Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The invention relates to rail mounted assemblies for firearms and, more particularly, to firearm assemblies and/or accessories configured with control surfaces, communication capabilities, and/or power generation capabilities.
2. Background of the Invention
Firearms can be used for a variety of purposes such as, for example, hunting, self-defense, law enforcement, and military activities. As such applications for firearms vary, so too do the different accessories capable of being utilized with the firearm. In particular, each such activity may lend itself and/or otherwise require one or more accessories configured to increase the utility of the firearm. For example, in law-enforcement applications, firearms are often fitted with lights and/or other accessories configured to assist in warning criminals of the presence of a law enforcement officer. In such applications, firearms utilized by law enforcement officers may also be fitted with one or more laser sights configured to assist the officer in aiming the firearm. Such accessories are well known in the art and require relatively basic mounting structures and control functionality.
However, as contemporary firearm technology continues to develop and evolve, so does the need for more sophisticated control, data transfer, power generation, and networking functionality configured for use with the firearm and the accessories. For example, many contemporary accessories designed for use with firearms may require a power source. Such power sources, however, may be bulky and heavy, and may make it more difficult to utilize the firearm as intended. This may be particularly true in applications where the firearm and it's powered accessory are utilized in remote locations for extended periods of time. As another example, some contemporary firearm accessories may be configured for, for example, data sharing, networking, and/or communication with other firearm accessories locally or remotely. Such accessories may also be configured to communicate with, for example, a remote central command center. Each of these accessories, however, may have its own separate set of controls. Such controls may be difficult for a firearm user to manipulate, particularly, while using the firearm for its intended purpose. For example, the controls of such accessories may require the use of both hands, may not be positioned in a way that makes it easy for the firearm user to adjust them, and/or may require extensive manipulation by the user. Such ergonomic and design deficiencies make the repeated use of such controls tedious. It is understood that the difficulties associated with operating such controls are compounded when two or more accessories are connected to the firearm for use.
Accordingly, the systems and methods of the present disclosure are directed towards overcoming one or more of the above deficiencies.
None.
In an exemplary embodiment of the present disclosure, a firearm system includes a foregrip removably mountable to a firearm, the foregrip having a programmable button controlling at least one of an accessory of the firearm and a component of the foregrip.
In another exemplary embodiment of the present disclosure, a firearm system includes a first accessory mounted to a firearm and a second accessory mounted to the firearm, the first and second accessories transmitting information therebetween. The system also includes a foregrip removably mounted to the firearm, the foregrip having a programmable button controllably connected to at least one of the first and second accessories.
In still another exemplary embodiment of the present disclosure, a firearm system includes a first accessory mounted to a firearm and a second accessory mounted to the firearm, the first and second accessories transmitting information therebetween. The system also includes a foregrip removably mounted to the firearm, the foregrip having a programmable button controllably connected to at least one of the first and second accessories. The system further includes a power generator providing power to the first and second accessories.
In yet another exemplary embodiment of the present disclosure, a method of controlling a firearm system includes removably connecting a foregrip to a firearm and directing a control signal from the foregrip to an accessory of the firearm by manipulating a programmable button of the foregrip.
In a further exemplary embodiment of the present disclosure, a firearm system includes an accessory connected to a firearm, the accessory configured to perform a first function, and a foregrip removably connected to the firearm. The foregrip includes a button programmable to effect performance of the first function in response to actuation of the button.
In still another exemplary embodiment of the present disclosure, a firearm system includes a loading bolt disposed within a firearm, an induction coil disposed proximate the loading bolt, and a rechargeable power source electrically connected to at least one of the loading bolt and the induction coil such that relative movement between the loading bolt and the induction coil directs power to the rechargeable power source.
In another exemplary embodiment of the present disclosure, a firearm includes a frame, and a bolt movably connected to the frame between a first position and a second position. The firearm also includes one of an electrically conductive coil and a magnet connected to the bolt and moveable with the bolt, and a remaining one of the electrically conductive coil and the magnet connected to the frame. The firearm further includes a resistive load electrically connected to the induction coil.
In still another exemplary embodiment of the present disclosure, a method of operating a firearm includes connecting one of an electrically conductive coil and a magnet to a bolt, connecting a remaining one of the electrically conductive coil and the magnet to a frame of the firearm, and moving the bolt relative to the frame to create an electrical current in the electrically conductive coil.
