The present invention relates to ducting systems and air handling equipment, and more particularly to an access panel for ducting systems and associated air handling equipment.
All ducts systems require access panels of one type or another to enable the inspection of the interior of the ducts, to allow the cleaning of the duct surfaces and to maintain any equipment such as fire dampers, volume dampers, etc. that may be installed in the duct.
Some ducts, such as grease ducts, contain a grease residue, and are required to be cleaned so as not to pose a fire hazard. The NFPA 96 standard requires that access panels large enough to permit thorough cleaning be provided at 12 ft. intervals in the duct. While many systems when they are designed and installed meet the NFPA requirement, in most cases it is not until the system is to be cleaned that it is discovered that due to the duct size, system design and other modifications done to the surrounding areas after installation, additional access panels are needed to allow proper cleaning of the duct. Since grease is extremely flammable, it is not advisable to weld new access panels on ducts that have been exposed to grease, and therefore other techniques are required to retrofit access panels.
One known approach involves using an access door assembly comprising a mounting and support frame, a releasably secured cover, a seal interposed between the cover and mounting and support frame. The access door assembly is held in position and secured to the duct by support studs. Such an approach utilizing a support/mounting frame suffers from a number of disadvantages as discussed below.
First, the utilization of a mounting and support frame limits the locations on the duct where the access door can be installed, and such an arrangement is not modifiable in the field. Furthermore, the frame prevents installation on ducts with other than flat surfaces thereby eliminating use on ducts with non-flat contours. The frame also prevents the shape of the door from being modified in the field to enable installation close to obstructions such as building members or other building services.
Second, the mounting and support frame when, installed inside a duct creates a surface raised above the normal duct interior causing grease to accumulate around the frame itself.
Third, by having the support studs protrude outwardly from the duct surface, it is not possible to install the access door into a duct with non-flat contours Without creating elongated holes in the duct equal to or greater than the length of the support stud. Such elongated holes could protrude beyond the edge of the access door thereby creating leakage.
Fourth, the support studs protrude outwardly from the duct surface and as such causing a potential safety hazard to the personnel inspecting or cleaning the ducts. The protruding support studs can cause lacerations, bruising and even lead to falls from ladders as a result of clothing or equipment catching on the protruding fasteners.
Accordingly, there remains a need for an access door assembly which overcomes the perceived shortcomings of the prior art.
The present invention provides an access panel suitable use with ducting systems and air handling equipment. The access panel comprises a fire resistant access panel that allows easy entry to inspect and clean the inner duct and equipment surfaces of any accumulated dirt, greases and oils that can create a fire hazard, and to perform maintenance to any internal equipment as required.
In a first aspect, the present invention provides an access panel access panel assembly for providing access to a duct through an opening in the duct, said access panel assembly comprises, a sealing member adapted to fit around the opening in the duct; a cover member adapted to fit over said sealing member and cover the opening in the duct; a plurality of fasteners for coupling said cover member to the duct, said cover member being formed to the shape of the duct.
In another aspect, the present invention provides a frameless access panel assembly for providing access to a duct through an opening in the duct, said access panel assembly comprises: a sealing member adapted to fit around the opening in the duct; a cover panel adapted to fit over said sealing member and cover the opening in the duct; a plurality of fasteners for coupling said cover member to the duct; said cover panel being formed to the shape of the duct.
In a further aspect, the present invention provides a field modifiable access panel assembly for providing access to a duct through an opening in the duct, the access panel assembly comprises a sealing member adapted to fit around the opening in the duct; a cover member adapted to fit over the sealing member and cover the opening in the duct; a plurality of fasteners for coupling the cover member to the duct; the cover member comprising a material modifiable in the field to conform the shape of the duct.
in yet another aspect, the present invention provides method for installing in the field an access panel for providing access to a duct, the method comprises the steps of: cutting an opening in the duct, the opening having a size sufficient to provide the required access to the duct; forming mounting holes around the perimeter of the opening; attaching clip fasteners to the duct around the opening, each of the clip fasteners being in communication with one of the mounting holes; placing a sealing member around the opening, the sealing member having holes in communication with the mounting holes; placing a cover member over the sealing member to cover the opening and affixing said cover member to the duct using fasteners mounted in the mounting holes and coupling to the clip fasteners.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.
