This invention relates to fluting on the exterior surface of a firearm barrel. More particularly, it relates to such fluting wherein the depth and/or width of each flute is varied along the length of the barrel.
A stiffer firearm barrel will typically be more accurate than one that exhibits inordinate flexing. A firearm barrel having a thicker wall will typically provide a stiffer barrel compared to one with a thinner wall. That is, for a given bore diameter, the larger the outside diameter of the barrel, the stiffer the barrel will be. Of course, thick-walled gun barrels can add significant weight to the firearm. In an effort to gain the benefit of a larger diameter and thicker-walled barrel, yet reduce its overall weight, flutes or groves have been formed along the length of the outer surface of the barrel. These flutes reduce the weight of the barrel while increasing the exterior surface area of the barrel, which can provide more effective cooling of the barrel.
The fluting grooves are typically formed in a longitudinal direction substantially parallel to the bore or, as described in U.S. Pat. No. 6,324,780, issued Dec. 4, 2001, to Carl H. Behling may be cut helically or spirally, if desired. In either style, the depth and width of each flute remains substantially constant along the length of the barrel, except at the terminal ends of each flute.
Another method for treating the exterior surface of a firearm barrel is disclosed in U.S. Pat. No. 7,013,592, issued Mar. 21, 2006, to Douglas D. Olson, et al. This patent teaches having a longitudinal portion of the barrel peripheral surface covered with an array of concaved circular or oblong depressions (dimples) machined in the peripheral surface to a predetermined maximum depth. As with the longitudinal and spiral groove fluting, the circular or oblong concave depressions are disclosed to reduce the weight of the barrel while retaining the barrel's original stiffness and to increase surface area to enhance heat dissipation.
Spiral fluting involves complex machining equipment and processes. Longitudinal fluting creates straight line edges parallel to the bore that may affect the stress performance of the barrel material. The depth and diameter of circular or oblong dimpling, and therefore its effectiveness, is limited on a cylindrical member like a barrel.
The present invention provides a barrel having a plurality of circumferentially spaced apart grooves formed in an exterior surface thereof, each groove varying in depth and/or width along the length thereof.
The invention also provides a method of fluting the exterior surface of a firearm barrel. An elongated barrel is provided and cutting a plurality of circumferentially spaced apart are cut grooves in the exterior surface. The depth and/or width of each groove is varied along the length thereof. The grooves may extend longitudinally or helically along the barrel.
Other aspects, features, benefits, and advantages of the present invention will become apparent to a person of skill in the art from the detailed description of various embodiments with reference to the accompanying drawing figures, all of which comprise part of the disclosure.
Like reference numerals are used to indicate like parts throughout the various figures of the drawings, wherein:
With reference to the drawing figures, this section describes particular embodiments and their detailed construction and operation. Throughout the specification, reference to “one embodiment,” “an embodiment,” or “some embodiments” means that a particular described feature, structure, or characteristic may be included in at least one embodiment. Thus appearances of the phrases “in one embodiment,” “in an embodiment,” or “in some embodiments” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the described features, structures, and characteristics may be combined in any suitable manner in one or more embodiments. In view of the disclosure herein, those skilled in the art will recognize that the various embodiments can be practiced without one or more of the specific details or with other methods, components, materials, or the like. In some instances, well-known structures, materials, or operations are not shown or not described in detail to avoid obscuring aspects of the embodiments.
Referring first to
As illustrated, a number of circumferentially spaced-apart and generally longitudinally oriented flutes 18, 20 may be provided on the exterior peripheral surface of the barrel 10. In the illustrated embodiment, both the depth and width of the flutes 18, 20 are varied multiple times at regular intervals along the length of the barrel 10. A variety of different cutting tools may be used and the cutting tools may be oriented either substantially perpendicular to the bore 16 or at an angle thereto as longitudinal cuts are made in the barrel 10.
Referring now also to
Depending on the shape of the cutting tool used, the end shape of each flute 18, 20 may be affected by the rate at which the cutting tool is initially plunged and/or finally withdrawn. For example, as shown in
Between the ends of each flute 18,20, the linear arcs 24, 26 along which the cutter is moved relative to the barrel material as it progresses linearly also affect the width and shape of the flute 18, 20. Accordingly, a wide variety of ornamental patterns, not necessarily affecting the quality or performance of the barrel relative to different ornamental patterns, may be created by varying the depth and width of flutes 18, 20 along the length of the curved exterior surface of the barrel 10 according to the present invention. If desired, the flutes 18, 20 could be formed helically along the length of the barrel. Additionally, the exterior surface of the barrel does not have to be round. Varied depth and/or width flutes could be formed according to the present invention in a barrel having an octagonal (or other polygonal) exterior profile.
While one embodiment of the present invention has been described in detail, it should be apparent that modifications and variations thereto are possible, all of which fall within the true spirit and scope of the invention. Therefore, the foregoing is intended only to be illustrative of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not intended to limit the invention to the exact construction and operation shown and described. Accordingly, all suitable modifications and equivalents may be included and considered to fall within the scope of the invention, defined by the following claim or claims.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/219,323, filed Sep. 16, 2016, the content of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1789835 | Pedersen | Jan 1931 | A |
3483794 | Packard | Dec 1969 | A |
3748957 | Arnold et al. | Jul 1973 | A |
4566301 | O'Dell | Jan 1986 | A |
D285331 | Cellini | Aug 1986 | S |
6324780 | Behling | Dec 2001 | B1 |
6508159 | Muirhead | Jan 2003 | B1 |
7013592 | Olson et al. | Mar 2006 | B2 |
7464496 | Davies et al. | Dec 2008 | B1 |
8025003 | Saur | Sep 2011 | B1 |
D662169 | Arnedo Vera et al. | Jun 2012 | S |
D763392 | Miller, III | Aug 2016 | S |
9446440 | Engesser | Sep 2016 | B2 |
D782598 | Faxon | Mar 2017 | S |
Number | Date | Country | |
---|---|---|---|
20170074612 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62219323 | Sep 2015 | US |