The present invention relates to foam and foam products having excellent fire resistance achieved through the use of expandable graphite. In particular, the foam is preferably made using small particles of expandable graphite and a non-halogenated hydrocarbon as a primary blowing agent in an extrusion process. In preferred embodiments, rigid polyisocyanurate foam is made with expandable graphite particles having an average particle size less than 200 microns which exhibits self extinguishing properties and good insulation qualities.
Foams and processes for their production are well known in the art. Such foams are typically produced by reacting ingredients such as a polyisocyanate with an isocyanate reactive material such as a polyol in the presence of a blowing agent.
Synthetic foams have many uses and are produced in many forms. Rigid foam insulation panels are used in the construction of buildings. Foam bun stock is used for freezer insulation. Flexible foam is used in the manufacture of automobiles and furniture. Shaped foam products are used for building facades and ornamental effects for both interior and exterior uses.
Foam products are generally highly flammable when made solely out of their basic components. A variety of materials have been used in the past for imparting fire resistance to foams. For example, standard liquid flame retardants such as TRIS (-chloro-2-propyl) phosphate products, commercially available as ANTI-BLAZE 80 from Albright and Wilson and as PCF from Akzo Nobel have been conventionally used to increase the fire resistance of the foam. Such additives can be used to produce Factory Mutual Class 1 rated foam when organic halogenated hydrocarbons, such as 1,1-dichloro-1-fluorethane (HCFC-141b) are used as the primary blowing agent. However, similar foams made with non-halogenated hydrocarbons, such as iso-pentane and/or cyclopentane, used as the primary blowing agent fail to produce Factory Mutual Class 1 rated foam.
The use of expandable graphite as a fire retardant for polymer foams is generally known through the teaching of U.S. Pat. No. 3,574,644. It has been shown that particle size has an impact on the effectiveness of expandable graphite as a fire retardant. For example, U.S. Pat. No. 5,169,876 teaches the effective use of expandable graphite in a flexible polyurethane foam with a particle size of 300 to 1000 microns, but that use of expandable graphite having a particle size of less than 200 microns is ineffective.
It is desirable to produce foam and foam products having improved fire resistance and/or self extinguishing characteristics. Since the use of certain halogenated hydrocarbons may have detrimental environmental effects, it is also desirable to provide foam made with a non-halogenated hydrocarbon as the primary blowing agent.
A synthetic polymer foam is produced which incorporates fine particles of expandable graphite which surprisingly impart excellent fire resistant properties to the foam, particularly to foam made with a non-halogenated hydrocarbon as the primary blowing agent. For best results, the foam is produced through mixing the constituent materials, including the expandable graphite using a screw extruder. The foam can also be produced by creating a graphite/polyol or graphite/isocyanate dispersion in an extruder then mixing the remaining components in a conventional batch mixing or high pressure spraying process. Alternatively, conventional mixing can be used for the entire process, but use of a screw extruder in whole or in part is preferred.
Expandable graphite material having an average particle size of less than 200 microns, such as expandable graphite commercially available as GRAFGuard 160-80 (80 mesh, 177 microns) from UCAR Graph-Tech Inc., wherein sulfuric acid and nitric acid are encapsulated within the graphite can be used. A neutral grade of expandable graphite having a PH of at least 5, preferably 7, with an expansion threshold of 160° C., such as GRAFGuard 160-80 N, is preferred. Expandable graphite with very fine average particle size of 100 microns or less, such as GRAFGuard 160-150 N (150 mesh), can be used with a non-halogenated hydrocarbon blowing agent when employing an extruder to make rigid PUR/PIR foam. Preferably the foam formulation includes at least 1% loading of expandable graphite to produce a fire resistant foam and at least 3% loading to produce self extinguishing foam and foam products. When subjected to burning, the expandable graphite particles within the foam expand up to one hundred times the original diameter creating a graphite char that retains an excellent heat resistance in addition to providing self extinguishing properties.
