FIREARM HANDGUARD ASSEMBLY

Information

  • Patent Application
  • 20190277598
  • Publication Number
    20190277598
  • Date Filed
    May 17, 2019
    5 years ago
  • Date Published
    September 12, 2019
    5 years ago
Abstract
A handguard assembly for a firearm includes a handguard with an internal clamping area. A single-piece index block includes a securing portion for connecting to the handguard and an indexing extension for engaging an indexing feature on the upper receiver of the firearm. The handguard includes internal ribs that provide discrete clamping surfaces for engaging a barrel nut of the firearm. Connecting the index block to the handguard generates a continuous clamping action in the handguard which acts through the ribs to apply a radially-directed circumferentially-applied clamping force on a barrel nut through the discrete clamping surfaces. The indexing feature of the index block engages an indexing feature of the upper receiver to ensure proper alignment of the handguard and the upper receiver.
Description
TECHNICAL FIELD

The present invention generally concerns firearm equipment. More particularly, the present invention relates to a firearm handguard assembly.


BACKGROUND

Traditionally, a handguard is mounted to a firearm using an assembly that uses a basic clamp on the handguard (which may or may not be integrated with the handguard itself) with a slice-bottom design, wherein the bottom portion of the clamp is held together with screws, a two-sided slice design, or a multi-part clamp design. When the screws are tightened, the clamp bears down on the handguard, holding the handguard to the barrel nut. The barrel nut holds the barrel of the firearm in place and is attached to the upper receiver. However, this design is problematic. The tension created by the clamp holds the handguard in place on the barrel nut, but places stress on the upper area of the handguard, which is weaker due to design constraints. This area expands as the clamping mechanism is tightened and more so when the firearm is in use due to the heat generated between the barrel of the firearm, which causes the stress imparted by the clamp to relax as the parts expand due to heat. Traditional designs have placed their hardware in a disadvantaged location due to the lack of clearance available between the various components on top of the barrel nut. There is, therefore, a need for an improved firearm handguard assembly system that obviates the shortcomings of the traditional clamping design.


Similarly, even when a handguard is properly mounted to a firearm, the movement of the handguard may loosen the barrel nut and could result in damage to the firearm. Several solutions have been offered to index the handguard to the upper receiver of the firearm. The most common solution is an anti-slip plate that is affixed to the barrel nut using several screws. This type of assembly can be complicated and time-consuming for the user. Yet another design is a handguard with an indexing tab (or “finger”) that extends from the handguard and indexes to the upper receiver of the firearm. Therefore, there is a need for an indexing system that is simple and user-friendly.


The present invention is aimed at one or more of the problems identified above.


SUMMARY

In one aspect, the present invention provides a handguard assembly system for a firearm, the system comprising: a firearm upper receiver; a handguard removably attachable to the firearm upper receiver, the handguard including a plurality of apertures; an index block having a plurality of threaded apertures; wherein the index block is fastened to the handguard by a plurality of fasteners that extend through the plurality of apertures in the handguard into the plurality of threaded apertures of the index block, and wherein tightening the plurality of fasteners with respect to the index block prevents rotation of the handguard relative to the upper receiver.


In one aspect, the index block is positioned within the handguard. In one aspect, the handguard is secured to the firearm at the upper receiver with the index block and fasteners. In one aspect, the invention further comprises a gas tube extending outside the barrel along a top of the barrel and communicating between the barrel and the upper receiver, wherein the index block extends over a top of the gas tube. In one aspect, the index block includes a groove extending around a portion of the gas tube. In one aspect, the invention further comprises an upper receiver rail on top of the upper receiver, wherein the plurality of fasteners do not extend across the upper receiver rail. In one aspect, the invention further comprises a barrel and a barrel nut for threaded engagement with the upper receiver to secure the barrel to the upper receiver, wherein tightening the plurality of fasteners with respect to the index block secures the handguard adjacent the barrel nut and upper receiver. In one aspect, the handguard includes a clamping area for generating a continuous clamping force in response to tightening the plurality of fasteners. In one aspect, the continuous clamping force is applied at least in part to the barrel nut.


