Information
-
Patent Grant
-
6698125
-
Patent Number
6,698,125
-
Date Filed
Tuesday, January 8, 200223 years ago
-
Date Issued
Tuesday, March 2, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Carone; Michael J.
- Thomson; M.
Agents
- Kirton & McConkie
- Krieger; Michael F.
-
CPC
-
US Classifications
Field of Search
-
International Classifications
-
Abstract
The present invention features a firearm safety mechanism with an improved trigger pull, wherein the weight of the safety mechanism is not on the trigger when the hammer is in the “full cock” position. The advancement presented in the present invention serves to separate the trigger from the trigger bar during the period when the trigger is pulled. As a result, the weight of the safety mechanism is not borne by the trigger while the hammer is fully cocked. This is accomplished by providing means for positioning the transfer bar into the extended position free from contact with the trigger. The present invention further features means, dependent upon the trigger, for facilitating the relocation of the transfer bar from its extended position into a retracted position upon release of the trigger subsequent to discharge of the firearm.
Description
BACKGROUND
1. Field of the Invention
The present invention relates to firearm mechanisms employed in firearms utilizing a hammer and a firing pin, and in particular, to a firearm mechanism having an transfer bar between the hammer and the firing pin that is held in place by the trigger when the trigger is actuated, wherein the firearm mechanism is capable of facilitating the relocation of the transfer bar from an extended position to a retracted position upon the deactivation or release of the trigger.
2. Background
In an effort to improve upon the efficiency of firearms, devices have been introduced which require the presence of a transfer bar between the hammer and the firing pin to transfer the kinetic energy from the hammer to the firing pin. For example, in U.S. Pat. No. 566,393 to Fyrberg, the rearward motion of the trigger causes the release of the hammer which moves a pawl upward so as to bring the end of the pawl in the path of the hammer between the hammer face and the firing pin. These devices are typically in a retracted position until the hammer is fully cocked. If the device is not extended, the face of the hammer presents a space into which the head of the firing pin is received without effecting contact with the firing pin. When the transfer bar is in an extended position, the hammer face strikes the transfer bar and impact is carried through to the firing pin causing the cartridge to discharge. This transfer bar, or trigger bar, is mechanically elevated and is maintained in that elevated position through physical attachment to the trigger.
As a result, the weight of the trigger bar or analogous safety method must be overcome by rearward pressure on the trigger. This increased pressure on the trigger results in a reduction in accuracy. This is especially felt in light-weight firearms such as hand guns and firearms used in competition. After actuation of the trigger, the device is then maintained in the elevated position by a continued rearward pressure on the trigger as the hammer strikes the firing pin.
Release of the trigger allows the device to retract and the firing pin then extends into a recess in the hammer. This recess protects the firing pin from inadvertent impact when carrying the firearm.
Improvements to these types of safety mechanisms have been made, which allow the transfer bar weight to be borne by means other than the trigger. For example, U.S. Pat. No. 5,664,356 to Pantuso et al. describes a safety mechanism wherein the hammer has an elongated, vertically extending recess formed therein, a transfer bar traveling within that elongated recess between an extended position and a retracted position. When the transfer bar is in the extended position, the bar is interposed between the hammer and the firing pin allowing discharge of a cartridge within the chamber. When the transfer bar is in the retracted position, a portion of the recess is exposed. The exposed recess is larger than the portion of the firing pin, which protrudes from the receiver. Thus, inadvertent firing is prevented as the hammer cannot contact the firing pin. A means for positioning, preferably a transfer bar carrier pin, located on the hand assembly initially cooperates with the trigger cam and the transfer bar to elevate the bar into the extended position. The weight of the safety mechanism is, therefore, not borne by the trigger, when the hammer is in the full cock position, but by the means for positioning, thus resulting in a lighter and more accurate trigger pull. After the trigger has been fully actuated, the transfer bar carrier drops with the hand mechanism and a cam on the trigger maintains the transfer bar in the extended position. Thus, when the trigger is fully actuated, and the hammer is moving forward, the means for positioning drops away. The trigger must remain in the fully actuated position until the hammer and transfer bar impact the firing pin. If the trigger is maintained in the fully actuated position, the support of the transfer bar is shifted from the means for positioning to the trigger. Thus, the trigger must be actuated and must be maintained in the fully actuated position for the firearm to discharge. Premature release of the trigger will allow the transfer bar to drop and the firing pin will not be struck.
