The present invention relates generally to the field of fire extinguishers. More specifically, the present invention relates to a novel fire suppression device configured to autonomously release fire-retardant foam for preventing and suppressing fire. The device is autonomously activated or actuated upon detecting very high temperature, fire, or smoke for forming and releasing fire-retardant foam. The device can be used in homes and businesses and can also be used for wild (i.e., brush) fires. The device may come in a variety of designs and structures to effectively suppress fire. Accordingly, the present disclosure makes specific reference thereto. Nevertheless, it is to be appreciated that aspects of the present invention are also equally applicable to other like applications, devices, and methods of manufacture.
By way of background, housefires are common across the globe and when fires burn down homes and businesses, they cause significant economic losses, also referred to as property damage. In fact, in 2020, home fires across the U.S. resulted in an estimated $7.3 billion in direct property damage. Causes of housefires include unattended cooking, grease fires, short circuits due to faulty wiring, candles, holiday decorations/lighting, unattended fireplaces, and more. Space heaters used in homes and businesses may also cause fire when items susceptible to easily catch fire including curtains, laundry, blankets, and furniture are kept near, or come into contact with, the space heaters.
Firepits, campfires, or cooking areas/grills are commonly utilized by humans. Human-caused fires result from unattended firepits, campfires, outdoor cooking elements, burning of debris, equipment use and malfunctions, negligently discarded cigarettes, fireworks, and intentional acts of arson. Lightning is one of the two natural causes of fires.
For preventing fires in homes, structures, and businesses, individuals install smoke alarms for raising an alarm when smoke or fire is detected. Individuals also try to be careful while smoking, keep combustible things away from walls and corners, and more. The most common method of extinguishing a fire is use of a garden hose or small fire extinguisher. However, conventional fire extinguishers require a person to manually activate and operate them. Many times, individuals may be unaware of the fire, which can cause delay in use of such extinguishers. In many scenarios, individuals do not have knowledge of how to operate fire extinguishers. Individuals desire a device other than conventional fire extinguishers for enabling them to easily extinguish a structure fire or prohibit same from spreading.
Firepit or designated fire/cook areas are also left without effective efforts or devices for extinguishing by individuals due to lack of effective fire extinguishing products. Individuals desire an improved device for extinguishing fires that spread from designated fire/cook areas.
Therefore, there exists a long-felt need in the art for a device that enables a homeowner to protect their home from fire. There is also a long-felt need in the art for an improved fire extinguishing device that can be used instead of conventional fire extinguishers. Additionally, there is a long-felt need in the art for a fire suppression device that does not require a user to manually activate and operate the device for extinguishing fire. Moreover, there is a long-felt need in the art for a fire suppression device that autonomously protects a home or structure (or portions thereof) from catching on fire. Further, there is a long-felt need in the art for a fire suppression device that reduces losses caused due to house fires and structure fires. Finally, there is a long-felt need in the art for a fire suppression device that autonomously prevents fire in the area around a home or structure and does not require physical presence of a user for operating the device.
The subject matter disclosed and claimed herein, in one embodiment thereof, comprises a fire suppression device. The device is designed to be installed on the roof or outside of a home or a building and is configured to be autonomously activated or actuated when a threshold amount of heat, smoke, or fire is detected by an integrated sensor. The device includes a distilled water reservoir for holding distilled water, a foam concentrate reservoir for holding a foam concentrate, an oxygen reservoir for holding oxygen, wherein an aerator receives distilled water mixed with foam concentrate and oxygen for aeration to produce high pressure fire-retardant foam, the fire-retardant foam is autonomously released through an outlet pipe or discharge opening for releasing the foam outside to cover the home or building, or a designated portion thereof, to suppress fire. In one embodiment, the device is manually activated using a push button for releasing the fire-retardant foam.
In this manner, the fire suppression device of the present invention accomplishes all of the forgoing objectives and provides users with a device that can be installed on the roof and around building of a home or business for detecting heat, smoke, or fire to release a fire-retardant foam. The device autonomously protects a building or structure from catching on fire (or prohibits spreading of same) and thus prevents financial damage. The water and fire-retardant foam producing chemical can be refilled in the device for reusability of the device.
The following presents a simplified summary in order to provide a basic understanding of some aspects of the disclosed innovation. This summary is not an extensive overview, and it is not intended to identify key/critical elements or to delineate the scope thereof. Its sole purpose is to present some general concepts in a simplified form as a prelude to the more detailed description that is presented later.