In one aspect, the invention further comprises comprising a barrel and a barrel nut for threaded engagement with the upper receiver to secure the barrel to the upper receiver, wherein tightening the plurality of fasteners with respect to the index block causes the handguard to apply a clamping force, the clamping force being applied at least partially to the barrel nut. In another aspect, the invention provides a handguard assembly for a firearm including an upper receiver, the handguard assembly comprising: a handguard including a plurality of apertures; an index block; and a plurality of fasteners extending through the plurality of apertures in the handguard and engaging the index block, wherein actuation of the fasteners causes the handguard to radially tighten on a portion of the firearm.


In one aspect, the index block is positioned within the handguard. In one aspect, the handguard is secured to the firearm at the upper receiver with the index block and fasteners. In one aspect, the invention further comprises a gas tube extending outside the barrel along a top of the barrel and communicating between the barrel and the upper receiver, wherein the index block extends over a top of the gas tube. In one aspect, the index block includes a groove extending around a portion of the gas tube. In one aspect, the invention further comprises an upper receiver rail on top of the upper receiver, wherein the plurality of fasteners do not extend across the upper receiver rail. In one aspect, the firearm includes a barrel and a barrel nut for threaded engagement with the upper receiver to secure the barrel to the upper receiver, wherein actuating the plurality of fasteners with respect to the index block secures the handguard adjacent the barrel nut and upper receiver. In one aspect, the handguard includes a clamping area for generating a continuous clamping force in response to actuating the plurality of fasteners. In one aspect, the continuous clamping force is applied at least in part to the barrel nut. In one aspect, the firearm includes a barrel and a barrel nut for threaded engagement with the upper receiver to secure the barrel to the upper receiver, wherein actuating the plurality of fasteners with respect to the index block causes the handguard to apply a clamping force, the clamping force being applied at least partially to the barrel nut.





BRIEF DESCRIPTION OF THE DRAWINGS

Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:



FIG. 1A illustrates an exploded view of an exemplary handguard assembly according to a first embodiment;



FIG. 1B illustrates a side perspective view of an index block of an exemplary handguard assembly according to a first embodiment;



FIG. 1C illustrates a front view of an index block and a barrel nut of an exemplary handguard assembly according to a first embodiment;



FIG. 1D illustrates a back view of an index block and a barrel nut of an exemplary handguard assembly according to a first embodiment;



FIG. 1E illustrates a top view of an index block of an exemplary handguard assembly according to a first embodiment;



FIG. 1F illustrates a bottom view of an index block of an exemplary handguard assembly according to a first embodiment;



FIG. 1G illustrates a perspective view of a fully assembled exemplary handguard assembly system according to a first embodiment;



FIG. 1H illustrates a cross-sectional view of a of a fully assembled exemplary handguard assembly system according to a first embodiment;



FIG. 1I illustrates a fully assembled firearm handguard assembly system on an exemplary firearm according to a first embodiment;



FIG. 2A illustrates an exploded view of an exemplary handguard assembly according to a second embodiment;



FIG. 2B illustrates a side perspective view of an index block of an exemplary handguard assembly according to a second embodiment;



FIG. 2C illustrates a front view of an index block and a barrel nut of an exemplary handguard assembly according to a second embodiment;



FIG. 2D illustrates a back view of an index block and a barrel nut of an exemplary handguard assembly according to a second embodiment;



FIG. 2E illustrates a top view of an index block of an exemplary handguard assembly according to a second embodiment;



FIG. 2F illustrates a bottom view of an index block of an exemplary handguard assembly according to a second embodiment;



FIG. 2G illustrates a perspective view of a fully assembled exemplary handguard assembly system according to a second embodiment;



FIG. 2H illustrates a cross-sectional view of a of a fully assembled exemplary handguard assembly system according to a second embodiment; and



FIG. 2I illustrates a fully assembled firearm handguard assembly system on an exemplary firearm according to a second embodiment.



