The present invention relates to a flash suppressor for a firearm and to systems for removably attaching a noise suppressor or other auxiliary device to the muzzle of a firearm barrel.
Noise suppressors for firearms are well known in the prior art, and many have been patented over a considerable period of time. Many different techniques have been developed and patented, and flash suppressors and baffles of varying designs have been extensively used. The aim and intention of a noise suppressor, regardless of the technique used, is to reduce the pressure and velocity of the propellant gases from the sound suppressor so that the resulting sound level is significantly reduced.
Prior art noise suppressors include flash suppressor systems and internal baffles for reducing the muzzle flash of a firearm with it has been discharged. Previous flash suppressor designs provide a combination of features which culminated in a system for reducing the muzzle flash of a firearm to various degrees. BE Meyers four tine design, U.S. Pat. Nos. 6,837,139 and 7,302,774 (Myers), Smith Enterprises Vortex flash suppressor, U.S. Pat. No. 5,596,161 (Sommers), and Advanced Armament Corp.'s flash suppressor, U.S. Pat. No. 7,905,170 (Brittingham), are currently available in the market place. The aforementioned designs fail to provide several needed features necessary and desirable for today's firearms. Most particularly, and as exemplified by Advanced Armament Corp.'s flash suppressor, the design of the respective tines of the flash suppressor results in an undesirable “ringing” tone to be emitted from the flash suppressor upon the discharge of the firearm due to imparted harmonics on the respective tines of the firearm.
Quite complex baffle structures are known in the prior art. Some of these baffles have more recently used asymmetric features, such as slanted sidewalls or baffles that have been positioned at an angle to the bore, to achieve high levels of sound reduction. U.S. Pat. No. 4,588,043 (Finn) and U.S. Pat. No. 5,164,535 (Leasure) are indicative of the complex baffles using slanted sidewalls or asymmetric cuts into the bore of the baffles. Known prior art as practiced also includes baffles known as “K” baffles, where the baffle consists of a flat flange joined to a conical section by a web. An inner chamber was formed between the front face of the flat flange and the rear face of the conical section. The “K” baffle first appeared during the mid-1980s, and while initially symmetrical venting or porting was used to vent gases into the inner chamber between the rear and front faces of the baffle, slanted sidewalls were used to improve the performance of the “K” baffle, as well as asymmetric cuts or scoops on the rear face and on the conical front face, with the scoop on the front face penetrating through the conical front face and into the inner chamber. This had the effect of venting gases into the inner chamber and this enhanced the sound reduction of the suppressor. These asymmetric cuts or scoops are similar to the slanted sidewall feature of the Finn patent in that the cuts or scoops are positioned 180 degrees apart. However, while such a modified “K” baffle worked well with pistol caliber firearms, the asymmetry caused some detrimental effect on accuracy when used with rifle caliber firearms, and required an increase in the size of the bore aperture of the baffle to ensure minimization of bullet yaw. This would otherwise result in projectiles striking the baffles and the end cap of the suppressor. What is required is a baffle that offers high levels of sound reduction, and minimizes bullet yaw and enhance and/or maintain the normal accuracy of the host firearm.
Accordingly, there is a need for a noise suppressor for a firearm using flash suppressors and baffles that have little or no detrimental effect on the accuracy of the fired projectile, and produce high levels of sound and flash reduction. This is achieved through the use of a flash suppressor and downstream baffles whose design provides enhanced performance over the prior art systems.
Further, various systems are known in the firearms art for attaching a noise suppressor to a firearm, and specifically for removably attaching a noise suppressor to a flash suppressor affixed to the muzzle end of a firearm. There nevertheless exists a need for improving such systems, particularly for increasing the ease by which a user may attach a noise suppressor to a flash suppressor while at the same time affecting a reliable securement therebetween capable of withstanding the vibrations incidental to the firing of such firearms as automatic rifles used by military personnel.
