The present invention relates to fire-resistant structures and methods of using same, and more particularly to fire-resistant structures and methods for wellhead outlets and methods of using same.
A wellhead is a component used at the surface of an oil or gas well that provides structural and pressure-containing interface for the drilling and production equipment. Wellheads are often welded to the first string of casing, which has been cemented in place over the well. Thus, wellheads often form an integral part of a well once initially installed.
Because oil and gas are highly flammable and because the environments in which oil and gas wells are located are often dangerous, it is desirable to provide adequate safety measures to protect wellheads and surrounding structures from potentially-damaging fires. Accordingly, there is a need for fire-resistant structures for wellhead outlets and methods of using same.
Additional aspects of the invention include:
Aspect 1: A kit for retrofitting an existing wellhead outlet, the existing wellhead outlet having at least one exterior surface, the kit comprising at least one spacing assembly, the at least one spacing assembly being attachable at a first end thereof to the at least one exterior surface of the existing wellhead outlet, the at least one spacing assembly further comprising a second end that is spaced apart from the first end; and at least one panel that is attachable to the second end of the at least one spacing assembly.
Aspect 2: The kit according to Aspect 1, wherein the at least one panel is comprised of a flame-retardant ceramic material.
Aspect 3: The kit according to either of Aspect 1 or Aspect 2, wherein the at least one spacing assembly is comprised of an insulated material.
Aspect 4: The kit according to any of Aspects 1-3, wherein each of the at least one panel has a planar exterior surface.
Aspect 5: The kit according to any of Aspects 1-4, wherein the at least one panel and at least one spacing assembly can fully enclose the wellhead outlet, except for any port that extends from the wellhead outlet.
Aspect 6: The kit according to any of Aspects 1-5, wherein the at least one spacing assembly includes at least one removable fastener that attaches the at least one spacing assembly to the wellhead outlet.
Aspect 7: An apparatus comprising: a wellhead outlet having at least one exterior surface; and at least one panel attached to the at least one exterior surface of the wellhead outlet such that the at least one panel is spaced apart from the at least one exterior surface of the wellhead outlet.
Aspect 8: The apparatus according to Aspect 7, wherein the at least one panel is comprised of a flame-retardant ceramic material.
Aspect 9: The apparatus according to either of Aspect 7 or Aspect 8, further comprising at least one spacing assembly attached to both the at least one panel and the at least one exterior surface of the wellhead outlet and acts to space the at least one panel apart from the at least one exterior surface of the wellhead outlet.
Aspect 10: The apparatus according to Aspect 9, wherein the at least one spacing assembly is comprised of an insulated material.
Aspect 11: The apparatus according to any of Aspects 7-10, wherein the at least one panel can fully enclose the wellhead outlet, except for any port that extends from the wellhead outlet.
Aspect 12: The apparatus according to any of Aspects 7-11, wherein the at least one panel is attached to the at least one exterior surface of the wellhead outlet using at least one removable fastener.
Aspect 13: A method of protecting a wellhead outlet, the wellhead outlet having at least one exterior surface, the method comprising: attaching one or more spacing assemblies to the at least one exterior surface of the wellhead outlet; and attaching one or more panels to the one or more spacing assemblies such that the one or more panels are spaced apart from the at least one exterior surface of the wellhead outlet.
Aspect 14: The method according to Aspect 13, further comprising the step of tapping a threaded hole into the at least one exterior surface of the wellhead outlet, wherein the step of attaching one or more spacing assemblies to the at least one exterior surface of the wellhead outlet comprises attaching one or more spacing assemblies to the threaded hole.
Aspect 15: The method according to either of Aspect 13 or Aspect 14, wherein the step of attaching one or more panels to the one or more spacing assemblies comprises attaching one or more panels to the one or more spacing assemblies, wherein the one or more panels is comprised of a flame-retardant ceramic material.
Aspect 16: The method according to any of Aspects 13-15, wherein the step of attaching one or more panels to the one or more spacing assemblies further comprises fully enclosing the wellhead outlet within the one or more panels, except for any port that extends from the wellhead outlet.
Aspect 17: The method according to any of Aspects 13-16, wherein the step of attaching one or more panels to the one or more spacing assemblies further comprises including one or more holes in the one or more panels to permit one or more ports that extends from the wellhead outlet to extend through the one or more panels.
Aspect 18: The method according to Aspect 17, further comprising the step of filling any gap between the one or more ports and a respective one of the one or more holes located in the one or more panels with a flame-retardant ceramic material.
Aspect 19: The method according to Aspect 18, wherein the step of filling any gap further comprises filling any gap with a thermal blanket.
Aspect 20: The method according to any of Aspects 13-19, wherein the step of attaching one or more panels to the one or more spacing assemblies comprises attaching one or more panels to the one or more spacing assemblies that are removable from the one or more spacing assemblies.
Aspect 21: The method according to any of Aspects 13-20, further comprising: removing the one or more panels from the one or more spacing assemblies; and reattaching the one or more panels to the one or more spacing assemblies.
Aspect 22: A method of protecting a wellhead outlet having at least one gasket, the at least one gasket having a circumference, the wellhead outlet having at least one exterior surface, the method comprising: attaching at least one panel to the at least one exterior surface of the wellhead outlet to form an enclosure around the wellhead outlet, wherein the enclosure provides sufficient insulation for the wellhead outlet in order to prevent the at least one gasket from leaking at a rate in excess of 1 ml/in. per minute of mean measurement of the circumference of the at least one gasket when the wellhead outlet has been pressurized to at least 75% of its rated working pressure with water after the enclosure has been exposed to a continuous flame of at least 1000 degrees F. (538 degrees C.) for at least 30 minutes.
