The present invention relates generally to firearm safety devices, and more particularly to a firearm grip having an internally located selector switch locking mechanism.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
As any responsible firearm owner will attest, firearms should always remain locked when they are not in use, so as to prevent an accidental discharge of the same and/or to prevent access by an unauthorized individual. As such, there are many known types of commercially available firearm locking mechanisms such as trigger guards and/or trigger locks, for example which can be secured along or about the external portion of the firearm trigger to prevent access to the same.
Although useful in their inception, these devices suffer from several drawbacks. For example, because these locking mechanisms are externally mounted, it is not uncommon for one or more pieces of the lock to become lost when the same is not secured onto the weapon. Additionally, it is not uncommon for users to secure the lock onto the weapon incorrectly, thereby causing a situation where unauthorized access can occur. Finally, the time required to correctly secure and/or physically remove the external lock may be unacceptable in emergency situations where the user needs immediate access to the weapon.
For these reasons, many individuals forego such devices and instead store the weapon with the integrated selector switch at SAFE. Although the selector switch does work well to prevent an inadvertent discharge of the firearm, it does nothing to prevent an unauthorized user from firing the weapon by transitioning the switch from SAFE to FIRE.
The present invention, directed to a firearm with selector switch lock differs from the conventional art in a number of aspects. The manner by which will become more apparent in the description which follows, particularly when read in conjunction with the accompanying drawings.
The present invention is directed to a firearm grip with selector switch lock. One embodiment of the present invention can include a handgrip for engaging a firearm receiver having a Fire/Safe selector switch. A switch engagement unit can be positioned within the handgrip. The switch engagement unit including a motor, piston, spring and detent for selectively engaging the selector switch of the receiver to which the handgrip is located. When the piston is in the retracted position, the device does not affect the operation of the selector switch, and the same can be manually transitioned between the SAFE and FIRE positions. When the piston is in the extended position, the detent secures the selector switch in the SAFE position.
Another embodiment of the present invention can include a user authentication unit in the form of an RFID interrogator and portable RFID chip. Upon detecting the presence of the RFID chip, the user authentication unit can position the engagement unit in the retracted position. Conversely, when the RFID chip is not within the proximity of the handgrip, the unit can position the engagement unit in the extended/SAFE position.
Yet another embodiment of the present invention can include a replacement selector switch having a torque limiter. The torque limiter can function to prevent an excessive manual force applied onto the selector switch from disabling the engagement unit.
This summary is provided merely to introduce certain concepts and not to identify key or essential features of the claimed subject matter.
Presently preferred embodiments are shown in the drawings. It should be appreciated, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the description in conjunction with the drawings. As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the inventive arrangements in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting but rather to provide an understandable description of the invention.
As will be described below, the inventive concepts include a firearm locking device. Although illustrated in use with a long gun, such as an AR-15 rifle, for example, this is but one possible implementation. To this end, the inventive concepts described herein can be used and/or adapted for use with any other type of firearm without undue experimentation and without departing from the invention claimed. Accordingly, the presently claimed invention is not to be construed as limiting to any particular type or brand of firearm device.
As shown in
As described herein, the hand grip 21 can include an elongated generally hollow and tubular-shaped member having a left side portion 21a, a right side portion 21b a top end 21c and a bottom end 21d. The hand grip may be formed from materials that are, for example, relatively strong and stiff for their weight. Several nonlimiting examples include, but are not limited to various metals or metal alloys (e.g., aluminum, steel, titanium, or alloys thereof), a plastic/polymer (e.g., high-density polyethylene (HDPE) or polyethylene terephthalate (PET)), and/or a composite material (e.g., carbon fibers in a polymer matrix, fiberglass, etc.).
The hand grip 21 can include a shape and size that is designed to replace the manufacturer-supplied hand grip of a firearm by use of conventional fastener(s) such as a machine screw 11, for example that can be conventionally secured within the lower receiver mounting tab 5a of the receiver 5. To this end, the hand grip 21 can include any number of openings 22a and 22b, for example, that can be disposed at locations identical to those found on a stock grip. Although described as a replacement grip, those of skill in the art will recognize that the device 20 can be incorporated into the new construction of a firearm 1, so as to impart the inventive concepts disclosed herein as a factory component.
The switch engagement unit 30 can function to selectively engage the selector switch 8 of the firearm to which the locking device 20 is attached. The switch engagement unit 30 can include a motor 31 that extends and retracts an elongated piston 32, as shown by arrow a. The piston is positioned within the coils of a spring 33 having a detent 34 along a distal end. As shown in
As will be described below, when the unit 30 is in the unlocked/retracted position, the selector switch 8 of the firearm can operate in the expected manner so as to be manually transitioned between the SAFE and FIRE positions. Conversely, when the engagement unit 30 is in the locked/extended position, the selector switch will be secured in the SAFE position.