This application relates to a suppressor for a firearm. More specifically, this application relates to a noise suppressor system for attachment to a firearm including a barrel having a longitudinal axis, comprising the combination of: a flash suppressor adapted to be attached to the muzzle of the barrel coaxially therewith and a noise suppressor including a proximal mount assembly having an interior expansion chamber for coaxially receiving the flash suppressor. Additionally, this application relates to a system for selectively securely coupling the noise suppressor system to the firearm.
In one aspect, the flash suppressor of the noise suppressor system provides a means for suppressing or hiding the flash of the firearm, which is the result of expanding, and combusting gases exiting the muzzle of a host firearm when discharged. In one aspect, the flash suppressor utilizes tines that are sized and shaped to provide advantageous sound reduction characteristics over conventional tine noise suppressors. Conventionally, the heat and pressure from expanding gasses which are the result of discharging a firearm may cause the tines of a flash suppressor to resonate. This resonation is a concern due to the audible ringing tone emitted by the flash suppressor as a result of the harmonic interaction of the conventionally sized and shaped tines of the prior art flash suppressors. While the conventional tines of prior art flash suppressors are identically sized and shaped, each tine of the disclosed flash suppressor has a different mass, which results in minimal to no induced harmonic noise being emitted by the flash suppressor upon the discharge of the firearm.
The noise suppressor for the firearm can comprise a cylindrical housing, a proximal mount assembly having a means for selective attachment to the flash suppressor and to the cylindrical housing, a distal end cap with means for attachment to the housing, and a plurality of baffles positioned within the housing and between the proximal mount assembly and the distal end cap of the suppressor. In one aspect, separate cylindrical spacer elements can be positioned between the proximal mount assembly and the distal end cap of the suppressor and between the baffles. These spacers provide for desired axial positioning of the baffles within the cylindrical housing of the suppressor. As one skilled in the art will appreciate, the distal end cap of the suppressor is provided with a concentric circular hole or aperture for the projectile to pass through the end of the suppressor. Further, a plurality of expansion chambers are formed between the baffles within the suppressor.
In a number of aspects, the noise suppressor utilizes baffles that can use at least one of the disclosed features that enhance reduction of sound and flash, these features including proximally facing first frusto-conical section in communication with a central bore sized and shaped for the projectile to pass therethrough, a distally facing second frusto-conical section having at least one circumferentially extending shoulder elements positioned at the distal edge of the frustro-conical section to induce turbulence into the gas stream as the gas stream moves distally toward the concentric circular hole or aperture in the distal end cap of the suppressor, and at least one gas cross-flow aperture positioned proximate the proximal end of the second frusto-conical section to direct a substantially perpendicular gas jet onto the discharge gas stream as the discharge gas stream passes past the at least one gas cross-flow aperture.
These and other features of the preferred embodiments of the invention will become more apparent in the detailed description in which reference is made to the appended drawings wherein:
Embodiments of the present invention can be understood more readily by reference to the following detailed description, examples, drawing, and claims, and their previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that embodiments described herein are not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, as such can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description is provided as an enabling teaching of the invention in its best and currently known embodiments. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the invention described herein, while still obtaining the beneficial results of the described embodiments. It will also be apparent that some of the desired benefits of the embodiments of the present invention can be obtained by selecting some of the features described herein without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations are possible and can even be desirable in certain circumstances and are a part of the embodiments of the present invention. Thus, the following description is provided as illustrative of the principles of the embodiments of the present invention and not in limitation thereof.
As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a slot” can include two or more such slots unless the context indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
As used herein, the word “front,” “forward,” or “distal” corresponds to the firing direction of the firearm (i.e., to the right as shown in
A system and device for suppressing noise from a firearm is presented. More specifically, and as generally shown in
It is contemplated that the noise suppressor system 10 can be configured for use with conventional weaponry, for example and without limitation, standard United States military weaponry, particularly the AR-15 and M-16 firearms. These firearms have a standard bore of .223 caliber (5.56 mm). Further, such firearms have a barrel with a conventional male threaded extension.
In one aspect and as shown in
As shown in the figures, one contemplated way to vary the respective masses of the individual tines 32 is to vary the respective elongate length of the otherwise substantially identical shaped and sized tines.
