The invention relates generally to fire suppression systems including mixing of foam concentrate and water. Such systems and methods may be applied on various scales such as low flow rate systems utilizing lightweight electric motors to high flow rate systems found in fire suppression vehicles (e.g., fire trucks) and stationary systems in buildings.
Fire suppression systems are commonly used in industrial applications to combat fires in oil refineries, chemical plants, and other large facilities where highly flammable liquid materials are processed or stored. These fires are often fought by blanketing the flammable material with class B foam.
Industrial firefighting apparatus equipped for applying foam have used large water pumps and a plurality of discharge outlets. Foam concentrate has traditionally been injected in the vicinity of each discharge outlet. Each injection site is individually controlled to produce various proportions of water and foam concentrate. These systems are complex and expensive as they require precise application of foam concentrate at each discharge outlet. They also require large amounts of power to overcome the discharge pressure at the injection points.
Simpler “around the pump” systems draw foam concentrate into the water stream and circulate a foam concentrate-water mixture through a pump to avoid separate foam and mixture pumps.
In one aspect, the invention provides a fire suppression system. The fire suppression system comprises: a water pump having an inlet coupled to a water supply line in fluid communication with a supply of water; a first foam line fluidly connecting an outlet side of the foam pump to the water supply line; a second foam line fluidly connecting an outlet side of the foam pump to a foam-concentrate water mixture line, where the foam-concentrate water mixture line has an outlet in fluid communication with a first manifold; and a second water line fluidly connecting the outlet side of the water pump to a second manifold. The fire suppression system is shiftable between a first configuration and a second configuration. In the first configuration: foam concentrate flows through the first foam line, water flows through the water supply line and mixes with the foam concentrate, and a foam concentrate-water mixture is passed into the first manifold through the foam-concentrate water mixture line. In the second configuration: water flows through both the first water line and the second water line, foam flows through the second foam line, a foam concentrate-water mixture is passed into the first manifold, and pure water is passed into the second manifold.
In another independent aspect, the invention provides a method of operating a fire suppression system. The method comprises operating the fire suppression system in a first configuration. In the first configuration, foam concentrate is pumped to an upstream side of a water pump, and a foam concentrate-water mixture is discharged from the water pump and into at least one of a plurality of manifolds. The method comprises shifting the fire suppression system from the first configuration to a second configuration in which pumping of foam concentrate to the upstream side of the water pump is stopped and in which foam concentrate is pumped to a downstream side of the water pump. The method comprises operating the fire suppression system in the second configuration whereby a portion of the water pumped from the water pump is combined with foam concentrate to supply a first one of the plurality of manifolds, and another portion of the water pumped from the water pump is provided without foam concentrate to supply a second one of the plurality of manifolds.
Before any embodiments of the present invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
Water is supplied to the water pump 1 and foam concentrate is supplied to the foam pump 2. In some embodiments, water flows from the water tank 6 through a tank-to-pump valve 8 and a check valve 9 before entering the intake side of the water pump 1. In some embodiments, water flows from the water tank 6 to the tank to pump valve 8 at atmospheric pressure. Alternately, water flows from an external source 10 to the intake side of the water pump 1. Foam concentrate flows either from the foam tank 7 through a foam tank-to-pump valve 11 and a check valve 12 or from an external foam supply 7A. Foam concentrate then flows through a strainer 13 before entering the intake side of the foam pump 2.
Foam concentrate flows at pressure out of the foam pump 2 and through a foam concentrate flowmeter 4 and a metering valve 5 before being introduced to the water supply line 200 or otherwise introduced to the inlet side of the water pump 1. A foam pump supply line 210 fluidly communicates between at least one of the foam tank 7 and an external foam concentrate supply 7A and the inlet side of the foam pump 2. A foam pump outlet line 220 fluidly communicates between the outlet of the foam pump 2 and the water supply line 200 between the water tank 6 and the water pump 1. Alternatively, the foam pump outlet line 220 fluidly communicates between the outlet of the foam pump 2 and an inlet side of the water pump 1. The water and foam concentrate is mixed at or prior to the water pump 1 intake to become a foam solution. A foam-concentrate/water mixture exits the water pump 1 at pressure and enters a discharge manifold 14. The foam-concentrate/water mixture is distributed from the discharge manifold 14 to the various discharge outlets 15-20 on the fire apparatus (not shown). The fire apparatus 104 may be, but is not limited to: a fire truck, a stationary fire suppression system found in a building, and a hand-held fire suppression device such as a fire extinguisher.
