The present invention relates generally to joint systems for use in concrete and other building systems and, more particularly, to expansion joints for accommodating thermal and/or seismic movements in such systems.
Concrete structures and other building systems often incorporate joints that accommodate movements due to thermal and/or seismic conditions. These joint systems may be positioned to extend through both interior and exterior surfaces (e.g., walls, floors, and roofs) of a building or other structure.
In the case of a joint in an exterior wall, roof, or floor exposed to external environmental conditions, the expansion joint system should also, to some degree, resist the effects of the external environment conditions. As such, most external expansion joints systems are designed to resist the effects of such conditions (particularly water). In vertical joints, such conditions will likely be in the form of rain, snow, or ice that is driven by wind. In horizontal joints, the conditions will likely be in the form of rain, standing water, snow, ice, and in some circumstances all of these at the same time. Additionally, some horizontal systems may be subjected to pedestrian and/or vehicular traffic.
Many expansion joint products do not fully consider the irregular nature of building expansion joints. It is common for an expansion joint to have several transition areas along the length thereof. These may be walls, parapets, columns, or other obstructions. As such, the expansion joint product, in some fashion or other, follows the joint as it traverses these obstructions. In many products, this is a point of weakness, as the homogeneous nature of the product is interrupted. Methods of handling these transitions include stitching, gluing, and welding. In many situations, it is difficult or impossible to prefabricate these expansion joint transitions, as the exact details of the expansion joint and any transitions and/or dimensions may not be known at the time of manufacturing.
In cases of this type, job site modifications are frequently made to facilitate the function of the product with regard to the actual conditions encountered. Normally, one of two situations occurs. In the first, the product is modified to suit the actual expansion joint conditions. In the second, the manufacturer is made aware of issues pertaining to jobsite modifications, and requests to modify the product are presented to the manufacturer in an effort to better accommodate the expansion joint conditions. In the first situation, there is a chance that a person installing the product does not possess the adequate tools or knowledge of the product to modify it in a way such that the product still performs as designed or such that a transition that is commensurate with the performance expected thereof can be effectively carried out. This can lead to a premature failure at the point of modification, which may result in subsequent damage to the property. In the second case, product is oftentimes returned to the manufacturer for rework, or it is simply scrapped and re-manufactured. Both return to the manufacturer and scrapping and re-manufacture are costly, and both result in delays with regard to the building construction, which can in itself be extremely costly.
In an aspect, the present invention is directed to a fire and/or water resistant expansion joint system for installation between substrates of a tunnel. The system includes a coating applied at a predetermined thickness to the substrates and a fire and water resistant expansion joint. The expansion joint includes a core and a fire retardant infused into the core. The core is configured to define a profile to facilitate the compression of the expansion joint system when installed between the substrates. The coating and the fire and water resistant expansion joint are each capable of withstanding exposure to a temperature of about 540° C. or greater for about five minutes.
In another aspect of the invention, the coating and the fire and water resistant expansion joint of the fire and water resistant expansion joint system are each capable of withstanding exposure to a temperature of about 930° C. or greater for about one hour, a temperature of about 1010° C. or greater for about two hours, or a temperature of about 1260° C. or greater for about eight hours.
In one embodiment, the core of the fire and water resistant expansion joint system includes a plurality of individual laminations assembled to construct a laminate, one or more of the laminations being infused with at least one of the fire retardant and a water-based acrylic chemistry.
In another aspect of the invention, the coating of the expansion joint system is applied at the predetermined thickness to achieve a substantially uniform layer on the substrates of the tunnel. In one embodiment, the fire and water resistant expansion joint is positioned in a gap between the substrates of the tunnel, an edge of the gap is chamfered as the edge abuts the expansion joint and the coating is applied to fill the chamfer.
In another aspect of the invention, the coating of the expansion joint system is applied at the predetermined thickness to achieve a substantially uniform layer on the substrates of the tunnel to a predetermined distance away from a gap between the substrates, and at a second predetermined thickness from the predetermined distance until an edge of the gap. In one embodiment, the coating is applied in an increasingly tapered manner from the predetermined thickness at the predetermined distance away from the gap until reaching the second predetermined thickness at the edge of the gap.