SUMMARY OF THE INVENTION
In accordance with the invention as embodied and broadly described herein a firearm mechanism with an improved trigger pull is provided wherein the weight of the mechanism is not on the trigger when the hammer is in the “full cock” position. The advancement presented in the present invention serves to separate the trigger from the trigger bar during the period when the trigger is pulled. As a result, the weight of the safety mechanism is not borne by the trigger while the hammer is fully cocked. This is accomplished by providing means for positioning the transfer bar into the extended position free from contact with the trigger. As the hammer is cocked, the weight of the transfer bar is borne by the means for positioning. When the trigger is fully actuated, and the hammer is moving forward, the means for positioning drops away. If the trigger is maintained in the fully actuated position, the support of the transfer bar is shifted from the means for positioning to the trigger. Thus, the trigger must be actuated and must be maintained in the fully actuated position for the firearm to discharge.
In addition, to increase the efficiency of the safety mechanism described herein, the present invention further features means for facilitating the retraction of the transfer bar from its extended position to a retracted position.
The mechanism preferably is for use with a firearm having a hammer, a cartridge receiving chamber in front of the hammer, a firing pin interposed between a face of the hammer and the cartridge receiving chamber so as to strike and fire a cartridge in the chamber upon actuation by a trigger. The mechanism comprises the following elements: a) an elongated recess formed within the face of the hammer; b) an elongated transfer bar disposed within the recess and slidably movable therein between an extended position and a retracted position, the elongated transfer bar being interposed between the hammer and the firing pin in the extended position, as well as the elongated transfer bar being juxtaposed to the firing pin in the retracted position, thereby exposing a portion of the recess capable of receiving the firing pin therein, and thereby preventing contact with the hammer; c) means, independent of the trigger, for positioning the transfer bar into the extended position and the retracted position; d) a trigger cam operated upon by the trigger, the trigger cam being capable of supporting the transfer bar to maintain the transfer bar in the extended position after the trigger has been actuated; and e) means, dependent upon the trigger, for facilitating the relocation of the transfer bar from its extended position into its retracted position upon the release of the trigger subsequent to discharge of the firearm and when the hammer is in its hammer down, safe position.
In a preferred embodiment, the means for facilitating the relocation of the transfer bar comprises an engagement assembly, wherein the engagement assembly itself comprises: a) a receiving member; and b) an engagement member capable of releasably coupling the receiving member, wherein the receiving member and the engagement member may be positioned on either of the transfer bar and the trigger cam.
The receiving member preferably comprises a protrusion extending from and integrated with one end of the transfer bar proximate the trigger, and the engagement member preferably comprises a hook extending from and extension integrated and formed with the trigger cam of the trigger.
As the action tracks through its cycle and the trigger actuated and released, the engagement assembly disengages and engages, respectively. Only in the hammer down, safe position may the engagement assembly be engaged to facilitate the retraction of the transfer bar into its retracted position. Upon drawing the hammer back, the engagement assembly disengages, but the receiving member and the engagement members maintain their alignment with one another. Once the trigger is actuated and the firearm is discharged, the engagement member is brought into position to couple the receiving member. However, the engagement assembly only facilitates the retraction of the transfer bar upon release of the trigger. As the trigger begins its release, the engagement assembly facilitates the retraction of the transfer bar by pulling the transfer bar down. The engagement assembly is dependent upon the trigger as the receiving member is formed as part of the transfer bar and the engagement member is formed as part of the trigger. As the trigger reaches its resting position, the transfer bar is completely retracted, thus enabling the firing pin to be biased outward into the recess where the action will be ready to be cycled once again.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other objects and features of the present invention will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only typical embodiments of the invention and are, therefore, not to be considered limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
FIG. 1
illustrates a cross-sectional, elevational view of a firearm embodying the instant invention and demonstrating the relative position of the components of the action in the “hammer-down, safe” position;
FIG. 2
illustrates an action like that shown in
FIG. 1
, demonstrating the relative position of the components of the action in the “half-cock, loading” position;
FIG. 3
illustrates a cross-sectional, elevational view of the action like that shown in
FIGS. 1 and 2
, demonstrating the relative position of the components in the “full-cock, ready to fire,” position; and
FIG. 4
illustrates an action shown like that in
FIGS. 1 through 3
, demonstrating the relative position of the components in the “hammer down, fired” position;
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
It will be readily understood that the components of the present invention, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the system and method of the present invention, and represented in
FIGS. 1 through 4
, is not intended to limit the scope of the invention, as claimed, but is merely representative of the presently preferred embodiments of the invention.