FIG. 3A is a perspective end view of a handguard assembly system according to a third embodiment.



FIG. 3B is an exploded view of the system of FIG. 3A.



FIG. 3C is a cross-section view taken along line 3C-3C in FIG. 3A.





Corresponding reference characters indicate corresponding parts throughout the drawings.


DETAILED DESCRIPTION

Embodiments of the present invention provide a handguard assembly and system and method of mounting the assembly to a firearm. Persons of ordinary skill in the art will realize that the following description of the presently invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons.


Other improved designs have included the use of clamp blocks, cross bolts, and an indexing plate, as described in U.S. Pat. No. 8,904,691, issued to Eric S. Kincel, which is incorporated herein by reference. The design of the present invention uses screws and an index clamp rather than cross bolts and a plurality of clamp blocks.


Referring now to FIG. 1A, illustrating an exploded view of a firearm handguard assembly system according to a first embodiment, a handguard 100 is coupled to a threaded end of barrel nut 102 to mount the upper receiver of a firearm (FIG. 1I) to handguard 100.


It is contemplated that any handguard may be used in connection with the present invention. In a preferred embodiment, the handguard is made from magnesium rather than aluminum, the typical material for handguards in the industry. Magnesium is lighter than aluminum by a ratio of 1:3, and is therefore an ideal structural material for handguards because it reduces strain on the firearm user during use. However, handguards made from any suitable structural material may be used in connection with the present invention, including without limitation steel (carbon and stainless), aluminum, and titanium.


It is also contemplated that the handguard may contain KeyMod holes, a picatinny rail (also known as a MIL-STD-1913 accessory rail), Magpul® M-LOK® System, GIBBZ Arms™ Modular Attachment (GAMA) System, and/or any other interface system currently available or later developed.


According to the first embodiment, the threaded end of barrel nut 102 is placed inside a first end of handguard 100. Without an index block or plate, the movement of the handguard may loosen the barrel nut and could result in damage to the firearm. Use of index block 104 eliminates rotation of handguard 100 during use.


A first end of handguard 100 contains a first aperture 106 and a second aperture 108 on a first side, and a third aperture 110 and a fourth aperture 112 on a second side. Index block 104 contains a first aperture 114 and a second aperture 116 on a first side, and a third aperture 118 and a fourth aperture 120 on a second side. Index block 104 is placed inside the first end of handguard 100 such that first aperture 114 of index block 104 is aligned with first aperture 106 of handguard 100 and second aperture 116 of index block 104 is aligned with second aperture 108 of handguard 100. On the second side of index block 104, third aperture 118 of index block 104 is aligned with third aperture 110 of handguard 100 and fourth aperture 120 of index block 104 is aligned with fourth aperture 112 of handguard 100.


A first screw 122 is threaded through first aperture 106 of handguard 100 and first aperture 114 of index block 104. A second screw 124 is threaded through second aperture 108 of handguard 100 and second aperture 116 of index block 104. A third screw 126 is threaded through third aperture 110 of handguard 100 and third aperture 118 of index block 104. A fourth screw 128 is threaded through fourth aperture 112 of handguard 100 and fourth aperture 120 of index block 104.


Index block 104 further includes feet, one of which is labeled 130, which interface with barrel nut 102.


During threading as described above, screws 122, 124, 126, and 128 preclude longitudinal movement of handguard 100, while clamping down on the body of handguard 100 to cause residual force between barrel nut 102 and handguard 100. On an AR-15 platform, the mounting force is spread around the firearm's gas tube 138 (see FIG. 1H). The residual mounting force prevents the handguard from flexing or growing, which ultimately prevents rotation and slippage during use.


