There are various uses for elongated flexible assemblies such as for elevator load bearing members or roping arrangements, drive belts for machines such as a passenger conveyor and handrails for passenger conveyors, for example. Such elongated flexible assemblies may comprise one or more tension members encased in a jacket material. Such assemblies may be designed with fire resistance performance in order to meet existing building codes. Such assemblies must also meet mechanical performance requirements, such as tensile strength and stiffness requirements.
A load-bearing assembly according to an example of the present disclosure includes at least one tension member, the at least one tension member comprising a resin, reinforcement fibers, and at least one additive that provides a fire-resistance to the tension member. The load-bearing assembly also includes a jacket material covering the at least one tension member.
Another example load-bearing assembly according to an example of the present disclosure includes at least one tension member, the at least one tension member comprising a self-fire-resistant resin and reinforcement fibers, and a jacket material covering the at least one tension member.
An example method of making a load-bearing assembly includes providing reinforcement fibers to a die, providing a resin precursor to the die, curing the resin precursor and fibers to form at least one synthetic tension member comprising a resin having a fire-resistance, and covering the at least one synthetic tension member in a jacket material.
Various features and advantages of at least one disclosed example embodiment will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
The load bearing assembly 26 supports the weight of the elevator car 22 and the counterweight 24 and facilitates movement of the elevator car 22 into desired positions by moving along sheaves 28 and 30. One of the sheaves will be a traction sheave that is moved by an elevator machine in a known manner to cause the desired movement and placement of the elevator car 22. The other sheave in this example is an idler sheave.
An example rope used as part of the load bearing assembly 26 is schematically shown in
As shown in
The example of
In some embodiments, the tension members 32 comprise synthetic material, or more particularly, a fiber-reinforced polymer resin. Synthetic tension members 32 are lighter than metal-based tension members, which can be advantageous in some situations. Synthetic materials do not typically have an inherent fire-resistant quality or characteristic.
Tension member 132 includes fibers 136 that enhance the mechanical properties of the synthetic tension member 132. The fibers 136 are encased in the resin 134 in this example. Though the fibers 136 in
The resin 134 also includes one or more additives. In a particular example, the synthetic tension member 132 includes a first additive 138 that provides fire-resistant properties and a second additive 140 that provides smoke-suppressant/char-forming properties. Example fire-resistant first additives 138 include phosphorous-containing or nitrogen-containing compounds or polymers. Example smoke-suppressant and/or char-forming second additives 140 include metal-exchanged clays, zeolites, zinc molybdate, zinc borate complex, zinc molybdenate, magnesium silicate complex.
In the illustrated example, the synthetic tension member 132 includes an optional nanofiller 142. The optional nanofiller 142 allows for improved mechanical properties and customization of the synthetic tension member 132. Example nanofillers 142 include materials with one or more of the following functional groups: glycidyl, silane, hydroxyl, carboxyl, amine, isocyanate, ethylene, and amide. More particularly, example nanofillers include magnesium hydroxide and aluminum trihydrate. In some examples, the nanofiller 142 is chemically treated.
The injection box 150 provides the resin 134 and fibers 136 to a die 152. In one example, the die 152 is at a different temperature than the injection box 150. More particularly, the die 152 is cooled. The die 152 forms the resin 134 and fibers 136 into the shape of a tension member 132. The shaped tension member 132 travels through one or more zones 154, 156, and 158 which are at various temperatures selected to cure the resin 134.
An example self-fire-resistant resin 234 is a rigid thermoset carbon-epoxy composite. Example epoxy resin precursors include diglycidylmethylphosphonate, diglycidylphenylphosphonate, triglycidylphosphite, and triglycidylphosphate. Example curing agents include aliphatic polyether triamine (such as JD-FAMINEĀ® T-403, available from Huntsman Corporation), bis(4-aminophenyl)phenylphosphine oxide, bis(3-aminophenyl)methylphosphine oxide and bis(4-aminophenyl)methylphosphonate.
The tension member 232 comprising the self-fire-resistant resin 234 is, in one example, formed by a system similar to the system 144 of
Though the fibers 136 in
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
This application is a divisional of U.S. patent application Ser. No. 15/952,581 filed Apr. 13, 2018; which claims priority to U.S. Provisional Application No. 62/487,673 filed on Apr. 20, 2017.
Number | Date | Country | |
---|---|---|---|
62487673 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15952581 | Apr 2018 | US |
Child | 18463713 | US |