The present invention is related to self-propelled agricultural harvesters such as combine harvesters, forage harvesters or sugar cane harvesters. The invention is in particular related to the mitigation of a fire risk associated with such harvesters.
Agricultural harvesters are self-propelled machines designed for cutting and processing crops from a field, while advancing through the field along a harvesting track. In many cases, a tractor drives alongside the harvester, towing a collecting trailer into which processed crop material is loaded through an unloading apparatus of the harvester, for example a pivotable unloading tube or elevator.
A number of parts of the harvester are likely to reach high temperatures, to the extent that a risk of fire becomes realistic, especially when the harvester is working in dry and hot conditions. An internal combustion engine is usually the main power source of the harvester, and parts of the engine can be the source of fire risk situations. For example, the engine of many modern day combine harvesters is located in a rear portion of the machine, more or less above the rear wheels or tracks of the harvester, and oriented transversally with respect to the longitudinal direction of the harvester. In this case, the engine fan generates a flow of hot air from one side of the harvester to the opposite side, where the flow of air is deflected between the engine and the outer shielding of the harvester. On this opposite side, chaff may become trapped behind the outer shielding of the harvester, and begin to smoulder or catch fire there and/or fall onto the rear wheels or tracks, causing a realistic fire hazard to the machine itself and to the field.
Current fire risk mitigation systems are usually employing temperature sensors mounted at particular locations inside the harvester's main body. While such systems are useful for detecting many potentially hazardous situations, they do not enable the monitoring of risks occurring outside said particular sensor locations. For example, the fire risk area as a consequence of engine-related air flow described in the previous paragraph is rather large and the exact location of burning or smoldering chaff may vary within said larger area. Detecting such a risk using temperature sensors mounted close to the risk area would either be unreliable due to an insufficient number of sensors, or too complex and expensive due to an overly large number of sensors.
The invention is related to a fire risk detection system and method as described in the appended claims. The system of the invention comprises at least one thermal imaging camera mounted or positionable in a location that enables the camera to capture a thermal image of at least part of one lateral side of the harvester when the harvester is operational in a field. The camera may for example be mounted on a movable component or subsystem of the harvester, such as the unloading tube of a combine harvester according to an embodiment of the invention. When the unloading tube is in the unloading position, the camera is enabled to capture an image of the unloading side of the harvester. The system further includes a processing unit and a control unit, configured to process and analyze captured thermal images, and compare temperature-related parameters derived from said images to a threshold. Such parameters include the maximum and/or average temperature in a number of areas identified in the images and/or in predefined critical areas, or the change of said average and/or maximum temperature, or the change in the shape of identified temperature-related areas. The control unit is configured to execute one or more fire mitigation actions when one or more thresholds are exceeded. Said actions may include the activation of an auditive or visual warning signal or the activation of a fire extinguishing system.
Preferred embodiments will now be described with reference to the drawings. The detailed description is not limiting the scope of the invention, which is defined only by the appended claims.
As seen in
A feeder 22 is coupled to the main body 21 at the front side, and a header 14 is coupled to the feeder 22. Crops are cut from the field by knives (not represented) mounted at the front of the header 14 and gathered into the feeder 22 by an auger or draper belts (not represented) included in the header 14. In the main body 21, the crops are processed by a configuration including threshing rotors and sieves which are well-known and therefore not represented in the drawing. Fully processed crops such as grains are collected at the end of the various processing stages and unloaded from the harvester through an unloading tube 12. The tube is pivotable between an unloading position shown in
In accordance with the first embodiment illustrated in
From its position on the extended unloading tube 12 (i.e. in the unloading position), the camera 5 is configured to capture a thermal image of the visible portions of the left-hand side of the operational harvester 1. Preferably, multiple images are captured at regular intervals. Each image is then processed by a processing unit 6 coupled to the camera 5 for example by a wire connection. The processing unit 6 is coupled to a control unit 7 configured to initiate one or more of several possible fire risk mitigation measures which will be described in more detail further in this text.
