 | Klein et al. | Dec 2016 | B2 |
9523193 | Pilz | Dec 2016 | B2 |
9551148 | Pilz | Jan 2017 | B2 |
9616259 | Pilz et al. | Apr 2017 | B2 |
9637914 | Pilz et al. | May 2017 | B2 |
9683364 | Pilz et al. | Jun 2017 | B2 |
9719253 | Stahl, Jr. et al. | Aug 2017 | B2 |
9739052 | Pilz et al. | Aug 2017 | B2 |
9739054 | Pilz et al. | Aug 2017 | B2 |
9752318 | Pilz | Sep 2017 | B2 |
9879421 | Pilz | Jan 2018 | B2 |
9885178 | Barnes et al. | Feb 2018 | B1 |
9909298 | Pilz | Mar 2018 | B2 |
9931527 | Pilz et al. | Apr 2018 | B2 |
9995039 | Pilz et al. | Jun 2018 | B2 |
10000923 | Pilz | Jun 2018 | B2 |
10010805 | Maxam et al. | Jul 2018 | B2 |
10011983 | Pilz et al. | Jul 2018 | B2 |
10077550 | Pilz | Sep 2018 | B2 |
10166418 | Foerg et al. | Jan 2019 | B2 |
10174499 | Tinianov et al. | Jan 2019 | B1 |
10184246 | Pilz et al. | Jan 2019 | B2 |
10214901 | Pilz et al. | Feb 2019 | B2 |
10227775 | Pilz et al. | Mar 2019 | B2 |
10246871 | Pilz | Apr 2019 | B2 |
10323409 | Robinson | Jun 2019 | B1 |
10323411 | Ackerman et al. | Jun 2019 | B2 |
10406389 | Pilz et al. | Sep 2019 | B2 |
10472819 | Klein et al. | Nov 2019 | B2 |
10494818 | Maziarz | Dec 2019 | B2 |
10563399 | Pilz et al. | Feb 2020 | B2 |
10619347 | Pilz et al. | Apr 2020 | B2 |
10626598 | Klein | Apr 2020 | B2 |
10669710 | Förg | Jun 2020 | B2 |
10689842 | Pilz | Jun 2020 | B2 |
10731338 | Zemler et al. | Aug 2020 | B1 |
10753084 | Pilz et al. | Aug 2020 | B2 |
10900223 | Pilz | Jan 2021 | B2 |
10914065 | Pilz | Feb 2021 | B2 |
10920416 | Klein et al. | Feb 2021 | B2 |
10954670 | Pilz | Mar 2021 | B2 |
11041306 | Pilz et al. | Jun 2021 | B2 |
11060283 | Pilz et al. | Jul 2021 | B2 |
11111666 | Pilz | Sep 2021 | B2 |
11118346 | Klein et al. | Sep 2021 | B2 |
11141613 | Pilz et al. | Oct 2021 | B2 |
11162259 | Pilz | Nov 2021 | B2 |
11230839 | Klein et al. | Jan 2022 | B2 |
11268274 | Pilz | Mar 2022 | B2 |
11299884 | Stahl, Jr. et al. | Apr 2022 | B2 |
11313121 | Quirijns | Apr 2022 | B2 |
11401711 | Klein | Aug 2022 | B2 |
11421417 | Pilz et al. | Aug 2022 | B2 |
11466449 | Pilz et al. | Oct 2022 | B2 |
11486150 | Stahl | Nov 2022 | B2 |
11512464 | Klein | Nov 2022 | B2 |
11560712 | Pilz et al. | Jan 2023 | B2 |
11674304 | Landreth | Jun 2023 | B2 |
11697937 | Campbell | Jul 2023 | B2 |
11713572 | Zemler | Aug 2023 | B2 |
11773587 | Pilz et al. | Oct 2023 | B2 |
20020029535 | Loper | Mar 2002 | A1 |
20020095908 | Kiser | Jul 2002 | A1 |
20020160149 | Garofalo | Oct 2002 | A1 |
20020170249 | Yulkowski | Nov 2002 | A1 |
20030079425 | Morgan et al. | May 2003 | A1 |
20030089062 | Morgan et al. | May 2003 | A1 |
20030196401 | Surowiecki | Oct 2003 | A1 |
20030213211 | Morgan et al. | Nov 2003 | A1 |
20040010998 | Turco | Jan 2004 | A1 |
20040016191 | Whitty | Jan 2004 | A1 |
20040045234 | Morgan et al. | Mar 2004 | A1 |
20040139684 | Menendez | Jul 2004 | A1 |
20040149390 | Monden et al. | Aug 2004 | A1 |
20040157012 | Miller et al. | Aug 2004 | A1 |
20040211150 | Bobenhausen | Oct 2004 | A1 |
20050031843 | Robinson et al. | Feb 2005 | A1 |
20050183361 | Frezza | Aug 2005 | A1 |
20050246973 | Jensen | Nov 2005 | A1 |
20060032163 | Korn | Feb 2006 | A1 |
20060096200 | Daudet | May 2006 | A1 |
20060123723 | Weir et al. | Jun 2006 | A1 |