To this end,
As is known to those of skill in the art, the selector switch 8 of a rifle such as the illustrated AR-15, for example, includes a first end 8a in the form of a thumb lever that is positioned on the outside (typically on the left side) of the receiver body. The thumb lever is connected to an elongated notched-cylindrical member 8b that extends across the receiver body and terminates into a contoured second end 8c. As described below, the second end of the selector switch includes a transverse groove 8d having a dimple 8d1 and 8d2 along each end. These dimples 8d1 and 8d2 corresponding with the SAFE and FIRE position of the thumb lever 8a, respectively.
Cutout
Cutout
Next, cutout
In the preferred embodiment, the upward force applied by the engagement unit can be between approximately 2 and 5 pounds of pressure. Such pressure has been shown through tests to be sufficient to transition the selector switch of an AR-15 rifle from FIRE to SAFE, as described above, and to prevent manual movement of the switch by an adult, without the aid of a mechanical advantage (e.g., external tools). Of course, other embodiments are contemplated wherein different amounts of force/pressure can be applied onto the firearm selector switch, based on the make/manufacturer of the firearm to be used with the device 20. In either instance, when the unit 30 is in the locked position, a user is unable to transition the selector switch of the weapon from SAFE to FIRE.
Although illustrated as separate elements, those of skill in the art will recognize that one or more system components may comprise, or include one or more printed circuit boards (PCB) containing any number of integrated circuit or circuits for completing the activities described herein. The CPU may be one or more integrated circuits having firmware for causing the circuitry to complete the activities described herein. Of course, any number of other analog and/or digital components capable of performing the below described functionality can be provided in place of, or in conjunction with the below described controller elements.
The main body 40a can include any number of different shapes and sizes and can be constructed from any number of different materials suitable for encompassing each of the controller elements. In one preferred embodiment, the main body 40a can be constructed from lightweight injection molded plastic having a plurality of internal connectors (not shown) for securely housing each of the device elements. Of course, any number of other known construction materials such as PVC and composites, for example, are also contemplated.
The processor/CPU 41 can act to execute program code stored in the memory 42 in order to allow the device to perform the functionality described herein. Processors are extremely well known in the art, therefore no further description will be provided.
Memory 42 can act to store operating instructions in the form of program code for the processor 41 to execute. Although illustrated in
The user interface 43 can include any number of different components that are capable of sending and/or receiving information with an external device or a user. In the preferred embodiment, the user interface 43 can include, control or comprise an RFID system having an RFID interrogator that can communicate with an externally located RFID tag 43a. To this end, the RFID tag 43a can include any number of different shapes and sizes, and/or can be embedded within a secondary object such as a keychain, bracelet or ring, for example. As will be known to those of skill in the art, an RFID interrogator can function to send and/or receive data with the integrated circuit of an RFID tag that is located nearby.
Of course, the user interface is not limited to the use of an RFID system, as any number of other known systems capable of receiving and/or verifying a user are also contemplated. Several nonlimiting examples include a biometric authentication unit having a fingerprint sensor, and/or the use of a combination lock with inputs for receiving a pre-programmed combination of numbers or letters, for example.
The internal component interface unit 44 can function to provide a communicative link between the processor 41 and various other device components such as the switch engagement unit 30, the user interface 43, and/or the charging port 45a, for example. In this regard, the component interface unit can include any number of different components such as one or more PIC microcontrollers, internal bus 44a, USB connections and other such hardware capable of providing a direct link between the various components. Of course, any other means for providing the two way communication between the device components can also be utilized herein.
In one preferred embodiment, the power source 45 can include one or more DC batteries capable of providing the necessary power requirements to each element of the device 10. In one embodiment, the batteries can be permanently located within the hand grip 21 and can be rechargeable in nature via a charging port 45a, such as a mini or micro USB port, for example. Of course, traditional batteries can also be utilized, and the main body can further include a battery compartment having a removable cover (not illustrated) for allowing a user to access the same.
In operation, the resting state of the device will be with the engagement unit 30 in the locked/extended position of
As noted above, it is contemplated that an unauthorized user could attempt to circumvent and/or break the engagement unit 30 of the firearm locking device 20 by applying excessive downward force (e.g., greater than 5 pounds) onto the thumb lever of the selector switch 8. In order to prevent such a situation,
As shown best in
In the preferred embodiment, the torque limiter 85 can be positioned between the thumb lever 80a and the elongated cylindrical member 80b and can function to allow normal operation of the selector switch as described above with regard to
It is preferred that the torque limiter can be reusable in nature, by simply rotating the thumb lever 80a back to the SAFE position. One suitable example of a torque limiter for use herein includes the model 3744 servo saver that is commercially available from Traxxas®. Of course, any number of known devices capable of preventing an over torque situation such as various spring-loaded clips, friction plates and/or shear pins, for example, may also be utilized herein.