Aspect 23: The method according to Aspect 22, wherein the step of attaching at least one panel to the at least one exterior surface of the wellhead outlet to form an enclosure around at least a portion of the wellhead outlet further comprises attaching one or more spacing assemblies to the at least one exterior surface of the wellhead outlet and attaching the at least one panel to the one or more spacing assemblies.
Aspect 24: The method according to either of Aspect 22 or Aspect 23, wherein the step of attaching at least one panel to the at least one exterior surface of the wellhead outlet further comprises attaching least one panel to the at least one exterior surface of the wellhead outlet having at least one non-planar surface.
Aspect 25: A system comprising: a wellhead outlet having at least one exterior surface; and at least one flame-retardant panel that is directly attached to the at least one exterior surface of the wellhead outlet.
Aspect 26: The system according to Aspect 25, wherein the at least one flame-retardant panel is in contact with the at least one exterior surface of the wellhead outlet.
Aspect 27: The system according to either of Aspect 25 or Aspect 26, wherein the at least one flame-retardant panel is removably attached to the at least one exterior surface of the wellhead outlet.
Aspect 28: The system according to any of Aspects 25-27, wherein the at least one flame-retardant panel has at least one non-planar surface.
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention disclosed herein, certain embodiments in accordance with the herein disclosed invention are shown in the drawings. It should be understood, however, that the herein disclosed invention is not limited to the precise arrangements shown. It should also be understood that, in the drawings, the parts are not necessarily drawn to scale. The present invention will hereinafter be described in conjunction with the appended drawing figures, wherein like numerals denote like elements. In the drawings:
The ensuing detailed description provides preferred exemplary embodiments only, and is not intended to limit the scope, applicability, or configuration of the herein disclosed inventions. Rather, the ensuing detailed description of the preferred exemplary embodiments will provide those skilled in the art with an enabling description for implementing the preferred exemplary embodiments in accordance with the herein disclosed invention. It should be understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention, as set forth in the appended claims.
To aid in describing the invention, directional terms may be used in the specification and claims to describe portions of the present invention (e.g., upper, lower, left, right, etc.). These directional definitions are merely intended to assist in describing and claiming the invention and are not intended to limit the invention in any way. In addition, reference numerals that are introduced in the specification in association with a drawing figure may be repeated in one or more subsequent figures without additional description in the specification in order to provide context for other features.
Referring generally to
The herein disclosed systems and methods, in one respect, describe enclosures or partial enclosures (see, e.g., enclosure 30 of
As shown in
In the embodiment shown in
In this embodiment, the panels are a fiber-reinforced composite comprised of a matrix of SiOC (silicon oxycarbide) embedded with Nextel™ fibers produced by 3M Company of St. Paul, Minn., U.S.A. In alternate embodiments, the matrix may be any suitable ceramic material or high-temperature polymer, and the fibers may be carbon fiber, glass fiber, boron nitride fiber, or other suitable fibers.
In this embodiment, top panel 42 has an exterior surface 42a and a port hole 43 that permits passage of the atmosphere data port 15 of the wellhead outlet 1 therethrough. Front panel 50 has an exterior surface 50a and a port hole 51 that permits passage of the high pressure data port 14 of the wellhead outlet 1 therethrough. Side panel 44 has an exterior surface 44a, front panel 48 has an exterior surface 48a, front panel 49 has an exterior surface 49a, side panel 46 has an exterior surface 46a, rear panel 53 has an exterior surface 53a, and bottom panel 55 has an exterior surface 55a. In this embodiment, each of the exterior surfaces 42a,44a,46a,48a,49a,50a,53a,55a of the respective panels 42,44,46,48,49,50,53,55 is planar. In alternate embodiments, at least a portion of the exterior surface of at least one panel of the enclosure is planar. In further alternate embodiments according to the present invention, the panels of the enclosure may include no planar portions.
In this embodiment, the interior washer 38 is located adjacent to the interior surface of the respective panel. The exterior washer 36 is located around the shaft 35 of the spacing fastener 33 and adjacent the exterior surface of the respective panel, and the shaft 35 of the spacing fastener 33 is passed through a spacing hole located in the respective panel, the interior washer 38, and the spacing blocks 40a-40c and then connected to the wellhead outlet. The head 34 of the spacing fastener 33 and the exterior washer 36 collectively form the exterior portion 39 of the spacing assembly, which is located external to the enclosure 30 (i.e., external to the respective panel). The spacing blocks 40a-40c and the interior washer collectively form the interior portion 37 of the spacing assembly, which is located internal to the enclosure 30 (i.e., internal to the respective panel). A portion of the shaft 35 of the spacing fastener 33 is located within the spacing fastener hole in the respective panel.
As best seen in
In some embodiments, as shown in
The embodiment of the enclosure 30 shown in
In some applications, it may not be necessary to fully enclose all sides of the wellhead outlet 1 within an enclosure.
One purpose of the enclosure 30 or partial enclosure 130 is that it is designed to enable the wellhead outlet 1 to withstand exposure to fire or other sources of high heat without seal failure. The enclosure 30 is designed to protect the seals of the wellhead outlet 1—e.g., the high pressure bowl 2 and the fiber optic feedthrough assembly (not labeled), which is located interior to the low pressure bowl 9—from significant leakage after exposure to fire.
In order to demonstrate this capability, the wellhead outlet 1 (i.e., the end connection) was fitted with the enclosure 30 and successfully tested using the following test protocol:
It should be appreciated that the foregoing is presented by way of illustration only, and not by way of any limitation, and that various alternatives and modifications may be made to the illustrated embodiments without departing from the spirit and scope of the present invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/074562 | 12/12/2013 | WO | 00 |