The invention relates to devices for stopping or reducing the spread of fires through light fixtures, ceilings and walls.
Recessed lighting fixtures are disposed within a hole or trough cut into a wall or suspended ceiling. In particular, a “can” housing a light bulb is disposed within the hole or trough and the wiring is above the ceiling or behind the wall. The can has trim that covers the hole if the hole's diameter is larger than the can's.
Fires often spread through a building by passing through the light fixture or a portion of the hole and then moving through the space above the ceiling or behind the wall. The recessed light fixture itself provides little resistance to a spreading fire because it is often made from materials that conduct heat and the trim does not adequately seal the opening in the ceiling.
There are structures that attempt to prevent the fire from passing into the space above the ceiling. Such structures include a box usually made of a relatively heavy and bulky, thermally insulating material, such as compressed mineral wool or plaster board sheet rock
Disclosed herein is a fire stop for use with a recessed light fixture in a ceiling or wall. According to one exemplary embodiment, the fire stop is comprised of a lightweight enclosure that defines an interior space, and within the interior space, preferably along a top portion, is a layer of intumescent material.
The fire stop may be disposed above the suspended ceiling or behind the wall such that the enclosure completely surrounds the hole in the ceiling or wall and the light fixture can is contained within the interior space.
When the intumescent material reaches at least a pre-determined activation temperature, usually, from a fire, it transforms into a material with a relatively low thermal conductivity that expands, substantially filling the interior space and thereby impeding or stopping flames and smoke from moving behind the wall or ceiling.
For the purpose of illustration, there are shown examples in the drawings; however, it being understood, that this disclosure is not limited to the precise arrangements and instrumentalities shown.
In the figures, where like reference numerals indicate like elements, there is shown an exemplary fire stop 10 for use with an exemplary light fixture 12 in a wall or ceiling 14. For ease of illustration, the portion of the wall or ceiling 14 in which the light fixture 12 is disposed is defined herein as a “panel”. The fire stop 10, as is illustrated in this example, has a generally square-shaped enclosure 24 connected to a gasket 38, an opening for feeding conduit 18 into the light fixture 12 (shown in detail in
The fire stop 10 in the present example is disposed above the ceiling 14 and in the space 22 between the ceiling 14 and the building's roof or another higher ceiling (not shown). The fire stop 10 may be disposed on or connected to ceiling joists (not shown) but in this example is attached to the ceiling or walls by support bars 32. The ceiling 14 as is illustrated herein is a suspended ceiling, but as should be understood, the fire stop may be suitable for use with other types of ceilings as well. A “suspended ceiling” includes any ceiling spaced from another higher ceiling or a building's roof, or a wall spaced from the building's exterior wall. Suspended ceilings typically include hung ceilings having joists supporting ceiling tiles made of various materials such as mineral fiber. It also includes a solid membrane ceiling made of various materials including wood, plaster, drywall, etc. It should be obvious to one of skill in the art that the aspects disclosed herein could be used in the same manner with a wall instead of a ceiling, the only difference being the means by which the enclosure is attached.
The enclosure 24 in this example is comprised of at least one solid wall 26 and made of a lightweight material that has a high thermal conductivity, such as steel. As shown in
As shown in
Also within the enclosure's interior space 30 in this example is one or more layers of an intumescent material 36. An intumescent material is one that swells or expands as a result of heat exposure, thus increasing in volume. The intumescent material 36 may be comprised of mineral fibers, expandable graphite and a latex binder, however, other materials may be used. As shown in
As provided above, the at least one wall 26 of the enclosure 24 is preferably made of a thermally conductive material or has at least opening in addition to the opening for the conduit 18. Use of a thermally conductive material or openings in the wall 26 allows heat generated by the running light fixture 12 to more easily escape the enclosure 24, for example, by conduction through the metal or by the heat passing through the openings. Allowing this heat to more easily escape allows the light fixture 12 to “run cooler” thereby decreasing the amount of energy used, increasing the life of the light bulb 42 and decreasing the risk of overheating. The intumescent material 36 is positioned adjacent the upper wall 28 so that it does not obstruct the flow of heat from the running light fixture 12 from exiting from the sides of the enclosure 24. In addition, positioning the intumescent material 36 in the upper wall 28 of the enclosure 24 allows the overall size and weight of the enclosure 24 to be minimized. Nevertheless, in other embodiments, the intumescent material 36 may be positioned elsewhere within the interior space 30 such as along a side wall, in the corners of the enclosure, or surrounding the light can 20, as examples.
Using an enclosure comprised of materials that promote the transfer of heat from inside the enclosure is an advantage over current fire stops. As provided above, the enclosure of the presently-known fire stops are made of a fire resisting and thermally insulating material such as compressed mineral wool or sheet rock. These materials do not allow heat generated by a light fixture to easily escape from the enclosure. In addition, these known enclosures are very heavy and bulky. Because the fire stop disclosed herein may be comprised of light weight materials, it is easier to transport and set into place and produces less stress on the ceiling. In addition, providing a separate light fixture and enclosure allows embodiments of the present invention to be provided separately from the light fixture, which allows a light fixture to be installed and then the fire stop installed thereafter, avoiding having to transport and install both together.
When the intumescent material 36 reaches a certain pre-determined activation temperature, for example, when it is heated due to a fire near the ceiling 14 or flames or smoke passing through the hole 34 in the ceiling 14, the intumescent material 36 forms a “char” 36′ material, which has a relatively low thermal conductivity. As shown in
As shown in
A variety of modifications to the embodiments described will be apparent to those skilled in the art from the disclosure provided herein. Thus, the invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.
This application claims priority to U.S. Ser. No. 60/879,998 filed Jan. 11, 2007. The entire contents of that application are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4396142 | Lines, Jr. et al. | Aug 1983 | A |
5456050 | Ward | Oct 1995 | A |
5758959 | Sieczkowski | Jun 1998 | A |
6105334 | Monson et al. | Aug 2000 | A |
6357891 | Newbold et al. | Mar 2002 | B1 |
6421968 | Degelsegger | Jul 2002 | B2 |
20050242093 | Sharpe et al. | Nov 2005 | A1 |
20060258284 | Melesky | Nov 2006 | A1 |
20070109796 | Johnson | May 2007 | A1 |
20070206374 | Petrakis et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
2270936 | Mar 1994 | GB |
2415245 | Dec 2005 | GB |
2454449 | May 2009 | GB |
Number | Date | Country | |
---|---|---|---|
20080170404 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60879998 | Jan 2007 | US |