In one aspect, the flash suppressor 30 generally includes a cylindrical socket 33 which has a threaded recess for receiving the threaded extension of the gun barrel. In another aspect, the cylindrical socket 33 defines an axial central bore 35 having a diameter that is slightly larger than the bore of the firearm to which the flash suppressor is attached so as to prevent the exiting projectile from touching any portion of the flash suppressor 30 as it proceeds.
In a further, aspect, the body of the flash suppressor 30 surrounding the exit chamber can a plurality of equally spaced angled troughs 34 running the length of exit chamber 36 and a plurality of distally longitudinally extending slots 36 defined in a forward portion of the flash suppressor. In the example illustrated in
In one aspect, the exterior surface of the body of the flash suppressor has a tapered waist portion 38. The tapered waist portion tapers inwardly as the waist portion moves distally. As will be explained in a later portion of this application, the tapered waist portion of the flash suppressor provides a surface for a compressive friction fit with a complementary tapered interior surface of an intermediate body member of the proximal mount assembly. Further, the peripheral edge surface of the back end of the body of the flash suppressor defines at least one key surface 40 that is complementarily shaped to mate within a recess defined therein the top surface of the proximal attachment cap of the proximal mount assembly. In addition, intermediate the tapered waist portion and the back end of the flash suppressor, a shoulder surface 42 can be defined that allows for the selective compressive contact with portions of the plurality of cam members of the proximal mount assembly. Optionally, wrenching flats 44 can be defined on portion of the exterior surface of the flash suppressor intermediate the shoulder surface and the back end of the flash suppressor.
In optional aspect, at least a portion of the exterior surface of the tines 32 can be tapered inwardly (γ) toward the central longitudinal axis of the flash suppressor. In operation, and as shown in the figures, in the noise suppressor system, the respective tines are well spaced from the interior portion of the suppressor housing when the noise suppressor is selectively mounted thereon the flash suppressor, thereby providing adequate spacing and helping to prevent copper and carbon build up from inhibiting the removal of the noise suppressor.
The noise suppressor 50 for the firearm can comprise a cylindrical housing 52, a proximal mount assembly 100 having a means for selective attachment to the flash suppressor and to the cylindrical housing, a distal end cap 54 with threaded means for attachment to the housing, and a plurality of baffles 60 positioned within the housing and between the proximal mount assembly and the distal end cap of the suppressor. In one aspect, separate cylindrical spacer elements 62 can be positioned between the proximal mount assembly and the distal end cap of the suppressor and between the baffles. These spacers provide for desired axial positioning of the baffles within the cylindrical housing of the suppressor. As one skilled in the art will appreciate, the spacers 62 can be integrally formed as a distal portion of each of the respective baffles and are shown and described as such for convenience. In a further aspect, the distal end cap of the suppressor is provided with a concentric circular hole or aperture 55 for the projectile to pass through the end of the suppressor. Further, a plurality of expansion chambers 58 are formed between the baffles within the suppressor.
In a number of aspects, the noise suppressor 50 utilizes baffles 60 that use at least one of the disclosed features that enhance reduction of sound and flash. In one optional aspect, these features can include one or more of: a proximally facing first frusto-conical section 62 in communication with a central bore 64 sized and shaped for the projectile to pass through, a distally facing second frusto-conical section 70 having at least one circumferentially extending shoulder element 72 positioned at the distal edge 74 of the frustro-conical section to induce turbulence into the gas stream as the stream moves distally to be vented from the aperture in the distal end cap of the suppressor, and at least one gas cross-flow aperture 80 positioned proximate the proximal end 76 of the second frusto-conical section to direct a substantially perpendicular gas jet onto the discharge gas stream as the discharge gas stream passes past the at least one gas cross-flow aperture.
The noise suppressor 50 of the firearm can define an interior expansion chamber 57 in the proximal end portion of the cylindrical housing having an enlarged diameter. As shown in the figures, the distal portions of the tines 32 of the flash suppressor are positioned therein the interior expansion chamber 57 of the noise suppressor when the noise suppressor is operatively coupled to the flash suppressor.