Referring now to FIG. 1B, a side perspective view of index block 104 and barrel nut 102 of an exemplary handguard assembly according to the first embodiment is shown. Screws 122, 124, 126, and 128 are threaded through index block 104. Feet 130 of index block 104 interface with barrel nut 102 in a groove 132 between a first lip 134 of the threaded end barrel nut 102 and a second lip 136 of the smooth end of barrel nut 102.


Referring now to FIGS. 1C and 1D, a front view and a back view of index block 104 and barrel nut 102 of an exemplary handguard assembly according to the first embodiment are shown, respectively.


Referring now to FIGS. 1E and 1F, a top view and a bottom view of index block 104 of an exemplary handguard assembly according to the first embodiment are shown, respectively.


Referring now to FIG. 1G, illustrating a fully assembled firearm handguard assembly system according to the first embodiment, the barrel nut 102 is secured inside handguard 100 with screws 122, 124, 126, and 128, and with index block 104 in place, allowing handguard 100 to be fully indexed to the upper receiver of the firearm (FIG. 1I). The design of the firearm handguard assembly strengthens the grip of the handguard on the barrel nut, by eliminating non-continuous features within the clamping area of the handguard body, keeping the handguard tensioned in place even under high stress and heat when the firearm is in use.


Referring now to FIG. 1H, illustrating a cross-sectional view of a fully assembled exemplary handguard assembly system according to the first embodiment, the handguard 100 includes gas tube 138 and barrel 140.


Referring now to FIG. 1I, illustrating a fully assembled firearm handguard on an exemplary firearm 142 according to the first embodiment. The firearm 142 includes an upper receiver 144 having a receiver rail 146 to which accessories can be mounted. The illustrated receiver rail 146 is in the form of a Picatinny rail but could be provided in different forms known in the art. The handguard 100 is secured to exemplary firearm 142 at its upper receiver 144 with index block 104 and screws 122, 124, 126, and 128 in place.


Referring now to FIG. 2A, illustrating an exploded view of a firearm handguard assembly system according to a second embodiment, a handguard 200 is coupled to a threaded end of barrel nut 202 to mount the upper receiver of a firearm (FIG. 2I) to handguard 200.


The threaded end of barrel nut 202 is placed inside a first end of handguard 200. Without an index block or plate, the movement of the handguard may loosen the barrel nut and could result in damage to the firearm. Use of index block 204 eliminates rotation of handguard 100 during use.


A first end of handguard 200 contains a first aperture 206 and a second aperture 208 on a first side, and a third aperture 210 and a fourth aperture 212 on a second side. Index block 204 contains a first aperture 214 and a second aperture 216 on a first side, and a third aperture 218 and a fourth aperture 220 on a second side. Index block 204 is placed inside the first end of handguard 200 such that first aperture 214 of index block 204 is aligned with first aperture 206 of handguard 200 and second aperture 216 of index block 204 is aligned with second aperture 208 of handguard 200. On the second side of index block 204, third aperture 218 of index block 204 is aligned with third aperture 210 of handguard 200 and fourth aperture 220 of index block 204 is aligned with fourth aperture 212 of handguard 200.


A first screw 222 is threaded through first aperture 206 of handguard 200 and first aperture 214 of index block 204. A second screw 224 is threaded through second aperture 208 of handguard 200 and second aperture 216 of index block 204. A third screw 226 is threaded through third aperture 210 of handguard 200 and third aperture 218 of index block 204. A fourth screw 228 is threaded through fourth aperture 212 of handguard 200 and fourth aperture 220 of index block 204.


During threading as described above, screws 222, 224, 226, and 228 preclude longitudinal movement of handguard 200, while clamping down on the body of handguard 200 to cause residual force between barrel nut 202 and handguard 200. On an AR-10 platform, the mounting force is spread under the gas tube 238 (see FIG. 2H). The residual mounting force prevents the handguard from flexing or growing, which ultimately prevents rotation and slippage during use.