In another aspect, the present invention resides in a fire and water resistant vertical expansion joint system comprising a first section of core extending in a horizontal plane and a second section of core extending in a vertical plane. An insert piece of core is located between the first and second sections, the insert piece being configured to transition the first section from the horizontal plane to the vertical plane of the second section. The core is infused with a fire retardant. A layer of an elastomer is disposed on the core to impart a substantially waterproof property thereto. The vertical expansion joint system is pre-compressed and is installable between horizontal coplanar substrates and vertical coplanar substrates. Although the vertical expansion joint system is described as having an angle of transition from horizontal to vertical, it should be understood that the transition of the angles is not limited to right angles as the vertical expansion joint system may be used to accommodate any angle.
In another aspect, the present invention resides in a fire and water resistant expansion joint system, comprising a core; and a fire retardant infused into the core. The core infused with the fire retardant is configured to define a profile to facilitate the compression of the expansion joint system when installed between substantially coplanar substrates, and the expansion joint system is angled around a corner.
In any embodiment, the construction or assembly of the systems described herein is generally carried out off-site, but elements of the system may be trimmed to appropriate length on-site. By constructing or assembling the systems of the present invention in a factory setting, on-site operations typically carried out by an installer (who may not have the appropriate tools or training for complex installation procedures) can be minimized. Accordingly, the opportunity for an installer to effect a modification such that the product does not perform as designed or such that a transition does not meet performance expectations is also minimized.
Embodiments of the present invention provide a resilient water resistant and/or fire resistant expansion joint system able to accommodate thermal, seismic, and other building movements while maintaining water resistance and/or fire resistance characteristics. Embodiments of present invention are especially suited for use in concrete buildings and other concrete structures including, but not limited to, parking garages, stadiums, tunnels including tunnel walls, floors and tunnel roofs, bridges, waste water treatment systems and plants, potable water treatment systems and plants, and the like.
Referring now to
The vertical expansion joint system 10 comprises sections of a core 12′, e.g., open or closed celled polyurethane foam 12 (hereinafter “foam 12” for ease of reference which is not meant to limit the core 12′ to a foam material, but merely illustrate on exemplary material therefore) that may be infused with a material, such as a water-based acrylic chemistry, and/or other suitable material for imparting a hydrophobic characteristic. As shown in Detail
As is shown in
Thus, foam 12 merely illustrates one suitable material for the core 12′.
Accordingly, examples of materials for the core 12′ include, but are not limited to, foam, e.g., polyurethane foam and/or polyether foam, and can be of an open cell or dense, closed cell construction. Further examples of materials for the core 12′ include paper based products, cardboard, metal, plastics, thermoplastics, dense closed cell foam including polyurethane and polyether open or closed cell foam, cross-linked foam, neoprene foam rubber, urethane, ethyl vinyl acetate (EVA), silicone, a core chemistry (e.g., foam chemistry) which inherently imparts hydrophobic and/or fire resistant characteristics to the core; and/or composites. Combinations of any of the foregoing materials or other suitable material also can be employed. It is further noted that while foam 12 is primarily referred to herein as a material for the core 12′, the descriptions for foam 12 also can apply to other materials for the core 12′, as explained above.
The core 12′ can be infused with a suitable material including, but not limited to, an acrylic, such as a water-based acrylic chemistry, a wax, a fire retardant material, ultraviolet (UV) stabilizers, and/or polymeric materials, combinations thereof, and so forth. A particularly suitable embodiment is a core 12′ comprising open celled foam infused with a water-based acrylic chemistry and/or a fire retardant material 60.