The presently preferred embodiments of the invention will be best understood by reference to the drawings wherein like parts are designated by like numerals throughout.
Reference is now made to
FIGS. 1 through 4
in which a firearm action is illustrated in cross-sectional detail. Although the present invention may be utilized with other firearms having a hammer, for ease of explanation, a single action revolver is depicted in
FIGS. 1 through 4
. Similarly, the instant invention can not only be used in new guns, but may also be retrofit into existing actions by modifying or replacing only a few components.
Referring now to
FIG. 1
, an action shown generally as
12
is depicted having a hammer
14
, a trigger
16
, a hand
18
, and a cylinder lock
20
. The action in
FIG. 1
is in a “hammer down, safe” position, which is typically utilized when carrying the firearm. This is called the safe position because hammer
14
is resting against the back of receiver
24
and is therefore incapable of forward movement. An elongated vertically extending recess
26
is formed within a face
28
of hammer
14
. Firing pin
22
is shown disposed within that recess. As firing pin
22
is within recess and is not in contact with hammer
14
, firing pin
22
is protected from inadvertent impact. Also located within recess
26
is a transfer bar
30
. Transfer bar
30
slides within recess
26
between an extended position and a retracted position. Transfer bar
30
is shown juxtaposed to firing pin
22
in the retracted position in FIG.
1
. When transfer bar
30
is in the retracted position, firing pin
22
cannot be impacted by hammer
14
. Also, if the trigger is pulled, the transfer bar cannot move to the extended position due to interference with the firing pin.
In order for a cartridge in a chamber of the firearm to be discharged, the kinetic energy from the release of hammer
14
must be transferred through transfer bar
30
to firing pin
22
. An inadvertent release of hammer
14
when transfer bar
30
is in the retracted position results in the hammer
14
impacting receiver
24
and not firing pin
22
. Firing pin
22
will be prevented from being impacted by hammer
14
as the firing pin will be protected in recess
26
and transfer bar
30
will be in the retracted position.
It will be understood that the firing pin may be designed for both center fire or rim fire cartridges.
A cylinder
32
is shown locked into position by a lug
34
located on cylinder lock
20
. Lug
34
is biased into position in one of several notches
36
to lock the cylinder into position. Activated by trigger
16
is a cam
38
. In the depicted embodiment, the cam
38
is formed integral with the trigger, however, the only structural limitation imposed is that the trigger must activate the cam
38
. Also shown is transfer bar cam
40
formed integral with transfer bar
30
. In this hammer down position, the top face of cam
38
is not in contact with a transfer bar cam
40
located at the bottom of transfer bar
30
. Instead, transfer bar cam
40
is supported by a means for positioning the transfer bar into the extended position and the retracted position. In an embodiment illustrated in
FIG. 1
, the means for positioning the transfer bar is a transfer bar carrier pin
42
. Carrier pin
42
maintains the weight of the transfer bar when the trigger is being actuated.
FIG. 1
further illustrates means for facilitating the relocation or re-positioning of transfer bar
30
from an extended position, where the firearm may be discharged through contact of hammer
14
with firing pin
22
, to a retracted position, where the firearm is protected from discharge as firing pin
22
is protected within recess
26
. To ensure proper operation of the safety mechanism of the present invention, transfer bar
30
must be relocated to its retracted position upon the release of trigger
16
subsequent to the discharge of the firearm and when the action, and particularly hammer
14
, is in its hammer down, safe position. Relocation of transfer bar
30
to a retracted position allows firing pin
22
to properly align and be protected within recess
26
as explained above. The specific function of the means for facilitating is to assist the other components of the safety mechanism in relocating transfer bar
30
to its retracted position within recess
26
upon the release of trigger
16
subsequent to discharge of the firearm. As such, the function of means for relocating is dependent upon trigger
16
and its ability to couple or engage and interact with transfer bar
30
to perform the intended function.