Applicants have discovered that use of a unique combination of expandable graphite and carbon black produces an excellent foam product having both fire resistance and good insulating qualities, even where non-halogenated hydrocarbon blowing agents are employed in the manufacture of the foam.
It is an object of the present invention to provide foam and foam products having improved fire resistance.
It is a further object to provide various methods for making such foams including the use of an extruder and the use of non-halogenated hydrocarbon blowing agents.
It is a further object to employ small particle size expandable graphite and/or carbon black in the manufacture of such foam.
Other objects and advantages of the present invention will become apparent through a description of the presently preferred embodiments.
Foams in accordance with the present invention are preferably manufactured using an extruder, such as the extruder system 102 schematically illustrated in
The extrusion system 102 includes a single or twin screw extruder 104 and an associated reservoir system 106. The extruder 104 includes a series of barrels C1-C12 and an extruder head 120. Preferably a twin screw extruder is employed such as described in U.S. Pat. No. 5,723,506 assigned to the assignee of the present invention.
The reservoir system 106 includes a plurality of reservoirs 150-156 from which the foam components are supplied. The reservoirs 150-156 feed the foam component materials to the barrels C1-C12 and head 120 of the extruder 104 via a network of feed lines and valves as illustrated.
In manufacturing foam using the extrusion system of
Polyol is preferably provided from a reservoir 155 and fed to the extruder 104 at barrel C9. Surfactant, curing agent and foaming agent is preferably pre-mixed with the polyol contained in the reservoir 155 and fed to the extruder 104 at barrel C9.
Foaming and/or blowing agents are preferably provided from a reservoir 154 and fed to the extruder 104 at barrel C8 without previous mixing with other components. Additionally, foaming and/or blowing agents may be mixed with the polyol at reservoir 155 prior to entry to the extruder 104 at barrel C9. For example, foaming agent is provided to extruder 104 at barrel C9 after the foaming agent is first mixed with a polyol/surfactant mixture.
Catalyst is preferably introduced into the extruder 104 via an extruder head 120 from reservoir 156. A cross-sectional side view of the extruder head 120 of the extrusion system is shown in
In making foam, the mixture of the component parts of the graphite particles, isocyanate, polyol, and additional materials, without the catalyst, arrives via a hose 200 (shown in
A preferred method of manufacturing foam using the extruder of
A preferred method of manufacturing an isocyanate dispersion in accordance with the teachings of the present invention using the extruder of
A preferred method of manufacturing a polyol dispersion in accordance with the present invention using the extruder of
The production of foams based on isocyanates is known per se and is described, for example, in German Offenlegungsschriften 1,694,142, 1,694,215 and 1,720,768, as well as in Kunststoff-Handbuch [Plastics Handbook], Volume VII, Polyurethane, edited by Vieweg and Hochtlen, Carl Hanser Verlag, Munich 1966, and in the new edition of this tome, edited by G. Oertel, Carl Hanser Vedag, Munich, Vienna, 1983.
These foams are mainly those that comprise urethane and/or isocyanurate and/or allophanate and/or uretdione and/or urea and/or carbodiimide groups. Preferred starting components include aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates, such as those described, for example, by W. Siefken in Justus Liebigs Annalen der Chemie, 562, pp. 75-136, for example, those of the formula
Q(NCO)n
in which n denotes 2-4, preferably 2-3, and Q denotes an aliphatic hydrocarbon radical of 2-18, preferably 6-10 carbon atoms, a cycloaliphatic hydrocarbon radical of 4-15, preferably 5-10 carbon atoms, an aromatic hydrocarbon radical of 6-15, preferably 6-13 carbon atoms or an araliphatic hydrocarbon radical of 8-15, preferably 8-13 carbon atoms, for example, such polyisocyanates as described in DE-OS 2,832,253, pp. 10-11.