The power source 34 can be any source of power known in the art such as, for example, one or more batteries. In an exemplary embodiment of the present disclosure, the power source 34 may comprise a plurality of AA batteries. In additional exemplary embodiments, the power source 34 may comprise a DL-123. It is understood that in the power source 34 may be rechargeable, and may be electrically connected to components of the foregrip 100 via a known electrical connection means. For example, the power source 34 may be electrically connected to the event counter 12 so as to provide power thereto. It is also understood that the foregrip 100 may define a power source compartment (not shown) sized and/or otherwise configured to receive and/or otherwise store at least a portion of the power source 34.
The event counter 12 may be, for example, any counting mechanism known in the art configured for use with a firearm. In an exemplary embodiment, the event counter 12 may comprise an accelerometer-based shot counter configured to count and/or otherwise keep track of the number of bullets, lasers, and/or other projectiles fired by the firearm to which the foregrip 100 is attached. The event counter 12 may also keep track of the number of rounds of ammunition remaining in a magazine of the firearm. The event counter 12 may be configured to provide any of the above information to the user. In an exemplary embodiment, the event counter 12 may comprise a magnet assembly configured to generate a current through, for example, the Faraday effect and/or other known electrical circuit principles. The event counter 12 may be electrically connected to, for example, a microprocessor configured to evaluate the current and/or signal generated by the event counter 12. The microprocessor and/or the event counter 12 itself may be configured to determine whether a firing event has occurred based on the generated currents. In addition, the microprocessor and/or the event counter 12 may be configured to distinguish between, for example, a shot being fired by the firearms, and other non-qualifying events such as, for example, erratic movements of the firearm, dropping the firearm, contacting the firearm with one or more substantially rigid objects, removing the firearm from a case in which it is disposed, and/or other common motion-based activities.
In another exemplary embodiment, the event counter 12 may be a capacitor-based shot counter. In such an exemplary embodiment, the event counter 12 may function to generate a current and distinguish between a firing event and a non-firing event in much the same way as the accelerator based event counter 12 discussed above. And in still other exemplary embodiments, the event counter 12 may comprise a microphone based shot counter. Such a shot counter may generate a voltage based on the optics observed thereby, and may be configured to distinguish between a voltage generated during a firing event and one of the exemplary non-qualifying events discussed above. In such an exemplary embodiment, the energy generated by the even counter 12 may be directed to and stored by the power source 34. In yet another exemplary embodiment, the event counter 12 may comprise an optical shot counter configured to detect changes in the intensity of a light source disposed therein due to vibrations caused when the firearm to which the foregrip 100 is connected to is fired.
As shown in
The selection device 18 illustrated in
The activation device 16 of the foregrip 200 may be disposed at a front end of the foregrip 200 to enable manipulation by, for example, a forefinger of the user. The activation device 16 may be, for example, a button, a switch, and/or any other mechanism configured to energize and/or otherwise activate a component of an assembly. For example, the activation device 16 may be similar to a trigger for a depressible switch configured to activate the one or more light sources 20, 22 selected for use.
As shown in
As mentioned above, the buttons 28 are programmable and, thus, each of the programmable buttons 28 may be programmed to control a unique function and/or operation of the accessory connected to the rail 42 and/or to control one or more functions or operations of the various components of the foregrip 300. It is understood that actuating two or more programmable buttons 28 at a time may give the user the ability to control additional functionality of such accessories or components. Although not illustrated in
The port 24 may be any standard connection port known in the art such as, for example, a standard USB connection port or a standard FireWire port. The port 24 and the connection 40 may facilitate data and/or power connectivity between the foregrip 300 and the rail 42. For example, power may be transmitted from the rail 42 to the foregrip 300, or from the power source 34 of the foregrip 300, to the rail 42 via the port 24. In an exemplary embodiment, the port 24 may be electrically and/or mechanically connected to a compatible port 25 of the rail 42. For example, the mount 10 of the foregrip 300 may mate with a corresponding mount 11 of the rail 42 to facilitate a removable mechanical connection or coupling between the foregrip 300 and the rail 42. One or more locks 13 or other like devices may also be employed to fortify this connection. While so coupled, the port 24 of the foregrip 300 may also be electrically connected to the port 25 of the rail 42 to facilitate the transfer of data and/or power therebetween. Also, although
The rail 42 may be any conventional accessory mount such as, for example, a Picatinny rail. Such rails 42 may be configured to enable accessories such as laser sights, rangefinders, and/or other known accessories to be connected and/or removed to a firearm quickly, and with as little adjustment as possible. The port 25 of the rail 42 may also include a plurality of USB connections configured to facilitate the transfer of data and/or power between components of the firearm such as, for example, the foregrips 100, 200, 300 described herein and accessories connected to the rail 42. In an exemplary embodiment, the rail 42 may comprise a standard Picatinny rail having two data lines, a positive terminal, and a negative terminal. In an additional exemplary embodiment, the rail 42 may comprise a plurality of USB connections and the firearm may comprise two or more rails 42 desirably positioned thereon.
