This disclosure relates to a firearm configuration. More specifically, the present invention relates to a firing mechanism that reduces recoil, both perceived and actual.
Handguns have grown increasingly more powerful over the years. As caliber size increases, so does the recoil of the firearm. Recoil is the rearward momentum generated by a firearm upon firing. Large caliber firearms generally create a substantial recoil impulse upon firing, which may cause the weapon to be forced upward due to an imbalance of forces. Unless properly adjusted for by the user, the recoil of a firearm may cause the user to fire inaccurately and miss the intended target. This is especially the case when firing in a fully automatic mode, as in a machine pistol.
This problem is a result of physics. The mass and velocity of a projectile must exert an equal and opposite reaction in the system behind it. This relationship is defined as “free recoil” in the firearm industry. Free recoil, in turn, results in muzzle rise. Muzzle rise is defined as the immediate, post-fire angular velocity of the firearm about its center of force. The center of force is determined by both the user's hand pressure across the grip and the handgun's own center of mass.
For the foregoing reasons, efforts have been made over the years to reduce the amount of recoil generated by a firearm. For instance, U.S. Pat. No. 6,742,297 to Lakatos discloses a firearm recoil reduction method. The method employs a spring, a trigger housing and a barrel. Additionally, U.S. Pat. No. 4,388,855 to Sokolovsky discloses a firearm pneumatic slide decelerator assembly. The assembly includes a recoil spring in proximity to a trigger housing. U.S. Pat. No. 5,069,110 to Menck discloses an impact buffering recoil mechanism. The mechanism includes a recoil spring in proximity to a trigger housing.
Although each of these inventions achieves its own individual objective, none of the background art relates to a mechanism for lessening recoil by lowering a firearm's center of mass. The firearm configuration described herein is aimed at overcoming these and other shortcomings noted in the background art.
The disclosed system has several important advantages. For example, the disclosed firearm configuration reduces the recoil encountered by the user.
A further possible advantage is that recoil forces are reduced by lowering the firearm's center of reciprocating mass. A manufacturer may further reduce recoil by overweighting the reciprocating mass in line with the hand past what is necessary for basic structural integrity.
Still yet another possible advantage of the present system is to lower the axis along which recoil forces are generated to thereby lessen the associated torque.
Another advantage of the present system is to improve the user's capacity for accuracy by reducing recoil. Higher recoil forces disrupt most firearm users' concentration and inflame something akin to the “fight or flight” instinct, so less recoil equals less psychological disruption, which in turn promotes the users' capacity for accurate fire. This increase in accuracy via reduced recoil is most pronounced in the application of this system to a machine pistol format, as such weapons are generally less controllable due to their light weight, comparatively meager grip surface area, and high rate of fire in full automatic mode.
Another advantage is realized by utilizing a firearm configuration that allows the manufacturer to integrate the recoil spring guide rod with the frame, resulting in fewer parts and lowering manufacturing costs. This also has the beneficial result of simplified disassembly procedures for the end user and increased reliability of the weapon.
A further advantage is that the firearm configuration of the present disclosure decreases overall weapon height with no appreciable reduction in magazine capacity as compared to known designs. Alternatively, the present configuration can result in a weapon of equal height to known designs, but with an increased magazine capacity.
A further advantage of the present system is that it allows a user to execute quicker follow-up shots, as the recoil forces impeding faster shots will be reduced.
The firearm configuration of the present disclosure also reduces the recoil of a given cartridge, which allows more powerful ammunition to be utilized with approximately the same recoil as a conventional configuration. The use of more powerful ammunition, in turn, allows for a flatter bullet trajectory and thus increased effective range of a handgun. Also, the ability to use more powerful ammunition with the same recoil allows for the use of larger-caliber armor-penetrating bullets, resulting in increased lethality and effectiveness on the battlefield.
Another advantage is that the system provides for a lower barrel axis when combined with a rotating barrel locking mechanism, further reducing recoil.
The advantages of the present system may be further maximized by using any or all of the following additional design elements: use of a sliding trigger assembly, use of a striker firing mechanism, or use of external or “slide in frame” guide rails.
A further advantage of the present system is that it may be configured to eliminate the snag or catch point located at the front corner of the trigger guard, thereby making the action of holstering or unholstering the weapon easier.
Various embodiments of the invention may have none, some, or all of these advantages. Other technical advantages of the present invention will be readily apparent to one skilled in the art.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following descriptions, taken in conjunction with the accompanying drawings, in which:
The present disclosure relates to a firearm configuration for a handgun. The firearm configuration is designed to reduce the recoil forces encountered by a user upon firing the weapon. Recoil forces are reduced by lowering the firearm's center of mass and by aligning a recoil mass with the user's arm and trigger finger. The various details of the present disclosure, and the manner in which they interrelate, will be described in greater detail hereinafter.