Particularly preferred are usually those polyisocyanates which are technically readily accessible, for example, the 2,4- and 2,6-toluylene diisocyanate as well as any mixture of these isomers (“TDI”); polyphenyl5 polymethylenepolyisocyanates, such as those obtained by an aniline formaldehyde condensation and subsequent treatment with phosgene (“crude MDI”), and polyisocyanates comprising carbodiimide groups, urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret groups (“modified polyisocyanates”), especially those modified polyisocyanates which are derived from 2,4- and/or 2,6-toluylene diisocyanate and from 4,4′- and/or 2,4′-diphenylmethane diisocyanate.
The starting components may further be compounds of a molecular weight usually of 400 to 10,000, containing at least two hydrogen atoms reactive toward isocyanates. These comprise, besides compounds containing amino, thio, or carboxyl groups, preferably compounds containing hydroxyl groups, in particular compounds containing 2 to 8 hydroxyl groups, especially those of a molecular weight of 1,000 to 6,000, preferably 2,000 to 6,000, for example polyethers and polyesters as well as polycarbonates and polyester amides containing at least 2, usually 2 to 8, preferably 2 to 6 hydroxyl groups; these compounds are known per se for the preparation of homogenous and cellular polyurethanes and are disclosed, for example in DE-OS 2,832,253, pp. 11-18.
When appropriate, compounds comprising at least two hydrogen atoms reactive toward isocyanates and of a molecular weight of 32 to 399 may be used as further starting components. Also, in this case, compounds containing hydroxyl groups and/or amino groups and/or thiol groups and/or carboxyl groups, preferably compounds containing hydroxyl groups and/or amino groups, are understood to be those which are used as chain lengtheners or crosslinking agents. These compounds usually have 2 to 8, preferably 2 to 4 hydrogen atoms reactive toward isocyanates. Appropriate examples are disclosed in DE-OS 2,832,253, pp. 19-20. Other examples of polyisocyanates and polyols useful in the invention are described in U.S. Pat. No. 5,149,722, co-owned by the assignee of the present invention and incorporated herein by reference as if fully set forth.
Blowing agents which may be used to make foam include water and/or readily volatile inorganic or organic substances and other auxiliary volatile blowing agents typically used to blow PUR/PIR foams. Water, however, used in small quantities serves as a foaming agent where other blowing agents are used.
Organic blowing agents include acetone, ethylacetate; halogen-substituted alkanes, such as methylene chloride, chloroform, ethylidene chloride, vinylidene chloride, monofluoro trichloromethane, chlorodifluoromethane, dichlorodifluoromethane, dichlorodifluoroethane, dichlorotrifluoroethane; also halogenated and non-halogenated hydrocarbon blowing agents.
Specific examples of non-halogenated hydrocarbon blowing agents include: pentane, butane, hexane, heptane, diethyl ether, isopentane, n-pentane and cyclopentane.
Specific examples of halogenated hydrocarbon blowing agents include: 1,1,1,4,4,4-hexafluorobutane (HFC-356); 1,1-dichloro-1 fluoroethane (HFC-141/b); the tetrafluoroethanes such as 1,1,1,2-tetrafluoroethane (HFC-134a); the pentafluoropropanes such as 1,1,2,2,3 pentafluoropropane (HFC-245ca), 1,1,2,3,3-pentafluoropropane (HFC 245ea), 1,1,1,2,3-pentafluoropropane (HFC-245eb), and 1,1,1,3,3 pentafluoropropane (HFC-245fa); the hexafluoropropanes such as 1,1,2,2,3,3-hexafluoropropane (HFC-236ca), 1,1,1,2,2,3-hexafluoro propane (HFC-236cb), 1,1,1,2,3,3-hexafluoro-propane (HFC-236ea), 1,1,1,3,3,3-hexafluoropropane (HFC-236fa); the pentafluorobutanes such as 1,1,1,3,3-pentafluorobutane (HFC-365); and difluoroethanes such as 1,1-difluoroethane (HFC-152a).