The amount of fire retardant material 60 that is infused into the core 12′ is such that the resultant composite can pass Underwriters Laboratories' UL 2079 test program, which provides for fire exposure testing of building components. For example, in accordance with various embodiments, the amount of fire retardant material 60 that is infused into the core 12′ is such that the resultant composite of the fire and water resistant expansion joint system 10 is capable of withstanding exposure to a temperature of at least about 540° C. for about five minutes, a temperature of about 930° C. for about one hour, a temperature of about 1010° C. for about two hours, or a temperature of about 1260° C. for about eight hours, without significant deformation in the integrity of the expansion joint system 10. According to embodiments, including the open celled foam embodiment, the amount of fire retardant material that is infused into the core 12′ is between 3.5:1 and 4:1 by weight in ratio with the un-infused foam/core itself. The resultant uncompressed foam/core, whether comprising a solid block or laminates, has a density of about 130 kg/m3 to about 150 kg/m3 and preferably about 140 kg/m3. Other suitable densities for the resultant core 12′ include between about 50 kg/m3 and about 250 kg/m3, e.g., between about 100 kg/m3 and about 180 kg/m3, and which are capable of providing desired water resistance and/or waterproofing and/or fire resistant characteristics to the structure. One type of fire retardant material 60 that may be used is water-based aluminum tri-hydrate (also known as aluminum tri-hydroxide (ATH)). The present invention is not limited in this regard, however, as other fire retardant materials may be used. Such materials include, but are not limited to, metal oxides and other metal hydroxides, aluminum oxides, antimony oxides and hydroxides, iron compounds such as ferrocene, molybdenum trioxide, nitrogen-based compounds, phosphorus based compounds, halogen based compounds, halogens, e.g., fluorine, chlorine, bromine, iodine, astatine, combinations of any of the foregoing materials, and other compounds capable of suppressing combustion and smoke formation. Also as is shown in
In any embodiment, when individual laminations 14 are used, several laminations, the number depending on the expansion joint size (e.g., the width, which depends on the distance between opposing substrates 18 into which the vertical expansion system 10 is to be installed), can be compiled and then compressed and held at such compression in a fixture. The fixture, referred to as a coating fixture, is at a width slightly greater than that which the expansion joint will experience at the greatest possible movement thereof. Similarly, a core 12′ comprising laminations of non-foam material or comprising a solid block of desired material may be compiled and then compressed and held at such compression in a suitable fixture.
In one embodiment in the fixture, the assembled infused laminations 14 or core 12′ are coated with a coating, such as a waterproof elastomer 20 at one surface. The elastomer 20 may comprise, for example, at least one polysulfide, silicone, acrylic, polyurethane, poly-epoxide, silyl-terminated polyether, combinations and formulations thereof, and the like, with or without other elastomeric components or similar suitable elastomeric coating or liquid sealant materials, or a mixture, blend, or other formulation of one or more the foregoing. One preferred elastomer 20 for coating core 12′, e.g., for coating laminations 14 for a horizontal deck or floor application where vehicular traffic is expected is PECORA 301 (available from Pecora Corporation, Harleysville, Pa.) or DOW 888 (available from Dow Corning Corporation, Midland, Mich.), both of which are traffic grade rated silicone pavement sealants. For vertical wall applications, a preferred elastomer 20 for coating, e.g., the laminations 14 is DOW 790 (available from Dow Corning Corporation, Midland, Mich.), DOW 795 (also available from Dow Corning Corporation), or PECORA 890 (available from Pecora Corporation, Harleysville, Pa.). A primer may be used depending on the nature of the adhesive characteristics of the elastomer 20. For example, a primer may be applied to the outer surfaces of the laminations 14 of foam 12 and/or core 12′ prior to coating with the elastomer 20. Applying such a primer may facilitate the adhesion of the elastomer 20 to the foam 12 and/or core 12′.
During or after application of the elastomer 20 to the laminations 14 and/or core 12′, the elastomer is tooled or otherwise configured to create a “bellows,” “bullet,” or other suitable profile such that the vertical expansion joint system 10 can be compressed in a uniform and aesthetic fashion while being maintained in a virtually tensionless environment. The elastomer 20 is then allowed to cure while being maintained in this position, securely bonding it to the infused foam lamination 14 and/or core 12′.
Referring now to
Still referring to
After both sides have cured, the vertical expansion system 10 as the final uninstalled product is removed from the coating fixture and packaged for shipment. In the packaging operation the vertical expansion system 10 is compressed using a hydraulic or mechanical press (or the like) to a size below the nominal size of the expansion joint at the job site. The vertical expansion system 10 is held at this size using a heat shrinkable poly film. The present invention is not limited in this regard, however, as other devices (ties or the like) may be used to hold the vertical expansion system 10 to the desired size.
Referring now to
Referring now to
In the horizontal expansion system 110, the infused core 12′ and/or foam lamination 14 is constructed in a similar fashion to that of the vertical expansion system 10, namely, by constructing a core 12′ and/or foam 112 assembled from individual laminations 114 of suitable material, such as a foam material, one or more of which is infused with, e.g., an acrylic chemistry and/or a fire retardant material 60. Although the horizontal expansion system 110 is described as being fabricated from individual laminations 114, the present invention is not so limited, and other manners of constructing the core 12′ and/or foam 112 are possible (e.g., solid blocks of material, e.g., foam material, as described above).