Referring now to FIG. 2B, a side perspective view of index block 204 and barrel nut 202 of an exemplary handguard assembly according to the second embodiment is shown. Screws 222, 224, 226, and 228 are threaded through index block 204. Index block 204 interfaces with barrel nut 202 in a groove 232 between a first lip 234 of the threaded end barrel nut 202 and a second lip 236 of the smooth end of barrel nut 202.


Referring now to FIGS. 2C and 2D, a front view and a back view of index block 204 and barrel nut 202 of an exemplary handguard assembly according to the second embodiment are shown, respectively.


Referring now to FIGS. 2E and 2F, a top view and a bottom view of index block 204 of an exemplary handguard assembly according to the second embodiment are shown, respectively.


Referring now to FIG. 2G, illustrating a fully assembled firearm handguard assembly system according to the second embodiment, the barrel nut 202 is secured inside handguard 200 with screws 222, 224, 226, and 228, and with index block 204 in place, allowing handguard 200 to be fully indexed to the upper receiver of the firearm (see FIG. 2I). The design of the firearm handguard assembly strengthens the grip of the handguard on the barrel nut, by eliminating non-continuous features within the clamping area of the handguard body, keeping the handguard tensioned in place even under high stress and heat when the firearm is in use.


Referring now to FIG. 2H, illustrating a cross-sectional view of a fully assembled exemplary handguard assembly system according to the second embodiment, the handguard 200 includes gas tube 238 and barrel 240.


Referring now to FIG. 2I, illustrating a fully assembled firearm handguard on an exemplary firearm 242 according to the second embodiment. The firearm 242 is the same as the firearm 142 described above and includes an upper receiver 244 with a receiver rail 246. The same description of these features above applies to firearm 242. The handguard 200 is secured to exemplary firearm 242 at its upper receiver 244 with index block 204 and screws 222, 224, 226, and 228 in place.


An exemplary firearm may be an AR-10, AR-15, or a variant thereof. The present invention may also be used with any firearm that uses a threaded portion of the forward area of the upper receiver and/or action over which may pass any portion of the operating assembly. By way of example, and not limitation, these firearms may include bolt action rifles for which the user may desire a handguard or fore-end with a top rail and superior clamping force to the receiver. Exemplary embodiments are illustrated herein. The first embodiment, illustrated by FIGS. 1A-1I, shows the present invention on an AR-15 platform. The second embodiment, illustrated by FIGS. 2A-2B, shows the present invention on the AR-10 platform.


Although the exemplary embodiments described herein contain a block and screw assembly that requires one block and four screws, it is contemplated that more or less than four screws may be used. It is also contemplated that the block may be integrated into the handguard body.


The barrel nuts shown in FIGS. 1A-1I and FIGS. 2A-2I use a radial groove long and deep enough to pass a multitude of screws. Alternative embodiments of the barrel nut include, but are not limited to, a barrel nut design containing a plurality of apertures to allow the screws to pass through the apertures and engage the index block; a barrel nut design with a plurality of flat cuts that create clearance for the screws to pass; a barrel nut design with no forward flange but with a protrusion to support the screws; a barrel nut design without any forward flange, no clearance cuts, and which may have screws passing only in front of, or in front of and behind, the barrel nut in order to engage the apertures on either side of the handguard. The barrel nut and related metal mounting hardware made from any suitable structural material may be used in connection with the present invention, including without limitation steel (carbon and stainless) and titanium.