20060137293 | Klein | Jun 2006 | A1 |
20060213138 | Milani et al. | Sep 2006 | A1 |
20060261223 | Orndorff | Nov 2006 | A1 |
20060277841 | Majusiak | Dec 2006 | A1 |
20070056245 | Edmondson | Mar 2007 | A1 |
20070068101 | Weir et al. | Mar 2007 | A1 |
20070125027 | Klein | Jun 2007 | A1 |
20070130873 | Fisher | Jun 2007 | A1 |
20070175140 | Giannos | Aug 2007 | A1 |
20070193202 | Rice | Aug 2007 | A1 |
20070261343 | Stahl, Sr. et al. | Nov 2007 | A1 |
20080053013 | Tollenaar | Mar 2008 | A1 |
20080087366 | Yu et al. | Apr 2008 | A1 |
20080134589 | Abrams et al. | Jun 2008 | A1 |
20080172967 | Hilburn | Jul 2008 | A1 |
20080196337 | Surowiecki | Aug 2008 | A1 |
20080250738 | Howchin | Oct 2008 | A1 |
20090107064 | Bowman | Apr 2009 | A1 |
20090197060 | Cho | Aug 2009 | A1 |
20090223159 | Colon | Sep 2009 | A1 |
20090241465 | Majors | Oct 2009 | A1 |
20090282760 | Sampson et al. | Nov 2009 | A1 |
20100071292 | Futterman | Mar 2010 | A1 |
20100199583 | Behrens et al. | Aug 2010 | A1 |
20100266781 | Kusinski et al. | Oct 2010 | A1 |
20110011019 | Stahl, Jr. et al. | Jan 2011 | A1 |
20110041415 | Esposito | Feb 2011 | A1 |
20110056163 | Kure | Mar 2011 | A1 |
20110067328 | Naccarato et al. | Mar 2011 | A1 |
20110099928 | Klein et al. | May 2011 | A1 |
20110113709 | Pilz et al. | May 2011 | A1 |
20110123801 | Valenciano | May 2011 | A1 |
20110146180 | Klein | Jun 2011 | A1 |
20110167742 | Klein | Jul 2011 | A1 |
20110185656 | Klein | Aug 2011 | A1 |
20110214371 | Klein | Sep 2011 | A1 |
20110247281 | Pilz et al. | Oct 2011 | A1 |
20110262720 | Riebel et al. | Oct 2011 | A1 |
20110274886 | Flennert | Nov 2011 | A1 |
20110302857 | McClellan et al. | Dec 2011 | A1 |
20120023846 | Mattox et al. | Feb 2012 | A1 |
20120180414 | Burgess | Jul 2012 | A1 |
20120247038 | Black | Oct 2012 | A1 |
20120266550 | Naccarato et al. | Oct 2012 | A1 |
20120297710 | Klein | Nov 2012 | A1 |
20130031856 | Pilz et al. | Feb 2013 | A1 |
20130118102 | Pilz | May 2013 | A1 |
20130118764 | Porter | May 2013 | A1 |
20130133844 | Smart | May 2013 | A1 |
20130205694 | Stahl, Jr. | Aug 2013 | A1 |
20140219719 | Hensley et al. | Aug 2014 | A1 |
20140260017 | Noble, III | Sep 2014 | A1 |
20140345886 | Yano et al. | Nov 2014 | A1 |
20150086793 | Kreysler et al. | Mar 2015 | A1 |
20150135622 | Muenzenberger et al. | May 2015 | A1 |
20150135631 | Foerg | May 2015 | A1 |
20150275506 | Klein et al. | Oct 2015 | A1 |
20150275507 | Klein et al. | Oct 2015 | A1 |
20150275510 | Klein et al. | Oct 2015 | A1 |
20150354210 | Stahl, Jr. | Dec 2015 | A1 |
20150368898 | Stahl, Jr. et al. | Dec 2015 | A1 |
20160016381 | Celis Marin | Jan 2016 | A1 |
20160017598 | Klein et al. | Jan 2016 | A1 |
20160017599 | Klein et al. | Jan 2016 | A1 |
20160201893 | Ksiezppolski | Jul 2016 | A1 |
20160265219 | Pilz | Sep 2016 | A1 |
20160296775 | Pilz et al. | Oct 2016 | A1 |
20160348357 | Smith et al. | Dec 2016 | A1 |
20170016227 | Klein | Jan 2017 | A1 |
20170175386 | Pilz | Jun 2017 | A1 |
20170234004 | Pilz | Aug 2017 | A1 |
20170234010 | Klein | Aug 2017 | A1 |
20170260741 | Ackerman et al. | Sep 2017 | A1 |
20170306615 | Klein et al. | Oct 2017 | A1 |
20180010333 | Foerg | Jan 2018 | A1 |