In fabricating the horizontal expansion system 110, two pieces of the core 12′ and/or foam 112 are mitered at appropriate angles B (45 degrees is shown in
After both coatings of elastomer 20 have cured, the horizontal expansion system 110 is removed from the coating fixture and packaged for shipment. In the packaging operation, the horizontal expansion system 110 is compressed using a hydraulic or mechanical press (or the like) to a size below the nominal size of the expansion joint at the job site. The product is held at this size using a heat shrinkable poly film (or any other suitable device).
In a horizontal expansion system, e.g., system 110, the installation thereof can be accomplished by adhering the core 12′ and/or foam 112 to a substrate (e.g., concrete, glass, wood, stone, metal, or the like) using an adhesive such as epoxy. The epoxy or other adhesive is applied to the faces of the horizontal expansion system 110 prior to removing the horizontal expansion system from the packaging restraints thereof. Once the packaging has been removed, the horizontal expansion system 110 will begin to expand, and the horizontal expansion system is inserted into the joint in the desired orientation. Once the horizontal expansion system 110 has expanded to suit the expansion joint, it will become locked in by the combination of the core 12′ and/or foam back pressure and the adhesive.
In any system of the present invention, but particularly with regard to the vertical expansion system 10, an adhesive may be pre-applied to the core 12′ and/or foam lamination. In this case, for installation, the core 12′ and/or foam lamination is removed from the packaging and simply inserted into the expansion joint where it is allowed to expand to meet the concrete (or other) substrate. Once this is done, the adhesive in combination with the back pressure of the core 12′ and/or foam will hold the foam in position.
The vertical expansion system 10 is generally used where there are vertical plane transitions in the expansion joint. For example, vertical plane transitions can occur where an expansion joint traverses a parking deck and then meets a sidewalk followed by a parapet wall. The expansion joint cuts through both the sidewalk and the parapet wall. In situations of this type, the vertical expansion system 10 also transitions from the parking deck (horizontally) to the curb (vertical), to the sidewalk (horizontal), and then from the sidewalk to the parapet (vertical) and in most cases across the parapet wall (horizontal) and down the other side of the parapet wall (vertical). Prior to the present invention, this would result in an installer having to fabricate most or all of these transitions on site using straight pieces. This process was difficult, time consuming, and error prone, and often resulted in waste and sometimes in sub-standard transitions.
In one example of installing the vertical expansion system 10 in a structure having a sidewalk and a parapet, the installer uses several individual sections, each section being configured to transition an angle. The installer uses the straight run of expansion joint product, stopping within about 12 inches of the transition, then installs one section of the vertical expansion system 10 with legs measuring about 12 inches by about 6 inches. If desired, the installer trims the legs of the vertical expansion system 10 to accommodate the straight run and the height of the sidewalk. Standard product is then installed across the sidewalk, stopping short of the transition to the parapet wall. Here another section of the vertical expansion system 10 is installed, which will take the product up the wall. Two further sections of the vertical expansion system 10 are used at the top inside and top outside corners of the parapet wall. The sections of the vertical expansion system 10 are adhered to each other and to the straight run expansion joint product in a similar fashion as the straight run product is adhered to itself. In this manner, the vertical expansion system 10 can be easily installed if the installer has been trained to install the standard straight run product. It should be noted, however, that the present invention is not limited to the installation of product in any particular sequence as the pieces can be installed in any suitable and/or desired order.
In one example of installing the horizontal expansion system 110, the system is installed where there are horizontal plane transitions in the expansion joint. This can happen when the expansion joint encounters obstructions such as supporting columns or walls. The horizontal expansion system 110 is configured to accommodate such obstructions. Prior to the present invention, the installer would have had to create field transitions to follow the expansion joint.
To extend a horizontal expansion system, e.g., system 110, around a typical support column, the installer uses four sections of the horizontal expansion system. A straight run of expansion joint product is installed and stopped approximately 12 inches short of the horizontal transition. The first section of the horizontal expansion system 110 is then installed to change directions, trimming as desired for the specific situation. Three additional sections of horizontal expansion system 110 are then joined, inserting straight run pieces as desired, such that the horizontal expansion system 110 extends around the column continues the straight run expansion joint on the opposite side. As with the vertical expansion system 10, the sections may be installed in any sequence that is desired.