In one aspect the plurality of baffles 60 can comprise a first baffle 60′ positioned adjacent and downstream of the interior expansion chamber 57 and a plurality of second baffles 60″ that are sequentially positioned downstream of the first baffle. In one aspect, it is contemplated that the plurality of spaced baffles that extend along a bullet or projectile pathway. Each baffle can define a central aperture that is coaxial with the bullet pathway. Further, it will be appreciated that plurality of spaced second baffles defines a plurality of adjacent chambers that are spaced along the longitudinal axis of the housing. In further aspects, each baffle can substantially separate the adjacent chamber and at least a portion of at least one of the baffles can lie in a plane that is transverse to the bullet pathway.
In one aspect, and referring to
In another aspect, an opposing distal facing section of the first baffle 60′ can define a circular trough 63 that can be spaced radially from and in communication with the central bore. As shown in the referenced figures, the central bore of the first baffle 60′ is co-axial with the axial central bore 35 if the flash suppressor. In one aspect, the central bore 64 can comprise a limited elongate length extending parallel to the longitudinal axis.
In one aspect, it is contemplated that proximally facing section 62 can have a substantially “M” cross-sectional shape, in which the male ridge (in cross-section) has an inner surface 65 adjacent and facing inwardly toward the central bore and an outer surface 67 that faces outwardly away from the central bore. In one aspect, it is contemplated that the inner surface can be sized and shaped to selectively direct a percentage of discharged gas initially through the central bore and into communication with the downstream plurality of second baffles 60″ and the outer surface can be configured to aide is recirculating discharge gases that impact the outer surface within the interior expansion chamber 57 until eventual discharge therethrough the central bore.
In one aspect, it is contemplated that the inner surface 65 of the proximally facing section 62 can be angled (β) with respect to the longitudinal axis from between about 20° to about 70°, from between about 30° to about 60°, from about 40° to about 50°, and preferably about 45°. Further, it is contemplated that at least a portion of the interior surface of the proximally facing section can be curved in cross-sectional shape (with either a convex or concave cross-sectional shape) as the interior surface tapers inwardly with respect to the longitudinal axis as the interior surface moves to the central bore. In optional aspects, it is contemplated that the distal end of one or more of the tines 32 of the flash suppressor can be spaced from the proximally facing section of the first baffle or can extend therein at least partially into an interior chamber defined by the male ridge 61 of the first baffle 60′.
In another aspect, as shown in
In another aspect, the distally facing second frusto-conical section of the second baffle 60″ can have at least one circumferentially extending shoulder element 72 positioned proximate the distal edge of the second frustro-conical section to induce turbulence into the gas stream as the stream moves distally through the respective second baffle. In this aspect, the respective steps are preferably sequentially shaped to affect a stepped expansion of the operative width of the second baffle 60″ proximate the juncture of the distal edge of the second frustro-conical section and the distally extending cylindrical spacer portion of the second baffle. In a further aspect, the distal peripheral edge of the second baffle, i.e., the distal end of the spacer portion of the second baffle, can be complementarily formed to mate with a peripheral edge portion of a downstream second baffle.
In another optional aspect, it is contemplated that at least one gas cross-flow aperture 80 can be positioned proximate the proximal end of the second frusto-conical section of the second baffle 60″ to direct a substantially perpendicular gas jet onto the discharge gas stream as the discharge gas stream passes the shoulder formed in the proximal end of the second baffle. As one skilled in the art will appreciate, the shoulder 65 can form a lip that extends peripherally about a large arcuate portion of the central bore and helps to direct the flow of gas being injected therein the discharge stream through the at least one gas cross-flow aperture. In one preferred aspect, the at least one gas cross-flow aperture of the second baffle is elongate and can extend parallel to the longitudinal axis from proximate the shoulder 65 into a proximal portion of the second frustro-conical section of the second baffle.