The desired foam-concentrate/water mixture concentration is maintained by the control system 3, which compares the output from the foam concentrate flowmeter 4 to the sum of the discharge flow meters 21-26. The foam concentrate flowmeter 4 measures a total foam concentrate flow rate through the foam pump outlet line 220. The discharge flow meters 21-26 combine to measure a total mixture flow rate of the foam-concentrate/water mixture as it is discharged from the system 100. The control system 3 varies the amount of foam concentrate supplied to the manifold 14 by adjusting the foam concentrate metering valve 5 and/or adjusting the operating rate of the foam concentrate pump 2 to maintain the desired foam solution concentration level. The control system 3 may also be capable of other methods of adjusting the mixture concentration. Adjusting the operating rate of the foam concentrate pump 2 may include, but is not limited to adjusting the amount of power supplied to the foam concentrate pump 2. Adjusting the operating rate (i.e., operating status) of the foam concentrate pump 2 adjusts the volumetric flow rate of foam concentrate from the foam tank 7 to the inlet of the water pump 1 and ultimately to the manifold 14 and out the discharge outlets 15-20. This adjusts the foam-concentrate/water mixture concentration. Foam-concentrate/water mixture can be retained at pressure in the manifold 14 for discharge out of the discharge outlets 15-20 when any of the discharge valves 27-32 are opened.
Discharge valves 27-32 are located downstream of the flow meters 21-26, and are opened and closed to control the flow of the mixture out of the system through the discharge outlets 15-20. As discharge valves 27-32 are opened or closed, the total discharge flow out of the system will change. The control system 3 will continue to vary the foam concentrate metering valve 5 and/or the operating rate of the foam concentrate pump 2 to keep the foam-concentrate/water mixture concentration at the desired level.
In this embodiment, the foam pump 2 power is reduced by as much as 400 percent compared to conventional direct foam injection systems that require foam delivery at high pressure on the downstream side of the water pump. This allows more power to be used by the water pump 1. As a result, the system realizes an increased maximum foam-concentrate/water mixture discharge flow rate, which increases the firefighting capability of the system.
This embodiment includes a three-way valve 5A with a first passageway 5A′ in fluid communication with the outlet of the metering valve 5, a second passageway 5A″ in fluid communication with or upstream of the inlet of the water pump 1 (e.g., at a “T” or “tee” junction 205 upstream of the water pump 1), and a third passageway 5A′″ not in fluid communication with an upstream portion of or an inlet of the water pump 1. The second passageway 5A″ is in fluid communication through the foam pump outlet line 220 which outlets to the water supply line 200. The third passageway 5A′″ is in fluid communication with a foam bypass line 230 which receives foam from the foam pump 2, bypasses the water pump 1, and outlets to a foam-concentrate/water mixture line 240. The foam-concentrate/water mixture line 240 is downstream of the water pump 1 and in fluid communication with a first manifold 38 of the manifold 14.
Shifting the operating position of the three-way valve 5A permits the fire suppression system 100 to be shifted between a first configuration and a second configuration. With the three-way valve 5A receiving foam concentrate from the foam pump 2 at the first passageway 5A′ and having the third passageway 5A′″ closed, foam concentrate is passed through the three-way valve 5A, through the foam pump outlet line 220, and into the water supply line 200. This forms a first foam concentrate line. With the three-way valve 5A receiving foam concentrate from the foam pump 2 at the first passageway 5A′ and having the second passageway 5A″ closed, foam concentrate is passed through the three-way valve 5A, through the foam bypass line 230, and into the foam-concentrate/water mixture line 240. This forms as a second foam concentrate line.
A check valve 34A is positioned between the foam-concentrate/water mixture line 240 and the outlet of the water pump 1. The check valve 34A prevents foam concentrate backflow towards the water pump 1 and the water-only portion of the system located upstream of the check valve 34A.
A partition valve 35 can be opened or closed to split the manifold 14 into the first manifold 38 and a second manifold 37. The foam-concentrate/water mixture line 240 is in fluid communication with the first manifold 38. A water-only line 250 is in fluid communication at a connection point 260 between an outlet or downstream side of the water pump 1 (located prior to the check valve 34) and the second manifold 37. A pre-mixture water line 270 is located upstream of the check valve 34 and downstream of the connection point 260 between the water-only line 250 and the outlet or downstream side of the water pump 1. The pre-mixture water line 270 fluidly connects the outlet of the water pump to the foam-concentrate/water mixture line 240. Other similar configurations may be possible. Such a configuration permits water to flow through the pre-mixture water line 270 (i.e., a first water line), through the water-only line 250 (i.e., a second water line), or through both the pre-mixture water line 270 and the water-only line 250.