Reference will now be made to the accompanying drawings, which show, by way of example, a preferred embodiment of the present invention, and in which:
a) is a cross-sectional view of the access panel assembly shown in
b) is an exploded cross-sectional view of the access panel assembly shown in
Reference is first to made
Referring next to
As shown, the duct 2 has an opening 3 cut in the side-wall. A series of mounting holes 4 are drilled or punched in side-wall around the periphery of the opening 3. The spring clips 30 are attached around the edge of the duct opening 3 and in line with the mounting holes 4 that were drilled into the duct wall. The spring clips 30 have a threaded portion which receives the threaded studs 40 and provide the female threads for a screw fastening system. As shown, the cover plate 10 and the gasket 20 include mounting holes 50 and 60 which are aligned and in communication with the mounting holes 4 in the side-wall of the duct 2. The threaded studs 40 are inserted through the mounting holes 40 and 50 on the cover plate 10 and gasket 20, respectively, and screwed into the spring clips 30. The threaded studs 40 are tightened to press the cover plate 10 to the gasket 20 and compress the gasket 20 against the side-wall of the duct 2, thereby providing an airtight seal, i.e. fire and grease tight seal, as shown in
Preferably, the spring clips 30 are of a replaceable clip type which advantageously allows for easy replacement of the female threads of the fastening system in the event that a threaded stud fastener 40 is over-tightened and strips or damages the threaded portion of the spring clip 30. It will appreciated that stripping of the threads in the spring clips 30 will not be a common occurrence, the ability to replace damaged fasteners provides the capability to ensure the continued fire resistance of the access panel 1. The threaded stud fasteners 40 preferably include a winged head (as shown in
For many applications, a 16ga metal sheet is suitable for fabricating the cover plate 10. However, the thickness of the cover plate 10 will vary based on the particular application. As shown in
For fire resistant access applications, the gasket 20 comprises a high temperature material which when compressed provides a seal impervious to fire and any contaminants that may be located within the duct 2. Preferably, the gasket 20 has the same shape as the cover plate 10 and is sized so that its width is equal to or larger than the overlap between the opening 3 in the duct 2 and the cover plate 10. The gasket 20 is attached to the cover plate 10 so that the mounting holes 60 in the gasket 20 are located as to align with the mounting holes 50 in the cover plate 10 through which the thread fastener studs 40 pass. For other types of applications, e.g. non-fire resistant conditions, the gasket 20 does not have to be a high temperature type.
According to another aspect, the access panel assembly 1 is suitable for ducts 1 have various cross-sectional shapes and forms or access requirements. As shown in
To install the access panel assembly 1, it is advantageous to have a template that can be affixed to the duct 2 to enable easy location of the duct opening 3 and the locations of the mounting holes 4. With the template attached to the surface of the duct 2, the mounting holes 4 can be drilled through the template and the wall of the duct 2 at the same time. The opening 3 in the duct 2 is made using mechanical shears, reciprocating saws or any other means of cutting the duct 2 without the use of high temperatures. After the duct opening 3 is created, it is preferable to remove any burrs around the peripheral edges to eliminate the possibility of injuries during access or installation.
The spring clips 30 are positioned around the periphery of the duct opening 3 where the mounting holes 4 were drilled. The spring clips 30 have a nut side 32 which has the threaded portion. The spring clips 30 are slid over the edge of the duct opening 3 so that the nut side 32 is located in the interior of the duct 2. Preferably, the nut side 32 for the spring clips 30 has a low profile so that the spring clip 30 does not substantially protrude into the interior of the duct 2.
Next, the cover plate 10 is positioned over the opening 3 in the duct 2 so that the mounting holes 4 are aligned with the spring clips 30. A threaded stud fastener (e.g. winged head) 40 is inserted into each one of the mounting holes 50 in the cover plate 10 and passed through the gasket 20 and threaded into the corresponding spring clip 30 attached to the edge of the duct opening 3. The winged head thread stud fasteners 40 are tightened to a torque sufficient to compress the gasket 20 between the duct 2 and the cover plate 10 to create a fire and grease tight seal. If the cover plate 10 needs to shaped to conform to the shape of duct 2 (as shown in
The present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Certain adaptations and modifications of the invention will be obvious to those skilled in the art. Therefore, the presently discussed embodiments are considered to be illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
This is a continuation application of application Ser. No. 11/363,931 filed Mar. 1, 2006, now abandoned which is a continuation of application Ser. No. 09/874,327 filed Jun. 6, 2001, now abandoned the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
624715 | Wenz | May 1899 | A |
3123880 | Barry et al. | Mar 1964 | A |
4859320 | Beall, Jr. | Aug 1989 | A |
4913127 | Dugger | Apr 1990 | A |
5067278 | Lyons | Nov 1991 | A |
5165189 | Besal | Nov 1992 | A |
5356048 | Geiser | Oct 1994 | A |
5538377 | Stewart et al. | Jul 1996 | A |
5901502 | Rafalski et al. | May 1999 | A |
Number | Date | Country |
---|---|---|
2719347 | Apr 1994 | FR |
2045321 | Mar 1979 | GB |
Number | Date | Country | |
---|---|---|---|
20080115418 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11363931 | Mar 2006 | US |
Child | 11797712 | US | |
Parent | 09874327 | Jun 2001 | US |
Child | 11363931 | US |