The processing unit 6 and the control unit 7 are shown as parts of the harvester 1, but could also be realized as standalone units located outside the harvester and for example be connected to the camera 5 and to the harvester by wireless connections. The processing unit 6 can be realized as a computer comprising a processor programmed to perform image processing techniques on the thermal images captured by the camera. The control unit may be PLC or similar electronic component capable of translating incoming signals which are a function of the captured thermal image into outgoing control signals. The physical realization of these units is therefore known as such. On the other hand, the parameters derived from the images, the relation between said parameters and the outgoing control signals and the various types of controls implemented in the system are characteristic features of the invention, as described hereafter in more detail for the embodiment shown in
A thermal imaging camera is known as such, and a known camera type can be used in the system of the invention. Preferably an infra-red camera is used. A thermal image captured by a thermal imaging camera is an image that comprises temperature-defined areas, usually represented by different colours, with red indicating hot areas, orange and yellow indicating medium range temperature areas and for example green or blue indicating colder areas. The scale that defines which temperatures represent ‘hot’ and ‘cold’ can depend on the object that is being observed. In a view of the left hand side of the combine harvester 1 in
As stated in the introduction, these hot air flows may be the source of smoldering or burning chaff building up in the space between the engine 2 and the side panel, and/or falling onto the rear wheels 4. In the system of the invention, such smoldering or burning chaff appears in the thermal image as hot areas and are identified as such by the processing unit 6.
The particular context of the engine cooling air being blown from one side of the harvester to the other side and the resulting fire risk area on said other side is not limited to combine harvester, but it is relevant for any harvester equipped with an internal combustion engine mounted in such a way that the described air flow is taking place.
The processing unit 6 is configured to analyze the thermal image and to compare parameters derived therefrom to a predefined threshold. These parameters may include one or more of the following:
The ‘one or more areas’ can include any temperature-defined area detected on the basis of each captured image. In other words: an image is captured, the processor analyses the image and identifies any area wherein one or more of the above-identified parameters exceeds the threshold. According to preferred embodiments however, the ‘one or more areas’ comprise—in addition to or instead of said identified areas derived from the image itself—predefined critical areas of the thermal image, i.e. areas which are known to represent a fire risk when either of the above-described parameters crosses the respective threshold. Such critical areas can be pre-defined by running the harvester in a reference condition, for example at maximum power during a given harvesting stretch. Critical areas can also be identified or updated during normal harvesting runs. Examples of a critical area may include the area corresponding to the engine or parts thereof such as the exhaust or the turbocharger, or areas where chaff has been known to build up during said reference run or during previous harvesting runs. Another critical area is the rear wheel 4 on the side observed by the camera 5, especially the upper surface of the wheel and the area in front of the wheel. When burning or smoldering chaff falls onto the wheel 4, it is likely to be detected either on top of the wheel, or in front of the wheel when it has fallen onto the ground due to the wheel's forward rotation.
The area in front of the wheel 4 is an example of a portion of the field included in the thermal image. According to embodiments of the invention, the camera's field of view may include additional portions of the field, for example a limited field area behind the harvester.
In order to adequately identify the temperatures and shapes in the thermal image, it is preferred that the side panel of the harvester's bodywork is made of synthetic material, which allows the infrared rays of the heated area to pass through the material so that it can be captured directly by the camera 5. When a metal shielding is used, the metal itself may be heated by burning chaff or other heat sources, which is also detectable by the camera 5.
The processing unit 6 applies known image processing and analysis techniques for deriving the above-described parameters from the image. The shape of the one or more areas can be determined by standard shape recognition algorithms. Comparison to the thresholds can be done by standard computation techniques.
The ‘respective thresholds’ can be determined also during a reference condition of the harvester and/or updated during normal harvesting runs. According to preferred embodiments, the threshold for each of the above-identified parameters depends on one or more of the following conditions:
These parameters are either measured by standard sensors which can be coupled to the processing unit 6, or they can be entered manually (for example the crop type) by the operator at the start of a harvesting run. Such manual entry may take place using a standard interface of the harvester, for example a touch screen in the operator's cabin, and entered into a memory module of the harvester's standard electronic control system. The processing unit 6 of the system of the invention may be coupled to or integrated in said control system, so that the entered parameter can be read by the processing unit 6, which subsequently applies the correct threshold as a function of said entered parameter.