FIGS. 3A-3C illustrate a third embodiment of a firearm handguard assembly system 346 according to the present invention. The third embodiment of the firearm handguard assembly system 346 is for use with a firearm 342 similar or identical to the firearms 142, 242 described above. The firearm 342 includes an upper receiver having a receiver rail similar or identical to the upper receivers 144, 244 and receiver rails 146, 246 described above. The firearm 342 also includes a barrel nut 302 and a barrel 340 which are identical to the corresponding parts described above with respect to the firearms 142, 242. The barrel nut 302, for example, has a circumferential groove 332 in its outer surface. The illustrated barrel 340 includes a barrel extension 344 which includes locking lugs for the firearm's bolt. The barrel nut 302 securely mounts the barrel 340 to the upper receiver of the firearm 342.


The handguard assembly system 346 includes a handguard 300 and an index block 304. The handguard 300 includes internal ribs 348 that provide discrete clamping surfaces for clamping against the outer surface of the barrel nut 302 at discrete clamping locations around the circumference of the barrel nut 302. This is different from the substantially continuous clamping surfaces provided by the internal surfaces of the handguards 100, 200 described above. The internal ribs 348 can be provided with less material than is required to provide the substantially continuous clamping surface of the handguards 100, 200 described above. The handguard 300 consequently may be lighter than handguards 100, 200.


All handguard embodiments 100, 200, 300 of the present invention provide a clamping area around the outer surface of the barrel nut 102, 202, 302 for a radially-directed circumferentially-applied clamping force from the handguard 100, 200, 300 onto the barrel nut 102, 202, 302, but whereas the clamping area of the first two embodiments 100, 200 is continuous, the clamping area of the third embodiment 300 is the cumulative clamping area of the discrete clamping surfaces provided by the ribs 348.


Other than the ribs 348 in place of a substantially continuous clamping surface, the handguard 300 is identical or substantially similar to the handguards 100, 200 described above. For example, the handguard 300 includes a Picatinny rail 350 or other accessory mounting rail which aligns with a receiver rail on the upper receiver when the handguard is properly mounted to the upper receiver. A first end 300a of the handguard 300 includes a slot 352 between the Picatinny rail 350 and the tops of the right and left sides of the handguard 300. The tops of the right and left sides of the handguard 300 define respective first and second mounting flanges 362, 364. The first end 300a includes first and second smooth apertures (i.e., through bores) 306, 308 through the first mounting flange 362, and third and fourth smooth apertures (i.e., through bores) 310, 312 through the second mounting flange 364.


The index block 304 is identical or substantially similar to the index blocks 104, 204 described above. The index block 304 includes first and second securing portions 366, 368 on the respective right and left sides of the index block 304. The securing portions 366, 368 are the sides or wings of the index block 304. The index block 304 further includes first and second threaded apertures 314, 316 in the first securing portion 366, and third and fourth threaded apertures 318, 320 in the second securing portion 368.


The index block 304 also includes a plurality of feet 330 for engaging the barrel nut 302 and a pair of indexing horns 354 to engage an upper receiver indexing feature (e.g., the receiver rail, other accessory mounting rail, or any other feature of the upper receiver). The feet 330 and indexing horns 354 are integrally formed (e.g., molded or cast) with the rest of the index block 304 such that the index block is a single-piece index block 304. It will be understood that the feet 330 and indexing horns 354 could alternatively be any suitable features for engaging the barrel nut 302 and an indexing feature of the upper receiver, as will be explained in more detail below.


The process for installing the handguard assembly system 346 on the firearm 342 is identical to the process described above, but will be briefly described again here. To install the handguard assembly system 346 on the firearm 342, the index block 304 is positioned on the barrel nut 302 with the feet 330 in the groove 332. The index block 304 and barrel nut 302 are then inserted into the first end 300a of the handguard 300 to insert the first and second securing portions 366, 368 in the slot 352. The barrel nut 302 and index block 304 are positioned in the first end 300a to align the first, second, third, and fourth threaded apertures 314, 316, 318, 320 of the index block 304 with the respective first, second, third, and fourth smooth apertures 306, 308, 310, 312 of the handguard 300. When initially installed, there is a gap 356 (FIG. 3C) between the first and second securing portions 366, 368 of the index block 304 and the respective first and second mounting flanges 362, 364 of the first end 300a of the handguard 300.