Referring now to
In a further aspect, the distal portion 112 of the interior surface of the cap base member is threaded for operative receipt of the external threads defined thereon the proximal end portion 142 of an intermediate mount member 140.
In another aspect, a plurality of spring members 120 and a first ring member 130 are shown that are sized and shaped for complementary receipt thereon the exterior surface of the distal portion of the non-treaded exterior surface of the cap base member 110. In this aspect, the first ring member 130 can have a plurality of male protrusions 132 extending proximally from the back surface of the first ring member. Each male protrusion of the first ring member being configured for selective receipt therein complementary slots 103 that are defined therein the distal face of the peripheral edge of the proximal attachment cap 102. In another aspect, the first ring member 130 can further define a transversely oriented slot 134 on the front surface of the first ring member for partial receipt of a transversely mounted pin. In a further aspect, each spring member 120, such as, for example and without limitation, a wave spring, can be shaped to provide compressive resistance between the front surface of the first ring member and the proximal face surface of the second ring member.
An enlarged perspective view of the intermediate mount member 140 and the second ring member 150 is also illustrated in
In one aspect, the second ring member 150 can have a plurality of male protrusions 152 extending distally therefrom the front face of the second ring member. Each male protrusion of the second ring member can be configured for selective receipt therein complementary radially spaced slots 164 defined therein the proximal face of the locking ring 160. Optionally, it is contemplated that the respective male protrusions of the second ring member can be spaced from one another at an angular relationship that insures less than all of the respective male protrusions of the second ring member can be selective received therein complementary radially spaced slots defined therein the proximal face of the locking ring in any singular relative position. Thus, it is contemplated that only one of the respective male protrusions of the second ring member can be selective received therein its complementary radially spaced slot defined therein the proximal face of the locking ring in any singular relative position.
In another aspect, the central portion 146 of the intermediate mount member 140 has external threads defined therein for rotational receipt of the complementarily threaded interior surface 162 of the locking ring 160 and a complementarily treaded interior surface 172 of the proximal portion 174 of the top member 170. Optionally, in another aspect, the central portion 146 of the intermediate mount member 140 can have a substantially smooth inwardly tapering frustro-conical surface that is configured to affect an operational hydraulic compressive coupling to a substantially smooth complementary interior surface 162 of the locking ring 160 and to a substantially smooth complementary interior surface 172 of the proximal portion 174 of the top member 170.
In one aspect, the locking ring can have a plurality of radially spaced slots 164 defined therein the proximal face of the locking ring. In another aspect, the interior surface of the distal end portion 176 of the top member can have an inwardly tapered shape that is complementary to the tapered exterior surface of the distal end of the intermediate mount member. In optional aspects, it is contemplated that the top member 170 would be selectively or fixedly connected to the proximal end of the housing of the suppressor.
In operation, in order to selectively mount the noise suppressor 50 to the flash suppressor 30, the proximal attachment cap is rotationally fixed as a result of the keyed relationship between the keyed opening in the proximal attachment cap 102 and the complementary key surface 40 of the flash suppressor. Subsequently, the rotation of the proximal mount assembly initially operatively extends the respective cam members to the operative, extended, position and then compressively draws the tapered interior surface 146 of the intermediate mount member into operative contact with the complementary tapered surface 38 of the flash suppressor 30 while simultaneously drawing the cam members 104 into operative contact with the shoulder surface 42 at the proximal end of the flash suppressor 30.
To release the noise suppressor 50 from the flash suppressor 30, rotation in the opposite direction is affected, which results in the operative spacing of the contact portions of the proximal mount assembly and the flash suppressor. The last operation to release the noise suppressor results in the movement of the respective cam members to the withdrawn position, which allows separation of the noise suppressor from the flash suppressor.
Although several embodiments of the invention have been disclosed in the foregoing specification, it is understood by those skilled in the art that many modifications and other embodiments of the invention will come to mind to which the invention pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the invention is not limited to the specific embodiments disclosed hereinabove, and that many modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the described invention, nor the claims which follow.
Number | Date | Country | |
---|---|---|---|
61587118 | Jan 2012 | US |