In this embodiment, the operator can choose to flow a foam-concentrate/water mixture out of each the discharge outlets 15-20 by directing the foam concentrate into the intake of the water pump 1. This is one configuration of the third embodiment. This configuration is achieved by switching the three-way valve 5A (i.e., closing the third passageway 5A′″ of the three-way valve 5A). Optionally, the partition valve 35 within the manifold 14 can be opened. Optionally, a water-only valve 36 can be open or closed depending on which type of fluid the operator wants to supply to the first manifold 38, the second manifold 37, or the entire manifold 14. Alternatively, other valve arrangements can replace the water-only valve 36 to supply fluid to portions of the manifold 14 depending on the operators intended use. Such other valve arrangements may include, but are not limited to: removing the water only valve 36, placing a three-way valve at the connection point 260, or providing a series of valves between the connection point and both the water-only line 250 and the pre-water mixture line 270. The second passageway 5A″ of the three-way valve 5A fluidly communicates with the inlet or upstream side of the water pump 1 which receives water from the water tank 6 or the external water source 10. Water is mixed with foam concentrate upstream or at an inlet of the water pump 1. The foam-concentrate/water mixture passes over the check valve 34 and into the first manifold 38. Optionally, the foam-concentrate/water mixture passes through the partition valve 35 and into the second manifold 37. Any of the discharge valves 27-32 can then discharge the foam-concentrate/water mixture from the manifold 14.
Alternately, the operator can choose to flow a foam-concentrate/water mixture out of any one of the discharge outlets 18-20 communicating with the first manifold 38, while flowing pure water (i.e., water without foam concentrate) out of any one of the discharge outlets 15-17 communicating with the second manifold 37. This is another configuration of the third embodiment. Pure water can be retained at pressure in the second manifold 37 for discharge when any one of the discharge valves 27-29 is opened. Foam-concentrate/water mixture can be retained at pressure in the first manifold 38 for discharge when any one of the discharge valves 30-32 is opened.
To achieve this, the operator closes the partition valve 35, opens the water-only valve 36, and switches the three-way valve 5A (i.e., closing the second passageway 5A″ of the three way valve 5A) to direct the foam concentrate flow through the foam bypass line 230 and into to the foam-concentrate/water mixture line 240. As a result, foam concentrate from the foam pump 2 and water from the water pump 1 are both supplied to the foam-concentrate/water mixture line 240 to supply the first manifold 38. The water and foam-concentrate is mixed in the first manifold 38 to become a foam-concentrate/water mixture. Mixing may also occur in the foam-concentrate/water mixture line 240 prior to the first manifold 38. Check valve 34A prohibits foam concentrate from the foam pump 2 and foam-concentrate/water mixture from the first manifold 38 from flowing backwards into the water-only side of the system. Foam-concentrate/water mixture is distributed from the first manifold 38 to the various discharge outlets on the fire apparatus 18-20. Water passes through both the pre-mixture water line 270 and the water-only line 250.
The desired foam-concentrate/water mixture concentration is maintained by the control system 3, which compares the output from the foam concentrate flowmeter 4 to the sum of the discharge flow meters 24-26. The control system 3 then varies the amount of foam concentrate supplied to the manifold 14 by adjusting the foam concentrate metering valve 5 and/or the operating rate of the foam concentrate pump 2 to maintain the desired foam solution concentration level.
In this embodiment, the discharge valves 30-32 communicate with the first manifold 38, and the discharge valves 27-29 communicate with the second manifold 37. As discharge valves 30-32 are opened or closed, the total foam-concentrate/water mixture discharge flow will change and the control system 3 will continue to vary the foam concentrate metering valve 5 and/or the operating rate of the foam concentrate pump 2 to keep the foam-concentrate/water mixture concentration at the desired level. At the same time, water from the water pump 1 can flow through the water-only valve 36 to the second manifold 37, through the flow meters 21-23, through the discharge valves 27-29, and out the discharge outlets 15-17. In this embodiment the operator has the choice of either flowing the foam-concentrate/water mixture out of all the outlets, or the foam-concentrate/water mixture out of certain outlets and water out of others, for example simultaneously.
Foam concentrate refilling (i.e., recovery) is accomplished by pushing foam concentrate from the discharge (i.e., outlet) side of the foam concentrate pump 2 through a foam fill valve 47 and back to the foam tank 7. The fire suppression system 100 capable of foam concentrate refilling is illustrated in
Foam concentrate flushing is accomplished by pushing water from the outlet side of the water pump 1 through a foam flush valve 46 and back into the foam line supply line 210 prior to the foam pump 2 and upstream of the concentrate strainer 13. The fire suppression system 100 capable of foam concentrate flushing is illustrated in
Foam off-loading is accomplished by pushing foam concentrate from within the foam pump supply line 210 through the outlet side of the foam concentrate pump 2 and through a foam off-load valve 48 and out a foam concentrate discharge outlet 49. The fire suppression system 100 capable of foam off-loading is illustrated in
The fire suppression system 100 may be applied to a number of different fire apparatus 104.
One or more independent features and/or advantages of the invention may be set forth in the following claims.
The application is a continuation of U.S. Non-Provisional application Ser. No. 17/153,118, filed on Jan. 20, 2021, which is based on and claims priority to U.S. Provisional Patent Application No. 62/963,286, filed Jan. 20, 2020, the entire contents of which are hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62963286 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17153118 | Jan 2021 | US |
Child | 18627710 | US |