Inorganic blowing agents are, for example, air, CO2 or N2O. A blowing effect may also be obtained by adding compounds which decompose at temperatures above room temperature giving off gases, such as azodicarbonamide or azoisobutyronitrile. Other examples of blowing agents may be found in Kunststoff-Handbuch, Vol. VII, by Vieweg and Hochtlen, Carl-Hanser Verlag, Munich, 1966, on pages 108 and 109, 453 to 455 and 507 to 510.
Different types of blowing agents are used in combination, but use of a non-halogenated hydrocarbon chemical as the primary blowing agent has generally been avoided due to the flammability of foams which conventionally result. Use of expandable graphite as taught by the present invention permits the use of a non-halogenated primary blowing agent in the production of foam which is rated as Factory Mutual Class 1 when tested using test method ASTM E84.
When appropriate, other auxiliary agents and additives may be used at the same time, such as:
Other examples of surface active additives, foam stabilizers, cell regulators, reaction retardants, stabilizers, flame retardants, plasticizers, dyes, fillers, fungistats, bacteriostats to be used at the same time if appropriate, as well as details concerning the use and action of these additives are described in Kunststoff-Handbuch [Plastics Handbook], Volume VII, edited by Vieweg and Hochtlen, Carl Hanser Verlag, Munich 1966, for example on pages 103-113.
Example 1 reflects a control example with no expandable graphite material. By comparison, the other examples were made with differing amounts of expandable graphite having an average particle size of less than 200 microns. Burn tests were performed with the control foam, Example 1, and expandable graphite foams, Examples 2-4. Thickness and weight loss examples were measured.
Visually, polyisocyanurate foam made with the non-halogenated blowing agent and a 5% loading or higher of expandable graphite, Examples 2-4, produced no noticeable black smoke as with polyisocyanurate made with the non-halogenated blowing agent and a standard liquid flame retardant, Example 1. There was no significant density increase using expandable graphite in the range of 5%-12%. There was also considerably less flame spread noticed during the bum with 5% or more of graphite particles.
Based on the test results, it was determined that fire retardant foams can be produced by providing 1% to 50% by weight evenly dispersed expandable graphite particles which have an average particle size of less than 200 microns. Moreover, the use of such expandable graphite in a preferred range of 3%-20% by weight can produce a class 1 rated foam per Factory Mutual Standard F.M. 4450 and Underwriters Laboratories Standard UL1256 when tested using test method ASTM E84.
Tables 6-7 reflect an additional comparative analysis, Examples 5-7, of a control versus two example foams made in accordance with the teachings of the present invention. Control Example 5 contained no expandable graphite. Example 6 contained expandable graphite and Example 7 contained a combination of expandable graphite and carbon black. In all cases, the primary blowing agent was a non-halogenated hydrocarbon chemical. Less than 1% of a halogenated hydrocarbon co-blowing agent and less than 1% water serving as a foaming agent were used in Examples 6 and 7.
As reflected in Table 7, the foam made in accordance with Example 7 had the best K factor and was otherwise comparable to prior art commercial foam, Foam II, made with a halogenated hydrocarbon blowing agent. The foam made in accordance with Example 6 had a K factor better than the prior art competitive foam, Foam I, made with a non-halogenated primary blowing agent, but not quite as good as the prior art foam, Foam II, made with a non-halogenated primary blowing agent. However, unlike the prior art foam made with a non-halogenated primary blowing agent, Foam I, the Example 6 foam passed Factory Mutual Standard F.M. 4450 and Underwriter's Laboratory Standard UL1256 for a Class 1 rating when tested in accordance with Test Method ASTM E84.
Based on the results of Examples 2, 3, 4 and 6, it is believed that the Example 7 foam will also be accorded a Factory Mutual Class 1 rating when independently tested in accordance with Test Method ASTM E84.
