The present invention relates to accessories for firearms, specifically to firearm handguards having improved heat-reduction features that protect a user from heat injuries during use of a firearm.
During the use of a firearm, the barrel is heated by the combustion of the propellant used in each round of firearm ammunition. Handguards, which commonly include rail systems and other means for attaching accessories to the firearm, typically axially surround the barrel and include a foregrip area where the user typically holds the firearm forward of the magazine during operation. Heat that is dissipating from the barrel heats up the foregrip area of the handguard such that the temperature of the foregrip area may become unsafe for operator use.
Accordingly, there is a need for firearm handguards having improved heat-reduction capabilities.
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention disclosed herein, certain embodiments in accordance with the herein disclosed invention are shown in the drawings. It should be understood, however, that the herein disclosed invention is not limited to the precise arrangements shown. It should also be understood that, in the drawings, the parts are not necessarily drawn to scale. The present invention will hereinafter be described in conjunction with the appended drawing figures, wherein like numerals denote like elements. In the drawings:
The ensuing detailed description provides preferred exemplary embodiments only, and is not intended to limit the scope, applicability, or configuration of the herein disclosed inventions. Rather, the ensuing detailed description of the preferred exemplary embodiments will provide those skilled in the art with an enabling description for implementing the preferred exemplary embodiments in accordance with the herein disclosed invention. It should be understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention, as set forth in the appended claims.
To aid in describing the invention, directional terms may be used in the specification and claims to describe portions of the present invention (e.g., upper, lower, left, right, etc.). These directional definitions are merely intended to assist in describing and claiming the invention and are not intended to limit the invention in any way. In addition, reference numerals that are introduced in the specification in association with a drawing figure may be repeated in one or more subsequent figures without additional description in the specification in order to provide context for other features.
Referring now to the figures,
The handguard 14 comprises a foregrip area 16 where a user of the firearm 10 would typically hold the firearm 10 during operation. It should be understood that the length and location of the foregrip area 16 shown in
The prior art handguards 14,114,214 shown in
Referring now to
The inventors have discovered that improved heat absorption and dissipation characteristics can result from including one or more layers of a ceramic material within a multi-layer layup that is then formed into a handguard.
In one embodiment of a handguard 314 according to the present invention, the innermost layer 330 is comprised of a ceramic-matrix composite (CMC) material, and the remaining layers 322,324,326,328 are comprised of standard CFRP. In this embodiment, a pyrolyzed piece of CMC is layered up and co-cured along with one or more layers of carbon fiber prepreg, and this layup is then constructed into the handguard 314. In some embodiments according to the present invention, the thickness of the innermost layer 330 is at least 5% of the wall thickness 338 of the handguard 314 but no more than 90% of the wall thickness 338. In alternate embodiments, the thickness of the innermost layer 330 is between 5-50% of the wall thickness 338 of the handguard 314, and more preferably between 10-25% of the wall thickness 338 of the handguard 314.
In an alternate embodiment, a CMC material is used for the layer 328 immediately adjacent to the innermost layer 330 of the handguard 314 and/or the next layer 326 moving towards the exterior surface 320 of the handguard 314, and a standard CFRP material is used for the innermost layer 330 and the outermost layer 322 of the layup of the handguard 314. In the alternative, a CMC material is used for all of the plurality of intermediate layers 324,326,328 of the layup and a standard CFRP material is used only for the innermost layer 330 and the outermost layer 322 of the layup. In these embodiments, a pyrolyzed piece of CMC is co-cured with and encapsulated by the carbon fiber prepreg, and the resulting layup is then formed into the handguard 314.
In yet another alternate embodiment, the handguard 314 could be cured using standard polymer composite prepreg, and then an insert piece comprised of CMC could be placed within the interior of the handguard 314 and mechanically fastened, glued, or affixed to the interior surface 332 and/or other portions of the handguard 314 in order to maintain the insert in place within the handguard 314. In one embodiment, the handguard 314 could be cured with one or more tabs or catches extending inwardly towards the centerpoint 340 from its innermost layer 330, and the insert could be formed with corresponding slots or grooves that fixedly engage the tabs or catches when the insert is inserted within the handguard 314. In alternate embodiments, the insert piece could be comprised of any other suitable low thermal-conductivity material.