The processing unit 6 verifies whether one or more of the above-identified parameters (average and/or maximum temperature, change of average and/or maximum temperature, change of shape of one or more higher temperature areas) derived from a captured image exceeds its respective thresholds. When this is the case, a signal is sent by the processing unit 6 to the control unit 7 which then activates one or more of the following risk mitigation measures:
A visual warning signal may be given on a standard interactive screen in the operator's cabin. According to embodiments of the invention, the warning is accompanied by a visual indication of the area where a parameter has exceeded its threshold. This may for example be done by providing an image of the harvester on the screen and coloring the risk area on the image.
According to an embodiment, the thermal imaging camera 5 includes an additional camera for capturing a visual image that corresponds to the thermal image. The visual image can be overlayed onto the thermal image and represented on a screen in the operator's cabin, thereby facilitating the visualization of the risk area. Alternatively, visible light details can be added to thermal images, which is also called multi-spectral dynamic imaging. An example is the FLIR MSX® technology by the company FLIR whereby edge and outline detail is extracted from the visual image and embedded onto the thermal readings. Unlike image overlaying or fusing, MSX does not dilute the thermal image or decrease thermal transparency.
Reference is made to
The thermal imaging camera 5 may however be placed on other parts of the harvester, or the fire risk detection system may include more than one thermal imaging camera. Examples of suitable other locations of the camera include: on one of the lateral flaps 15 of the grain tank cover (see
Another possible location for a thermal imaging camera of the fire risk detection system is on one or both of the rear-view mirrors (not shown) of a harvester. These rear-view mirrors may be movable between a position wherein the mirror is placed further apart from the operator's cabin (wider position), and a position wherein the mirror is closer to the cabin. Especially from the wider position, a view of at least part of the side of the harvester where the mirror is located, is obtainable with a thermal imaging camera mounted for example on a support arm of the rear-view mirror, in close proximity to the mirror itself, for example underneath the mirror.
The unloading tube 12, the flaps 15 and a movable rear-view mirror are examples of movable components or subsystems onto which the thermal imaging camera 5 can be mounted, with the components or subsystems being movable between a position that is closer to the main body 21 of the harvester and a position wherein at least a portion of the component or subsystem is further removed from the main body. Depending on the type of harvester onto which the system is applied, the camera 5 could be mounted also on a component that has a fixed position relative to the main body of the harvester. However, when placed on a movable component or subsystem, the camera is likely to be able to obtain a better or more complete image of the harvester's side.
It is also possible to capture thermal images while the movable component or subsystem is moving. According to embodiments of the invention, the movement is detected also by the processing unit 6, so that the changing image can be related to the changing position of the camera. For example, in the embodiment of
The invention is applicable to multiple harvester types, including a combine harvester as illustrated in the drawings, as well as a forage harvester and a sugar cane harvester. A forage harvester usually also includes an unloading tube similar to the unloading tube of the combine, except that the tube in a forage harvester is often pivotable both to the left hand side and to the right hand side. A camera mounted on the underside of the unloading tube in a similar position as illustrated for the combine can therefore monitor both sides of a forage harvester, depending on the pivoted position of the unloading tube.
A sugar cane harvester also comprises a pivotable unloading apparatus that is similar to an unloading tube. The apparatus is however usually referred to as an unloading elevator and the inner mechanism of the apparatus is different from an unloading tube of a combine. The unloading elevator however enables the same functionality of a risk detection system according to the invention, when a thermal imaging camera is mounted in the vicinity of the mouth of the unloading elevator. Like the forage harvester, the unloading elevator of a sugar cane harvester is usually able to pivot to either side of the harvester's main body. Critical areas may be different depending on the type of harvester to which the system is applied, but the manner in which temperature-related parameters are derived from the captured images and translated into fire risk mitigation actions is the same regardless of the type of harvester.
As stated, the invention is not limited to a fire risk detection system of which all the components are mounted on the harvester.
Number | Date | Country | Kind |
---|---|---|---|
EP22201049.8 | Oct 2022 | EP | regional |