The present invention is not limited to products configured at right angles, as any desired angle can be used for either a horizontal or vertical configuration. Also, the present invention is not limited to foam or laminates, as solid blocks of foam or other desired material and the like may alternatively or additionally be used.
Moreover, while a core 12′ coated with an elastomer 20 on one or both of its outer surfaces has been primarily described above, according to embodiments, the present invention is not limited in this regard. Thus, the vertical and horizontal expansion joint systems described herein are not limited in this regard. For example, as shown in
A sealant band and/or corner bead 19 of the elastomer 20 can be applied on the side(s) of the interface between the foam laminate (and/or core 12′) and the substrate 18 to create a water tight seal.
Referring now to
Sealant bands and/or corner beads 19 of the first elastomer 20 can be applied to the sides as with the embodiments described above. Sealant bands and/or corner beads 24 can be applied on top of the second elastomer 15, thereby creating a water tight seal between the substrate and the intumescent material 16.
Referring now to
Sealant bands and/or corner beads 38 of the elastomer can be applied in a similar fashion as described above and on both sides of the foam 12 and/or core 12′. This creates a water tight elastomer layer on both sides of the foam 12 and/or core 12′.
Referring now to
Moreover, it is noted that layer 15′ is not limited to the exact location within the core 12′ shown in
Accordingly, by tailoring the density as described above to achieve the desired water resistance and/or water proofing properties of the structure, combined with the infused fire retardant in layer 15′, or infused within the core 12′ in any other desired form including a non-layered form, additional layers, e.g. an additional water and/or fire resistant layer on either or both outer surfaces of the core 12′, are not be necessary to achieve a dual functioning water and fire resistant system, according to embodiments.
It is noted, however, that additional layers could be employed if desired in the embodiment of
As a further example,
Alternatively, only one layer may be present on either surface of core 12′, such as one layer of a fire barrier material, e.g., sealant, on a surface of the core 12′, which is infused with a fire retardant material in layer 15′ or infused in a non-layer form. Still further, other combinations of suitable layering include, e.g., dual coating 17′ on both surfaces of the core 12′ and in any combination of inner and outer layers, as described above.
It is additionally noted that the embodiments shown in, e.g.,
Accordingly, as further evident from the foregoing, embodiments of the dual functioning fire and water resistant expansion joint systems can comprise various ordering and layering of materials on the outer surfaces of the core 12′. Similarly, a fire retardant material can be infused into the core 12′ in various forms, to create, e.g., the above described layered “sandwich type” construction with use of, e.g., layer 15′.
In the embodiments described herein, the infused foam laminate and/or core 12′ may be constructed in a manner which insures that the amount of fire retardant material 60 that is infused into the core 12′ is such that the resultant composite can pass Underwriters Laboratories' UL 2079 test program regardless of the final size of the product. For example, in accordance with various embodiments, the amount of fire retardant material 60 that is infused into the core 12′ is such that the resultant composite of the fire and water resistant expansion joint system 10 is capable of withstanding exposure to a temperature of at least about 540° C. for about five minutes, a temperature of about 930° C. for about one hour, a temperature of about 1010° C. for about two hours, or a temperature of about 1260° C. for about eight hours, without significant deformation in the integrity of the expansion joint system 10. According to embodiments, including the open celled foam embodiment, the amount of fire retardant material that is infused into the core 12′ is between 3.5:1 and 4:1 by weight in ratio with the un-infused foam/core itself. For example, considering the amount of infusion as it relates to density, the starting density of the infused foam/core is approximately 140 kg/m3, according to embodiments. Other suitable densities include between about 80 kg/m3 and about 180 kg/m3. After compression, the infused foam/core density is in the range of about 160-800 kg/m3, according to embodiments. After installation the laminate and/or core 12′ will typically cycle between densities of approximately 750 kg/m3 at the smallest size of the expansion joint to approximately 360-450 kg/m3, e.g., approximately 400-450 kg/m3 (or less) at the maximum size of the joint. A density of 400-450 kg/m3 was determined through experimentation, as a reasonable value which still affords adequate fire retardant capacity, such that the resultant composite can pass the UL 2079 test program. The present invention is not limited to cycling in the foregoing ranges, however, and the foam/core may attain densities outside of the herein-described ranges.