20180044913 | Klein et al. | Feb 2018 | A1 |
20180072922 | Canale | Mar 2018 | A1 |
20180171624 | Klein et al. | Jun 2018 | A1 |
20180171646 | Stahl et al. | Jun 2018 | A1 |
20180195282 | Pilz | Jul 2018 | A1 |
20180291619 | Ackerman et al. | Oct 2018 | A1 |
20180347189 | Pilz | Dec 2018 | A1 |
20180363293 | Pilz | Dec 2018 | A1 |
20190284799 | Förg | Sep 2019 | A1 |
20190316350 | Pilz et al. | Oct 2019 | A1 |
20190323234 | Watanabe | Oct 2019 | A1 |
20190323347 | Hensley et al. | Oct 2019 | A1 |
20190330842 | Pilz | Oct 2019 | A1 |
20190344103 | Pilz | Nov 2019 | A1 |
20200080300 | Pilz | Mar 2020 | A1 |
20200240140 | Pilz | Jul 2020 | A1 |
20200284030 | Pilz | Sep 2020 | A1 |
20200308829 | Hunsaker | Oct 2020 | A1 |
20200340239 | Chang | Oct 2020 | A1 |
20200340240 | Pilz | Oct 2020 | A1 |
20200362551 | Klein et al. | Nov 2020 | A1 |
20210010257 | Klein et al. | Jan 2021 | A1 |
20210017761 | Klein et al. | Jan 2021 | A1 |
20210040731 | Pilz | Feb 2021 | A1 |
20210062502 | Archer et al. | Mar 2021 | A1 |
20210101319 | Klein et al. | Apr 2021 | A1 |
20210148112 | Klein | May 2021 | A1 |
20210189721 | Klein et al. | Jun 2021 | A1 |
20210254333 | Pilz | Aug 2021 | A1 |
20210285208 | Pilz | Sep 2021 | A1 |
20210396004 | Pilz | Dec 2021 | A1 |
20220010553 | Pilz et al. | Jan 2022 | A1 |
20220023684 | Pilz et al. | Jan 2022 | A1 |
20220042303 | Pilz | Feb 2022 | A1 |
20220056686 | Pilz | Feb 2022 | A1 |
20220098856 | Pilz | Mar 2022 | A1 |
20220106785 | Klein | Apr 2022 | A1 |
20220154456 | Griffith et al. | May 2022 | A1 |
20220162851 | Pilz | May 2022 | A1 |
20220259852 | Pilz | Aug 2022 | A1 |
20220268017 | Pilz | Aug 2022 | A1 |
20220349177 | Pilz | Nov 2022 | A1 |
20220401767 | Pilz | Dec 2022 | A1 |
20230114420 | Pilz et al. | Apr 2023 | A1 |
20230115315 | Pilz et al. | Apr 2023 | A1 |
20230203807 | Pilz et al. | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
2234347 | Oct 1999 | CA |
2498537 | Aug 2006 | CA |
2711659 | Feb 2012 | CA |
2697295 | Dec 2013 | CA |
2736834 | Dec 2015 | CA |
2803439 | Mar 2017 | CA |
3010414 | Aug 2017 | CA |
2 961 638 | Sep 2017 | CA |
2827183 | Jul 2018 | CA |
3036429 | Sep 2019 | CA |
3041494 | Oct 2019 | CA |
2 802 579 | Mar 2020 | CA |
3058865 | Jul 2020 | CA |
3080978 | Nov 2020 | CA |
2645807 | Mar 1978 | DE |
60213279 | Jul 2007 | DE |
0 335 347 | Oct 1989 | EP |
0 346 126 | Dec 1989 | EP |
0509701 | Oct 1992 | EP |
3 196 376 | Jul 2017 | EP |
3 348 729 | Jul 2018 | EP |
3 556 957 | Oct 2019 | EP |
2 159 051 | Nov 1985 | GB |
2239213 | Jun 1991 | GB |
2 411 212 | Aug 2005 | GB |
2 424 658 | Oct 2006 | GB |
2494721 | Mar 2013 | GB |
06-042090 | Feb 1994 | JP |
06-146433 | May 1994 | JP |
06-220934 | Aug 1994 | JP |
H06-220934 | Aug 1994 | JP |
07-4620 | Jan 1995 | JP |
100664665 | Jan 2007 | KR |
20190068167 | Jun 2019 | KR |
WO 2003038206 | May 2003 | WO |
WO 2004071584 | Aug 2004 | WO |
WO 2007103331 | Sep 2007 | WO |
WO 2009026464 | Feb 2009 | WO |
WO 2013113734 | Aug 2013 | WO |
WO 2017129398 | Jan 2017 | WO |
WO 2019108295 | Jun 2019 | WO |
Entry |
---|
U.S. Appl. No. 17/129,511, filed Dec. 21, 2020 Pilz. |
U.S. Appl. No. 17/304,451, filed Jun. 21, 2021 Pilz et al. |
U.S. Appl. No. 17/305,653, filed Jul. 12, 2021 Pilz et al. |