First, second, third, and fourth screws 322, 324, 326, 328 are extended through the respective first, second, third, and fourth smooth apertures 306, 308, 310, 312 and threaded into the respective first, second, third, and fourth threaded apertures 314, 316, 318, 320. As the screws 322, 324, 326, 328 are tightened, the heads of the screws 322, 324, 326, 328 bear against the outside surface of the mounting flanges 362, 364, thereby narrowing the gaps 356. As the gaps 356 narrow, the top left and right sides of the first end 300a of the handguard 300 are drawn toward each. This results in a clamping action which is applied to the outer surface of the barrel nut 302 through the discrete clamping surfaces of the ribs 348.


Like the first two embodiments described above, the clamping action of the handguard assembly system 346 is continuous in the sense that there is circumferential tension through the whole left and right sides of the first end 300a. The left and right sides of the first end 300a of the handguard 300 act like a continuous band clamp or a strap. Unlike the two embodiments 100, 200 described above, however, the continuous clamping action of the handguard 300 is applied to the barrel nut 302 through the discrete clamping surfaces of the internal ribs 348. Thus, the continuous clamping action provides discrete, separate clamping forces spaced circumferentially around the outer surface of the barrel nut 302. The discrete, separate clamping forces of the handguard assembly system 346 generate sufficient friction to prevent rotation and axial (i.e., along the length of the barrel 340) movement of the handguard 300 with respect to the barrel nut 302.


As noted above, the feet 330 could alternatively be any suitable feature for engaging the barrel nut 302 such that the index block 304 is properly positioned on the barrel nut 302 for assembly into the handguard 300. The engagement of the feet 330 in the groove 332 provides additional resistance against axial movement of the index block 304 and handguard 300 with respect to the barrel nut 302.


Likewise, the indexing horns 354 could alternatively be replaced with any suitable configuration for engaging an indexing feature of the upper receiver 144, 244. in the illustrated embodiments, the indexing horns 354 engage opposite sides of the receiver rail 146, 246 so that the handguard 100, 200, or 300 is properly clocked or indexed to the upper receiver 144, 244 (e.g., so that the handguard rail 350 aligns with the receiver rail 146, 246) during installation. In other embodiments, the indexing horns 354 could be replaced with any suitable indexing extension that engages an indexing feature of the upper receiver 144, 244. For example, the indexing feature could be a single extension or finger on the index block 304 that engages a hole or groove in the upper receiver 144, 244. In addition to indexing the handguard 100, 200, or 300 to the upper receiver 144, 244, the indexing horns 354 provide some resistance to rotational movement of the handguard 300 with respect to the barrel nut 302.


The above description is illustrative and not restrictive. Many variations of the invention will become apparent to those of skill in the art upon review of this disclosure. While the present invention has been described in connection with a variety of embodiments, these descriptions are not intended to limit the scope of the invention to the particular forms set forth herein. To the contrary, the present descriptions are intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claim and otherwise appreciated by one of ordinary skill in the art.