The rail 42 may be electrically connected to a power source 36 via a connection 38. In the connection 38 may be substantially similar to the connection 40 discussed above. The power source 36 may comprise, for example, a rechargeable battery and/or other known power storage devices. In an exemplary embodiment, the power source 36 may comprise a lithium sulfur rechargeable battery. The power source 36 may be configured to provide power to each of the accessories connected to the rail 42 and may also be configured to provide power to, for example, a first and second light sources 20, 22 and/or any other components of the foregrip 300. It is also understood that, in an additional exemplary embodiment, the power source 34 of the foregrip 300 may be configured to provide power to any of the accessories connected to the rail 42 via the USB connection discussed above. As will be discussed in greater detail below, a bolt and/or other components of the firearm to which the foregrip 300 is connected may be configured to recharge and/or otherwise provide power to the power source 36 during one or more firing events.
In still another exemplary embodiment of the present disclosure, the rail 42 may include one or more inductive coupling devices. For example, one or more of the ports 25 may include a first portion of an inductive coupling device and one or more corresponding ports 24 of the foregrip 300, or of an accessory connected to the rail 42, may include a second mating portion of the inductive coupling device. The inductive coupling device may be configured to transmit data and/or power between, for example, the rail 42, and the foregrip 300 or accessory connected thereto. In an exemplary embodiment, the inductive coupling device may be an inductive power coupling device in which the first portion included in the one or more ports 25 may comprise a first portion of an inductor/transmitter, and the second portion included in either the foregrip 300 or the accessory comprises a mating second portion of the inductor/transmitter.
In another exemplary embodiment, the rail 42 may include one or more optical data links. The optical data link may comprise an optical transmitter/receiver, and such an optical transmitter/receiver may include, for example, a photodiode and a corresponding receptor or photodetector. As in the inductive coupling device embodiments discussed above, in an embodiment in which the rail 42 comprises an optical data link, a transmitter portion of the optical data link may reside in one or more ports 25 of the rail 42 while a receiver portion of the optical data link may reside in one or more ports 24 of the foregrip 300 or accessory coupled to the rail 42.
It is understood that, both power and data may be transmitted via a single inductive coupling device or via a single optical data link. Alternatively, power and data may be transmitted, for example, between the rail 42, and either the foregrip 300 or the accessory, via separate inductive coupling devices or via separate optical data links. The inductive coupling devices and the optical data links may be fluidly, and/or otherwise sealed from the environment or surroundings in which the firearm is used once the foregrip 300 and/or the accessory is connected to the rail 42. Thus, the inductive coupling devices and the optical data links may comprise sealed components of the firearm assembly through which power and/or data is transmitted. It is also understood that data and/or power may be transmitted to or from the inductive coupling devices and the optical data links.
As shown in
The sender/receiver 28 and the RF transmitter 26 may be connected to one or more devices 30 configured to assist in transmitting signals and/or other information between remote locations. For example, the device 30 may comprise one or more repeaters known in the arts. Such repeaters may be configured to send and resend a radio signal transmitted by the RF transmitter 26 to a remote location at one or more different frequencies. In addition, the device 30 may comprise one or more satellites configured to transmit one or more signals emitted by the RF transmitter 26 across great distances. It is understood, that the connections 32 described herein between the RF transmitter 26, the devices 30, and the receiver/sender 28 generally facilitates a broad range of networking and/or connectivity between the user of the foregrip 300 and other remote senders/receivers of data or information. Such connectivity may be extremely useful to users of, for example, the foregrip 300 and a variety of military, law enforcement, self defense, and/or other known applications.
The firearm 44 described herein is intended to encompass any of a variety of hand held or portable projectile or laser launching devices. The firearm 44 can be, for example, a rifle, a shotgun, a machine gun, or other like gun, and can be gas-actuated, inertia-actuated, semiautomatic, pump action and bolt action. In an exemplary embodiment, one or more rails 42 may be mounted proximate to and/or along at least a portion of the barrel 52.