Australian Office Action, re AU Application No. 2019213363, dated May 26, 2020. |
Australian Office Action, re AU Application No. 2019250152, dated Jul. 10, 2020. |
Canadian First Office Action for Application No. 2,697,295, dated Sep. 21, 2011, in 4 pages. |
Canadian Second Office Action for Application No. 2,697,295, dated May 23, 2012, in 4 pages. |
Canadian Office Action for Application No. 2,827,183, dated Mar. 27, 2015 in 4 pages. |
Canadian Office Action for Application No. 2,827,183, dated Mar. 7, 2016 in 4 pages. |
Canadian Office Action for Applicaton No. 2,802,579, dated Jan. 3, 2019 in 3 pages. |
Canadian Office Action for Application No. 3,036,429, dated Apr. 8, 2020, in 4 pages. |
Canadian Office Action re Application No. 3,052,184, dated Jul. 14, 2021. |
Canadian Office Action re Application No. 3,080,978, dated Jun. 17, 2021. |
Catalog page from Stockton Products, printed from www.stocktonproducts.com, on Dec. 16, 2007, showing #5 Drip, in 1 page. |
ClarkDietrich Building Systems, Product Submittal Sheet, (FTSC) Flat Trail Vertical Slide Clip. CD-FTSC11 Jul. 2011. 1 page. |
DoubleTrackTM information sheets by Dietrich Metal Framing, in 2 pages; accessible on Internet Wayback Machine on Jul. 8, 2006. |
FireStikTM by CEMCO Brochure, published on www.firestik.us, in 18 pages; accessible on Internet Wayback Machine on Aug. 13, 2007. |
Information Disclosure Statement letter; U.S. Appl. No. 12/196,115, dated Aug. 4, 2011. |
International Search Report for Application No. PCT/US2008/073920, dated Apr. 9, 2009. |
“Intumescent Expansion Joint Seals”, Astroflame; http://www.astroflame.com/intumescent_expansion_joint_seals; Jul. 2011; 4 pages. |
James A. Klein's Answer, Affirmative Defenses and Counterclaims to Third Amended Complaint; U.S. District Court, Central District of California; Case No. 2:12-cv-10791-DDP-MRWx; Filed Sep. 17, 2014; pp. 1-37. |
Letter from Thomas E. Loop; counsel for defendant; Jun. 26, 2015. |
Expert Report of James William Jones and exhibits; Case No. CV12-10791 DDP (MRWx); May 18, 2015. |
Letter from Ann G. Schoen of Frost Brown Todd, LLC; Jun. 24, 2015. |
“System No. HW-D-0607”, May 6, 2010, Metacaulk, www.rectorseal.com, www.metacault.com; 2008 Underwriters Laboratories Inc.; 2 pages. |
Trim-Tex, Inc., TRIM-TEX Wall Mounted Deflection Bead Installation Instructions, 2 pages. [Undated. Applicant requests that the Examiner review and consider the reference as prior art for the purpose of examination.]. |
“Wall Mounted Deflection Bead,” Trim-Tex Drywall Products; Oct. 9, 2016; 3 pages. |
U.S. Appl. No. 17/446,947, filed Sep. 3, 2021 Pilz. |
U.S. Appl. No. 17/303,173, filed May 21, 2021 Pilz et al. |
U.S. Appl. No. 17/445,393, filed Aug. 18, 2021 Pilz. |
U.S. Appl. No. 17/453,158, filed Nov. 1, 2021 Pilz. |
BlazeFrame 2009 catalog of products, available at least as of Mar. 4, 2010 from www.blazeframe.com, in 20 pages. |
Canadian Notice of Allowance re Application No. 3,058,865, dated Jul. 27, 2021. |
U.S. Appl. No. 17/655,738, filed Mar. 21, 2022, Pilz. |
U.S. Appl. No. 17/822,091, filed Aug. 24, 2022, Pilz. |
Number | Date | Country | |
---|---|---|---|
20210164222 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62942423 | Dec 2019 | US |