In accordance with the experimentation and testing performed by the present inventors, preferred formulations for the manufacturer of PUR/PIR boardstock and bunstock are set forth in
Preferably, the components are combined by the use of an extruder as set forth above. Alternatively, the components can be mixed utilizing other methods. Where conventional mixing is employed, it is preferred to create either a polyol or isocyanate dispersion with the expandable graphite and optionally carbon black which is then used to make foam in accordance with the formulations set forth in
This application claims priority from U.S. Provisional Application No. 60/192,231, filed Mar. 27, 2000.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US01/09626 | 3/26/2001 | WO | 00 | 9/26/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/72863 | 10/4/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1137373 | Aylsworth | Apr 1915 | A |
3323869 | Olstowski et al. | Jun 1967 | A |
3574644 | Olstowski et al. | Apr 1971 | A |
4091083 | Hirshvogel et al. | May 1978 | A |
4094951 | Ishikawa et al. | Jun 1978 | A |
4146401 | Yamada et al. | Mar 1979 | A |
4244934 | Kondo et al. | Jan 1981 | A |
4327194 | Chandalia et al. | Apr 1982 | A |
4698369 | Bell | Oct 1987 | A |
4722945 | Wood et al. | Feb 1988 | A |
4795763 | Gluck et al. | Jan 1989 | A |
4895713 | Greinke et al. | Jan 1990 | A |
4915925 | Chung | Apr 1990 | A |
4946892 | Chung | Aug 1990 | A |
4977194 | Haas et al. | Dec 1990 | A |
5023280 | Haas et al. | Jun 1991 | A |
5130199 | Howard | Jul 1992 | A |
5137930 | Soukup | Aug 1992 | A |
5149722 | Soukup | Sep 1992 | A |
5169876 | Heitmann et al. | Dec 1992 | A |
5173515 | von Bonin et al. | Dec 1992 | A |
5192607 | Soukup | Mar 1993 | A |
5409961 | Green | Apr 1995 | A |
5444101 | De Vos et al. | Aug 1995 | A |
5519065 | Vos et al. | May 1996 | A |
5531454 | Borneby | Jul 1996 | A |
5582781 | Hayward | Dec 1996 | A |
5605940 | Skowronski et al. | Feb 1997 | A |
5650448 | Wallace et al. | Jul 1997 | A |
5660926 | Skowronski et al. | Aug 1997 | A |
5719199 | Wallace et al. | Feb 1998 | A |
5723506 | Glorioso et al. | Mar 1998 | A |
5741827 | Chakrabarti et al. | Apr 1998 | A |
5760115 | Okisaki et al. | Jun 1998 | A |
5830319 | Landin | Nov 1998 | A |
5885479 | Chakrabarti et al. | Mar 1999 | A |
5925687 | Guettes et al. | Jul 1999 | A |
5942561 | Okisaki et al. | Aug 1999 | A |
5952248 | Horton | Sep 1999 | A |
5955386 | Horton | Sep 1999 | A |
5968669 | Liu et al. | Oct 1999 | A |
5981072 | Mercuri et al. | Nov 1999 | A |
5985452 | Mercuri | Nov 1999 | A |
6017633 | Mercuri | Jan 2000 | A |
6017987 | Okisaki | Jan 2000 | A |
6362242 | Gluck et al. | Mar 2002 | B1 |
6384094 | Gluck et al. | May 2002 | B1 |
6414041 | Gluck et al. | Jul 2002 | B1 |
Number | Date | Country |
---|---|---|
0 464 204 | Jan 1992 | EP |
0 889 082 | Jan 1999 | EP |
2168706 | Jun 1998 | GB |
01-292041 | Nov 1989 | JP |
02-194051 | Jul 1990 | JP |
02-248461 | Oct 1990 | JP |
10-502415 | Mar 1998 | JP |
2002-532597 | Oct 2002 | JP |
9515355 | Jun 1995 | WO |
9620966 | Jul 1996 | WO |
9620966 | Nov 1996 | WO |
9916817 | Apr 1999 | WO |
0006635 | Feb 2000 | WO |
0029471 | May 2000 | WO |
0035999 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040122119 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
60192231 | Mar 2000 | US |