Various accessories 50 can be mounted to the one or more rails 42 including tactical lights, laser sight modules, supporting devices, stand alone in-line clip-on night vision systems, optical scopes, target pointer/illuminators (TPIAL) such as Mil Spec AN/PEQ-2 or AN/PEQ-4, white light illumination devices, LCD displays, laser lights, rangefinders, global positioning systems, satellite links, PC controllers, and/or other known firearm accessories. As discussed above, such accessories may be physically mounted to rail 42 and may also be electrically connected to the rail 42. In an exemplary embodiment, the one or more accessories 50 may comprise one or more additional lasers and/or lights such as, for example, a thermal laser, a relatively bright distracting white, and/or other known whites or lasers. It is understood that, due to the data, power, and/or other connections between the accessories 50 and the rail 42, many of the accessories 50 may be controlled using the one or more programmable buttons 28 of the foregrip 300.
In addition, the one or more accessories 50 may be configured to transmit information between one another. For example, as shown in
As shown in
As shown in
The bolt 56 may be, for example, any known loading bolt utilized in conventional firearms. In an exemplary embodiment, the bolt 56 may be made of metal and, in particular, an exemplary bolt 56 may comprise one or more magnetic metals. In still another exemplary embodiment, the bolt 56 may include one or more permanent magnets disposed therein and/or otherwise connected thereto. In yet another exemplary embodiment, the bolt 56 may include an electrically conductive coil, such as an induction coil, disposed therein and/or otherwise connected thereto. In such embodiments, one of the coil and the magnets may be moveable with the bolt 56, while a remaining one of the coil and the magnets may be fixedly connected to the frame 51.
For example, the firearm 44 may include an induction coil 62 disposed proximate the bolt 56. In an exemplary embodiment, the induction coil 62 may substantially surround the bolt 56. The induction coil 62 may be electrically connected to the power source 36 via one or more connections 64. The connections 64 may be substantially similar to the connections 38, 40 discussed above. With the arrangement illustrated in
In addition, as illustrated in
The position of the bolt 56 within the firearm 44 may be sensed, monitored, and/or otherwise determined by using one or more position indicators 70. Such position indicators 70 may include, for example, one or more sensors, limit switches, and/or encoders known in the art. The position of the bolt 56 may be monitored by such position indicators 70, and information regarding the position of the bolt 56 may be sent to one or more accessories connected to the rail 42 such as, for example, a computer 74. If the computer 74 determines that the bolt 56 is, for example, out of position due to a cartridge jam or other malfunction, the computer 74 may direct the servo controller 66 connected to the coil 62 to energize the coil 62, thereby displacing the bolt 56 and clearing the jam. In such an exemplary embodiment, the position indicator 70 may comprise a linear scale base displacement encoder and an encoder read head may be mounted to the bolt 56. Accordingly, the bolt 56 may be moved in either the direction of arrow 58 or the direction of arrow 60 based on feedback received by the computer 74, and such movements may be powered by energy stored within the power source 56. It is understood that the servo controller 66 illustrated in
In an exemplary embodiment of the present disclosure, the firearm systems described herein may be used as a means of controlling a multitude of accessories mechanically and/or electrically connected to a firearm. Such control may be facilitated by, for example, the one or more programmable buttons 28 included on the exemplary foregrip 300 described herein. Such buttons 28 may be configured to control not only components of the foregrip 300 but also to control a multitude of accessories 50 connected to the rail 42 of the firearm 44. Power for the rail 42 may be delivered thereto by the power source 36, and the power source 36 may be rechargeable by cycling the bolt 56 of the firearm 44. In addition, the power source 36, in conjunction with other electrical circuit components, may be utilized to control the position of the bolt 56 within and/or relative to a chamber of the firearm 44.
While the foregoing has described what are considered to be exemplary embodiments of the present disclosure, it is understood that various modifications may be made here to hand them the embodiments described herein may be implemented in various forms and numerous other applications, only some of which have been described herein. It is intended that all such modifications and variations be deemed to fall within the true scope of the following claims.
The present application claims the benefit of U.S. Provisional Patent Application 61/081,278 filed Jul. 16, 2008, the entire disclosure of which is hereby expressly incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61081278 | Jul 2008 | US |