The subject matter disclosed and claimed herein, in one embodiment thereof, comprises a fire suppression device. The device is designed to be installed on the roof or outside of a home or a building and is configured to be autonomously activated or actuated when a threshold amount of heat, smoke, or fire is detected. The device includes a distilled water reservoir for holding distilled water, a foam concentrate reservoir for holding a foam concentrate (i.e., concentrator), an oxygen reservoir for holding oxygen, wherein an aerator receives distilled water mixed with foam concentrate and oxygen for aeration to produce high pressure fire-retardant foam, the fire-retardant foam is autonomously released through an outlet pipe for releasing the foam outside to cover the home or building, or portions thereof, to suppress fire.
In yet another embodiment, the device has a multi-purpose sensor for detecting the threshold amount of heat, smoke, or fire for autonomously activating the device to produce and release fire-retardant foam.
In yet another embodiment, the foam concentrate can be used for forming Type A foam or Type B foam and the foam concentrate is introduced to the distilled water for forming the fire-retardant foam.
In yet another embodiment, the counter device is weatherproof and has IP68 rating.
The subject matter disclosed and claimed herein, in one embodiment thereof, comprises a fire suppression shield device. The device further comprising a housing including a plurality of chambers, each chamber is configured to store an internal component for forming a fire-retardant foam, the components include a distilled water reservoir for holding a store of distilled water, a foam concentrate reservoir for holding a store of foam concentrate, an oxygen reservoir for holding a store or air/oxygen, an aerator motor for forming high pressure foam from said distilled water, foam concentrate and oxygen wherein the aerator motor is autonomously activated upon a safety sensor detecting high temperature, smoke, or fire. The fire-retardant foam generated by the device is released using an outlet pipe or discharge opening for covering a building, or designated room/area, to suppress the fire.
In yet another embodiment, a method of suppressing or holding the fire and thereby prevent from further spreading is described. The method includes the steps of providing a fire suppression device, the device is configured to produce fire-retardant foam; autonomously activating the device upon detection of excessive fire, smoke, or temperature; autonomously forming fire-retardant foam using an aerator by mixing a store of foam concentrate, a store of water, and a store of air/oxygen; and, releasing fire-retardant foam to cover a structure such as a building, room, or area, to prevent fire from spreading.
Numerous benefits and advantages of this invention will become apparent to those skilled in the art to which it pertains upon reading and understanding of the following detailed specification.
To the accomplishment of the foregoing and related ends, certain illustrative aspects of the disclosed innovation are described herein in connection with the following description and the annexed drawings. These aspects are indicative, however, of but a few of the various ways in which the principles disclosed herein can be employed and are intended to include all such aspects and their equivalents. Other advantages and novel features will become apparent from the following detailed description when considered in conjunction with the drawings.
The description refers to provided drawings in which similar reference characters refer to similar parts throughout the different views, and in which:
The innovation is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding thereof. It may be evident, however, that the innovation can be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate a description thereof. Various embodiments are discussed hereinafter. It should be noted that the figures are described only to facilitate the description of the embodiments. They are not intended as an exhaustive description of the invention and do not limit the scope of the invention. Additionally, an illustrated embodiment need not have all the aspects or advantages shown. Thus, in other embodiments, any of the features described herein from different embodiments may be combined.
As noted above, there is a long-felt need in the art for a device that enables a homeowner to protect their home or designated areas from fire. There is also a long-felt need in the art for an improved fire extinguishing device that can be used instead of conventional fire extinguishers. Additionally, there is a long-felt need in the art for a fire suppression device that does not require a user to manually activate and operate the device for extinguishing fire. Moreover, there is a long-felt need in the art for a fire suppression device that autonomously protects a home or room/area from catching on fire. Further, there is a long-felt need in the art for a fire suppression device that reduces losses caused due to house, building, structure fires. Finally, there is a long-felt need in the art for a fire suppression device that autonomously prevents fire in the areas around, or in, a home and does not require physical presence of a user for operating the device.
The present invention, in one exemplary embodiment, is a method of suppressing fire to hold fire and prevent same from further spreading is described. The method includes the steps of providing a fire suppression device, the device is configured to produce fire-retardant foam; autonomously activating the device upon detection of excessive fire, smoke, or temperature; autonomously forming fire-retardant foam using an aerator by mixing foam concentrate, water, and oxygen; and, releasing fire-retardant foam to cover a structure such as a building, or portions thereof, to prevent fire from spreading.