Improved heat performance characteristics for the handguard 314 can also be achieved by using specific higher-temperature resins for the matrix. Suitable examples of higher-temperature resins include polyimide, Bis-Maleimides (BMI), and polyether ether ketone(PEEK). In one embodiment, a woven fabric of suitable insulating fibers (e.g., carbon fiber or glass fiber) could be formed with a BMI matrix into one or more layers of a layup. Once the BMI is cured and/or post-cured according to its material data sheet, the layup is then formed into the handguard 314 such that the innermost layer 330 (and optionally additional layers) of the handguard 314 is comprised of the fiber-reinforced BMI polymer matrix, with additional layers (up to and including the outermost layer 322) of the handguard 314 optionally comprises of a standard CFRP material, for example carbon fiber embedded in an epoxy matrix. Thus, this process creates a gradient composite consisting of polymer matrices and fiber layers comprised of different materials.
Improved heat performance characteristics for the handguard 314 can also be achieved by imparting some or all of the layers of the layup with a heat reflective filler that is imparted to the prepreg layers before forming the layup. The heat reflective filler would act to reflect heat from the firearm barrel away from the outermost layer 322 of the handguard 314. In one embodiment, one, some, or all of the intermediate layers 324,326,328 of the handguard 314 could be imparted with the reflective filler. Suitable fillers include micron-scale ceramics, zirconia, and alumina.
In this embodiment the cross-sectional profile of the handguard 314 is circular for ease of illustration, but it should be understood that in alternate embodiments the cross-sectional profile of the handguard 314 could be any number of suitable shapes, for example octagonal (as in the prior art handguards 14,114,214 of
As noted above, the foregrip area 16 of the firearm may comprise any portion or portions of the length of the handguard 314, up to and including the entire length of the handguard 314. The foregrip area 16 may also comprise any segment or sector of the cross-sectional area of the handguard as illustrated in
It is desirable that the foregrip area 16 of the firearm 10 not reach temperatures greater than 300 degrees F. so that users can safely handle the foregrip area 16 of the firearm while using insulated gloves. The concepts described herein are aimed at reducing the transfer of heat from the barrel 12 to the handguard 314 such that the foregrip area 16 of the handguard is maintained at a temperature no greater than 300 degrees F.
It should be appreciated that the foregoing is presented by way of illustration only, and not by way of any limitation, and that various alternatives and modifications may be made to the illustrated embodiments without departing from the spirit and scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
2965994 | Sullivan | Dec 1960 | A |
3367054 | Loffler | Feb 1968 | A |
4841836 | Bundy | Jun 1989 | A |
6355338 | Hilmas et al. | Mar 2002 | B1 |
6838162 | Gruber et al. | Jan 2005 | B1 |
6889464 | Degerness | May 2005 | B2 |
7721478 | Withers et al. | May 2010 | B2 |
8161753 | Benoit et al. | Apr 2012 | B2 |
8336243 | Langevin et al. | Dec 2012 | B2 |
8347773 | Schlenkert | Jan 2013 | B2 |
8448367 | Samson et al. | May 2013 | B2 |
9207031 | Balthaser | Dec 2015 | B2 |
20060207152 | Lazor | Sep 2006 | A1 |
20080143005 | Lim et al. | Jun 2008 | A1 |
20100162608 | McCann | Jul 2010 | A1 |
20110100204 | Schlenkert | May 2011 | A1 |
20110119981 | Larue | May 2011 | A1 |
20120180358 | Samson | Jul 2012 | A1 |
20130276342 | Chvala | Oct 2013 | A1 |
20140076135 | Balthaser et al. | Mar 2014 | A1 |
20140082990 | Lee | Mar 2014 | A1 |
20140305019 | King, Jr. | Oct 2014 | A1 |
20150369558 | Gottzmann | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
104949581 | Sep 2015 | CN |
103992115 | Oct 2015 | CN |
9422780 | Oct 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20160290761 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62142208 | Apr 2015 | US |