With reference now to
Configuration (10) further includes a lower housing (26) that is slidably interconnected to the upper housing (14). A trigger (28) and trigger assembly (32) are positioned within the lower housing (26). The disclosed trigger (28) is a pivoting trigger, but sliding triggers can also be used in connection with the present invention. The depicted trigger (28) and trigger assembly (32) are of the type found in the Glock® series of handguns, as well as U.S. Pat. No. 8,156,677, and are of a standard and well known construction. In accordance with the invention, trigger (28) pivots about a second axis (34). Second axis (34) is positioned below, and is perpendicular to, the first axis (24). The trigger assembly (32) is interconnected to the striker assembly (18). As is known in the art, ammunition (38) is delivered upwardly from the magazine (36) under a spring force into the upper housing (14). Individual cartridges to be fired are delivered between the barrel (16) and the firing assembly (18). Trigger assembly (32) is used to selectively actuate the striker assembly (18) and fire the firearm (12). The relationship between trigger assembly (32) and striker assembly (18) will be appreciated to those of ordinary skill in the art. The exact mechanism employed does not form part of the present invention and can be similar to that utilized by the type found in the Glock® series of handguns.
Lower housing (26) further includes a guide rod (42) and recoil spring (44) that extend through the opening in the recoil mass (22). Recoil spring (44) has an end seated within recoil mass (22). Guide rod (42) is positioned along a third axis (46). The third axis (46) is positioned below the second axis (34). Guide rod (42) is integral with the lower housing (26).
In accordance with the present disclosure, when a user fires firearm (12), the upper housing (14) slides back with respect to the lower housing (26). This action, in turn, causes the recoil mass (22) to slide along the guide rod (42) to compress the recoil spring (44). The recoil generated by firearm (12) is greatly reduced by the position and movement of the recoil mass (22). More specifically, the axis of the recoil spring (44)—i.e. the third axis (46)—is parallel to and below the first axis (24), which is an axis drawn down the centerline of the barrel (16) prior to the firing of the weapon, and upon which the bullet exits the barrel. In this regard, the first and third axes (24) and (46) remain parallel to each other at all times during firing. As a result, the linear momentum generated by ammunition (38) leaving barrel (16) is completely countered by the linear momentum of the recoil mass (22) moving towards trigger (28). In other words, ammunition (38) leaving barrel (16) travels on a vector that is 180 degrees from the vector of the recoil mass (22). The positioning of recoil mass (22) below barrel (16) and striker assembly (18) also effectively lowers the center of mass of the overall firearm (12). In the preferred embodiment, the center of mass is in alignment with the recoil spring (44) (see
Recoil is further reduced by positioning the axis of trigger (28)—i.e. the second axis (34)—in close proximity (i.e. approximately 1 inch or less) to the first axis (24). This ensures that the recoil mass (22) is in alignment with the user's trigger finger and/or arm upon firing. Computer modeling of the claimed invention demonstrates that a recoil mass of approximately 0.38 lbs., located approximately 3.1 inches forward of, and approximately 0.5 inches beneath, the center of force greatly reduced the associated muzzle rise. Specifically, the modeling showed that about 22% more free recoil was absorbed as compared to a conventional firearm. Likewise, muzzle rise was reduced by approximately 59%.
A second embodiment of the firearm (12) is illustrated in
At its most basic, this reconfiguration takes the guide rod (42) from being a passive part in the recoil cycle to an active part of the recoil cycle, making the resultant weapon more efficient with regard to the use of existing weight.
The reconfigured guide rod (42a and 42b) also increases the mass of the recoil mass (22), which can be relocated lower in front of the trigger. This allows for a greater reduction in recoil and/or muzzle rise. The weapon has further reduced recoil over our previous work, and further lowers the firearm's center of reciprocating mass. As such, it is an example of overweighting the reciprocating mass in line with the hand past what is necessary for basic structural integrity. Also, though the axis on which the spring is guided is not further lowered, the overall axis along which recoil forces are transmitted to the user is further lowered with this addition.
The use of the reconfigured rod (42a and 42b) also reduces the total part count by integrating the guide rod with the slide (as opposed to the frame), thus allowing for decreased production cost and increased reliability. The reconfigured guide rod (42a and 42b) still allows for similar disassembly in comparison with current designs, and thus does not require additional training. The reconfigured guide rod (42a and 42b) further reduces recoil, which allows for more rapid follow-up shots and for the use of more powerful ammunition.
Increasing the mass present in the slide internally allows for a weapon with the same exterior slide dimensions to fire more powerful ammunition; alternatively, it allows for a reduction in the exterior slide dimensions of the weapon while still allowing for an identical level of ammunition power.
In the case of an existing pistol using a steel guide rod, this relocation would shift a portion of the total weapon weight from the frame assembly to the slide, essentially allowing for a pistol of equal weight to fire more powerful ammunition in comparison to said existing pistol. This comparison is between a modified and an unmodified pistol both using a half-length guide rod—as such, you could take a pistol with an existing full-length guide rod and modify it by relocating the guide rod (substituting a half-length one) to the slide, thereby creating a pistol both lighter than the unmodified version and yet still able to use more powerful ammunition. Such a substitution is once again assuming all guide rods in both pistols are composed of steel.
Although this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure.
This application claims priority to and is a continuation-in-part of co-pending application Ser. No. 13/617,953 entitled “Firearm Configuration for Reducing Recoil” which was filed on Sep. 14, 2012. The contents of this co-pending application are fully incorporated herein for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 13617953 | Sep 2012 | US |
Child | 14313495 | US |