It is further noted that various embodiments, including constructions, layering and so forth described herein can be combined in any order to result in, e.g., a dual functioning water and fire resistant expansion joint system. Thus, embodiments described herein are not limited to the specific construction of the figures, as the various materials, layering and so forth described herein can be combined in any desired combination and order.
Moreover, as explained above, embodiments of the invention are not limited to transition corners at angles. For example, embodiments of the joint systems and materials described therefore can be configured in any suitable shape and configuration including straight sections, curved sections, coiled sections provided as, e.g., fixed length members or coiled on a roll, and so forth.
Thus, the descriptions set forth above with respect to, e.g., the core 12′ and any coatings/materials thereon and/or therein, also apply to non-corner transition configurations. Such a configuration is shown, e.g., in
As is known in the art, Rijkswaterstaat (RWS) is a tunnel fire standard created as a result of testing done in 1979 by the Rijkswaterstaat, the Ministry of Infrastructure and the Environment, in the Netherlands. As illustrated in
Linings or coatings such as, for example, a high density cement based fireproofing material sold under the brand name Monokote® Z146T by W. R. Grace & Co., Columbia Md., or Isolatek® Type M-II by Isolatek International, Stanhope, N.J., may be used to treat the surface of the concrete of the roof, the floor and the walls of the tunnel 200 and to provide the interface, described above, between the fire protection and the concrete surface. However, the structural joints 202 in the roof, floor and wall of the tunnel 200 have been found to create a gap in this layer of fire protection. Accordingly, the embodiments of the expansion joint systems 10, 110 and 210 depicted herein in
As illustrated in
Although this invention has been shown and described with respect to the detailed embodiments thereof, it will be understood by those of skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention, and further that the features of the embodiments described herein can be employed in any combination with each other. In addition, modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed in the above detailed description, but that the invention will include all embodiments falling within the scope of the appended claims.
This patent application is a continuation application of U.S. non-provisional patent application Ser. No. 15/494,809, filed on Apr. 24, 2017 (attorney docket no. 1269-0011-ICON, now U.S. Pat. No. ______, which is a continuation application of U.S. non-provisional patent application Ser. No. 14/229,463, filed on Mar. 28, 2014 (attorney docket no. 1269-0011-1) now U.S. Pat. No. 9,631,362, which claims priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application, Ser. No. 61/806,194, filed Mar. 28, 2013, and also claims priority benefit under 35 U.S.C. § 120 of copending, U.S. Non-provisional patent application Ser. No. 13/731,327, filed on Dec. 31, 2012 (attorney docket no. 1269-0002-1CIP) now U.S. Pat. No. 9,637,915, which is a Continuation-in-Part Application of U.S. patent application Ser. No. 12/635,062, filed on Dec. 10, 2009 (attorney docket no. 1269-0002-1) now U.S. Pat. No. 9,200,437, which claims the benefit of U.S. Provisional Patent Application No. 61/121,590, filed on Dec. 11, 2008, and also claims priority benefit under 35 U.S.C. § 120 of copending, U.S. Non-provisional patent application Ser. No. 13/729,500, filed on Dec. 28, 2012 (attorney docket no. 1269-0001-1CIP) now U.S. Pat. No. 9,670,666, which is a Continuation-in-Part Application of U.S. patent application Ser. No. 12/622,574, filed on Nov. 20, 2009, (attorney docket no. 1269-0001-1) now U.S. Pat. No. 8,365,495, which claims the benefit of U.S. Provisional Patent Application No. 61/116,453, filed on Nov. 20, 2008. The contents of each of the above-referenced applications are incorporated herein by reference in their entireties and the benefits of each are fully claimed.
Number | Date | Country | |
---|---|---|---|
61806194 | Mar 2013 | US | |
61121590 | Dec 2008 | US | |
61116453 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15494809 | Apr 2017 | US |
Child | 16707663 | US | |
Parent | 14229463 | Mar 2014 | US |
Child | 15494809 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13731327 | Dec 2012 | US |
Child | 14229463 | US | |
Parent | 12635062 | Dec 2009 | US |
Child | 13731327 | US | |
Parent | 13729500 | Dec 2012 | US |
Child | 14229463 | US | |
Parent | 12622574 | Nov 2009 | US |
Child | 13729500 | US |