As described herein, one or more elements of the firearm locking device 20 can be secured together utilizing any number of known attachment means such as, for example, screws, glue, compression fittings and welds, among others. Moreover, although the above embodiments have been described as including separate individual elements, the inventive concepts disclosed herein are not so limiting. To this end, one of skill in the art will recognize that one or more individually identified elements may be formed together as one or more continuous elements, either through manufacturing processes, such as welding, casting, or molding, or through the use of a singular piece of material milled or machined with the aforementioned components forming identifiable sections thereof.
As to a further description of the manner and use of the present invention, the same should be apparent from the above description. Accordingly, no further discussion relating to the manner of usage and operation will be provided.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Likewise, the terms “consisting” shall be used to describe only those components identified. In each instance where a device comprises certain elements, it will inherently consist of each of those identified elements as well.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
This application claims the benefit of U.S. application Ser. No. 15/484,795, now issued as U.S. Pat. No. 10,267,583, filed on Apr. 11, 2017, which claims the benefit of U.S. Application Ser. No. 62/322,339, filed on Apr. 14, 2016, U.S. application Ser. No. 15/484,795 is a continuation-in-part to copending application Ser. No. 15/261,279, filed Sep. 9, 2016, now issued as U.S. Pat. No. 9,784,516, and having an original priority date of Oct. 16, 2015, the contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
35456 | Leverich | Jun 1862 | A |
955237 | Westcott et al. | Apr 1910 | A |
1569553 | Lewis et al. | Jan 1926 | A |
1686482 | Windle | Oct 1928 | A |
1695071 | Mariand | Dec 1928 | A |
1887308 | Leroy | Nov 1932 | A |
2080202 | Drake | May 1937 | A |
2115041 | Alejandro | Apr 1938 | A |
2590516 | Von | Mar 1952 | A |
2932334 | Steen | Apr 1960 | A |
3222809 | Bryan | Dec 1965 | A |
3224587 | Schmidt | Dec 1965 | A |
3392471 | Foote | Jul 1968 | A |
4422254 | McQueen | Dec 1983 | A |
4754498 | Stinemates | Jul 1988 | A |
4858361 | White | Aug 1989 | A |
4860479 | Easter | Aug 1989 | A |
5012605 | Nishioka | May 1991 | A |
5024017 | Nishioka | Jun 1991 | A |
5075994 | Nishioka | Dec 1991 | A |
5138786 | Fischer | Aug 1992 | A |
5229532 | Brooks | Jul 1993 | A |
5419068 | Pages et al. | May 1995 | A |
5638627 | Klein et al. | Jun 1997 | A |
5992075 | Ockenfuss et al. | Nov 1999 | A |
6141896 | Oberst | Nov 2000 | A |
6154995 | Lenoir et al. | Dec 2000 | A |
6164004 | Essary | Dec 2000 | A |
6206261 | McCrary | Mar 2001 | B1 |
6240669 | Spaniel et al. | Jun 2001 | B1 |
6253480 | Florez | Jul 2001 | B1 |
6389726 | Bentley | May 2002 | B1 |
6405861 | Siler et al. | Jun 2002 | B1 |
6459064 | Trubert | Oct 2002 | B1 |
6578307 | Troyer | Jun 2003 | B2 |
7030729 | Albanesi et al. | Apr 2006 | B2 |
7194836 | Urban | Mar 2007 | B1 |
8522582 | Keightley | Sep 2013 | B2 |
8713836 | Haq | May 2014 | B1 |
8807007 | Alicea | Aug 2014 | B2 |
8931393 | Vincent et al. | Jan 2015 | B1 |
9097479 | Barido et al. | Aug 2015 | B1 |
9121655 | Murphy et al. | Sep 2015 | B1 |
9404699 | Barido et al. | Aug 2016 | B1 |
9459064 | Xu | Oct 2016 | B1 |
9658017 | Alicea | May 2017 | B2 |
9733033 | Barido et al. | Aug 2017 | B1 |
9746266 | Barido et al. | Aug 2017 | B1 |
9841250 | Mirza | Dec 2017 | B1 |
10267583 | Murphy, II | Apr 2019 | B2 |
20020116856 | Troyer | Aug 2002 | A1 |
20100154271 | Victor et al. | Jun 2010 | A1 |
20110047849 | Brenner | Mar 2011 | A1 |
20120137559 | Burns | Jun 2012 | A1 |
20150204628 | Würkner | Jul 2015 | A1 |
20160084601 | Alicea, Jr. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
102006005117 | Aug 2007 | DE |
1058081 | Jan 2006 | EP |
Number | Date | Country | |
---|---|---|---|
20190331448 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62322339 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15484795 | Apr 2017 | US |
Child | 16390520 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15261279 | Sep 2016 | US |
Child | 15484795 | US | |
Parent | 14885394 | Oct 2015 | US |
Child | 15261279 | US |