Referring initially to the drawings,
Each of the side walls 108, 110 of the housing 102 has a metal grid 112 for enabling a homeowner to look inside the housing 102 to view a status of the components to prevent any leakage or any other malfunction. For releasing fire-retardant foam, a pipe or discharge opening 114 extends out from the rear wall 114 of the housing 102 wherein the fire-retardant foam is autonomously released by the device 100 upon detecting a high temperature, flame, or smoke. The housing 102 can be made of any lightweight metal, alloy, or heavy-duty plastic for a durable and weatherproof structure.
The lid 106 has a display 116 for displaying current time 118, temperature 120 detected by the device 100, and status 122 indicating working status or malfunction of the fire-retardant foam. The device 100 includes a plurality of sensors for detecting flame, smoke, and temperature as described later in the disclosure.
The housing 102 also has a first lower chamber 210 for storing foam concentrate in a foam concentrate reservoir 212. The foam concentrate in the preferred embodiment includes hydrocarbon-based surfactants such as sodium alkyl sulfate, and fluorosurfactants, such as fluorotelomers, perfluorooctanoic acid (PFOA), or perfluorooctanesulfonic acid (PFOS). A second lower chamber 214 includes an air storage 216 for storing air (oxygen) used for making fire-retardant foam. An aeration motor 218 is positioned in the second lower chamber 214 for mixing and aerating the distilled water, foam concentrate, and air in a pressurized manner for creating the fire-retardant foam as illustrated in front view of the device 100 in
Based on use and position of the fire-retardant device 100, aeration pressure can be set by a user using pressure meter 220 of the aeration motor 218. Further, for detecting smoke, flame, or high temperature, a multi-purpose safety sensor 222 is positioned in the housing 102 for autonomously detecting a threshold amount of smoke, flame, or temperature. The sensor 222 upon detecting the threshold amount, autonomously activates the device 100 for producing fire-retardant foam as described above.
It should be noted that in some embodiments of the present invention, a push or touch button may be positioned on an appropriate location on the housing 102 for manually activating the device 100 to produce and release fire-retardant foam. The internal components such as the water reservoir 204, foam concentrate reservoir 212, air storage 216, aeration motor 218, and safety sensor 222 of the device 100 are internally connected via electric circuits 224 and other media for autonomously producing foam for release through the pipe or discharge opening 114. The chambers 202, 210, 214 can be integrated or releasably positioned inside the housing 102 and enables a user to access the respective components in order to replace or replenish the stored items.
The aerator 218 is configured to perform aeration of the foam concentrate and distilled water to form fire-retardant foam. The fire-retardant foam is then released through the pipe or discharge opening 114 for release in the surrounding area to suppress fire and smoke.
The placement of different components inside the housing 102 can vary and when the housing 102 is covered by a metal body, the components become weatherproof and can be positioned in any outdoor location.
The device 100 can be installed with newly built buildings or can be coupled (i.e., retrofitted) to existing buildings. Further, the capacity of the device 100 can be adjusted to meet requirements of covering buildings of different sizes, structures, designated areas, rooms, fireplaces, cooking areas, et. Al. In different embodiments of the present invention, the device 100 can produce Class A foam and/or Class B foam. Class A foams can be specifically used for controlling wildfires and structure fires. Class B foams are used for flammable liquids and can be protein foams or synthetic foams.
Certain terms are used throughout the following description and claims to refer to particular features or components. As one skilled in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name, but not structure or function. As used herein “fire extinguishing device”, “autonomous fire extinguishing device”, “fire suppression device”, and “device” are interchangeable and refer to the autonomous fire suppression device 100 of the present invention.
Notwithstanding the forgoing, the autonomous fire suppression device 100 of the present invention can be of any suitable size and configuration as is known in the art without affecting the overall concept of the invention, provided that it accomplishes the above stated objectives. One of ordinary skill in the art will appreciate that the autonomous fire suppression device 100 as shown in the FIGS. are for illustrative purposes only, and that many other sizes and shapes of the autonomous fire suppression device 100 are well within the scope of the present disclosure. Although the dimensions of the autonomous fire suppression device 100 are important design parameters for user convenience, the autonomous fire suppression device 100 may be of any size that ensures optimal performance during use and/or that suits the user's needs and/or preferences.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. While the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
What has been described above includes examples of the claimed subject matter. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the claimed subject matter, but one of ordinary skill in the art may recognize that many further combinations and permutations of the claimed subject matter are possible. Accordingly, the claimed subject matter is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
The present application claims priority to, and the benefit of, U.S. Provisional Application No. 63/420,172, which was filed on Oct. 28, 2022, and is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63420172 | Oct 2022 | US |