Claims
  • 1. A handguard assembly system for a firearm, the system comprising: a firearm upper receiver;a handguard removably attachable to the firearm upper receiver, the handguard including a plurality of apertures;an index block having a plurality of threaded apertures;wherein the index block is fastened to the handguard by a plurality of fasteners that extend through the plurality of apertures in the handguard into the plurality of threaded apertures of the index block, andwherein tightening the plurality of fasteners with respect to the index block prevents rotation of the handguard relative to the upper receiver.
  • 2. The handguard assembly system of claim 1, wherein the index block is positioned within the handguard.
  • 3. The handguard assembly system of claim 1, wherein the handguard is secured to the firearm at the upper receiver with the index block and fasteners.
  • 4. The handguard assembly system of claim 1, further comprising a gas tube extending outside the barrel along a top of the barrel and communicating between the barrel and the upper receiver, wherein the index block extends over a top of the gas tube.
  • 5. The handguard assembly system of claim 4, wherein the index block includes a groove extending around a portion of the gas tube.
  • 6. The handguard assembly system of claim 1, further comprising an upper receiver rail on top of the upper receiver, wherein the plurality of fasteners do not extend across the upper receiver rail.
  • 7. The handguard assembly system of claim 1, further comprising a barrel and a barrel nut for threaded engagement with the upper receiver to secure the barrel to the upper receiver, wherein tightening the plurality of fasteners with respect to the index block secures the handguard adjacent the barrel nut and upper receiver.
  • 8. The handguard assembly system of claim 7, wherein the handguard includes a clamping area for generating a continuous clamping force in response to tightening the plurality of fasteners.
  • 9. The handguard assembly system of claim 8, wherein the continuous clamping force is applied at least in part to the barrel nut.
  • 10. The handguard assembly system of claim 1, further comprising a barrel and a barrel nut for threaded engagement with the upper receiver to secure the barrel to the upper receiver, wherein tightening the plurality of fasteners with respect to the index block causes the handguard to apply a clamping force, the clamping force being applied at least partially to the barrel nut.
  • 11. A handguard assembly for a firearm including an upper receiver, the handguard assembly comprising: a handguard including a plurality of apertures;an index block; anda plurality of fasteners extending through the plurality of apertures in the handguard and engaging the index block, wherein actuation of the fasteners causes the handguard to radially tighten on a portion of the firearm.
  • 12. The handguard assembly of claim 11, wherein the index block is positioned within the handguard.
  • 13. The handguard assembly of claim 11, wherein the handguard is secured to the firearm at the upper receiver with the index block and fasteners.
  • 14. The handguard assembly of claim 11, further comprising a gas tube extending outside the barrel along a top of the barrel and communicating between the barrel and the upper receiver, wherein the index block extends over a top of the gas tube.
  • 15. The handguard assembly system of claim 14, wherein the index block includes a groove extending around a portion of the gas tube.
  • 16. The handguard assembly of claim 11, further comprising an upper receiver rail on top of the upper receiver, wherein the plurality of fasteners do not extend across the upper receiver rail.
  • 17. The handguard assembly of claim 11, wherein the firearm includes a barrel and a barrel nut for threaded engagement with the upper receiver to secure the barrel to the upper receiver, wherein actuating the plurality of fasteners with respect to the index block secures the handguard adjacent the barrel nut and upper receiver.
  • 18. The handguard assembly of claim 17, wherein the handguard includes a clamping area for generating a continuous clamping force in response to actuating the plurality of fasteners.
  • 19. The handguard assembly of claim 18, wherein the continuous clamping force is applied at least in part to the barrel nut.
  • 20. The handguard assembly of claim 11, wherein the firearm includes a barrel and a barrel nut for threaded engagement with the upper receiver to secure the barrel to the upper receiver, wherein actuating the plurality of fasteners with respect to the index block causes the handguard to apply a clamping force, the clamping force being applied at least partially to the barrel nut.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 16/178,937 filed Nov. 2, 2018, now U.S. Pat. No. 10,295,304, which is a continuation-in-part of application Ser. No. 15/885,071 filed Jan. 31, 2018, now U.S. Pat. No. 10,126,094, which is a continuation of application Ser. No. 15/701,982 filed Sep. 12, 2017, abandoned, which is a continuation of application Ser. No. 15/153,464 filed May 12, 2016, now U.S. Pat. No. 9,791,239.

Continuations (3)
Number Date Country
Parent 16178937 Nov 2018 US
Child 16415398 US
Parent 15701982 Sep 2017 US
Child 15885071 US
Parent 15153464 May 2016 US
Child 15701982 US
Continuation in Parts (1)
Number Date Country
Parent 15885071 Jan 2018 US
Child 16178937 US