In the embodiment shown here, means for facilitating comprises an engagement assembly
60
capable of engaging and coupling trigger
16
with transfer bar
30
. Engagement assembly
60
is designed to work in conjunction with other components to ensure correct, efficient operation of the safety mechanism of the firearm. Specifically, engagement assembly
60
itself comprises a receiving member
64
, shown as a protrusion member machined out of and integrally formed with an end of transfer bar
30
proximate trigger
14
; and an engagement member
68
, shown as an extension member, integrally formed with cam
38
of trigger
16
, and having a hook on the end thereof, wherein engagement member
68
is capable of engaging receiving member
64
as trigger
16
is de-actuated after discharge. Although engagement assembly
60
is shown having the above-described features, one ordinarily skilled in the art will recognize that many possible configurations and assemblies may be used to couple trigger
16
to transfer bar
30
to perform the function of the above-described means for facilitating the relocation of transfer bar
30
from its extended position to a retracted position. For example, receiving member
64
and engagement member
68
may be formed instead on trigger
16
and transfer bar
30
, respectively, or another configuration may be used instead of a hook and protrusion. An advantageous of the safety mechanism of the present invention is that trigger
16
and transfer bar
30
may each have means for engaging and coupling the other in a releasable relationship and at a proper time in the progression and track of the action assembly. However, for the purposes of explanation and discussion herein, engagement assembly
60
is depicted.
FIG. 1
shows engagement member
68
and receiving member
64
in a coupled relationship as the action of the firearm is in a hammer down, safe position. However, as the action, and particularly hammer
14
, moves intermittently from the hammer down position to a half-cocked, loading position and further through to a fully cocked and ready to fire position, engagement assembly
60
, and particularly receiving member
64
and engagement member
68
release from one another, while still maintaining an engageable tracking alignment with one another through the various stages of progression and actuation and de-actuation of the action and trigger. This specific movement and tracking of engagement assembly
60
will be discussed in greater detail below.
It should be noted that the means for facilitating the relocation of transfer bar
30
may include other assembly configurations other than those specifically described herein. The specific configuration of the means for facilitating is not intended to limit its function. One ordinarily skilled in the art will recognize the several other potential configurations and/or assemblies that may be implemented and utilized to releasably couple trigger
16
, or one of its connected components, to transfer bar
30
for the specific purpose of assisting transfer bar
30
to retract from its extended position.
FIG. 2
illustrates the firearm action of
FIG. 1
, wherein the action is in a half-cock, loading position. In the half-cock position, the hammer
14
has been rotated away from receiver
24
to a point where a trigger sear
44
engages a sear half-cock notch
46
in hammer
14
. When trigger sear
44
is engaged in sear half-cock notch
46
, the trigger may not be actuated and the hammer is prevented from any forward movement. Movement of hammer
14
rotationally clockwise (
FIG. 2
) achieves engagement of trigger sear
44
in sear half-cock notch
46
resulting in the action being in the half-cock position. Rotation of hammer
14
also rotates plunger
52
, which is partially recessed into hammer
14
. The position of plunger
52
under cylinder lock
20
results in the lifting of an end
54
of cylinder lock
20
when hammer
14
is rotated. The lifting of end
54
pivots lug
34
out of notch
36
to allow cylinder
32
to freely rotate. It is in this position that the embodiment illustrated in
FIG. 2
is easiest to load.
It should be clear that not all embodiments will have a half-cock or loading position on the hammer into which the trigger sear may be engaged. This position is merely utilized to demonstrate the movement of the transfer bar relative to the trigger. In this position, transfer bar
30
is upheld by carrier pin
42
and is not in contact with trigger
16
. As the hammer
14
is rotated rearwardly between the safe position and the half-cock position, transfer bar cam
40
may momentarily contact trigger cam
38
. It is important to note that although such contact may occur in some embodiments, one aspect of the invention is that such contact does not occur in the full-cock position, and that such contact does not occur until after the trigger has been fully actuated.
Although plunger
52
is shown elevating end
54
of cylinder lock
20
, it should be appreciated that other structures may be used to elevate end
54
in conjunction with the rotation of hammer
14
. The only structural limitation imposed on the elevator is that it must be able to be recessed into hammer
14
so that upon activation of the trigger, the forward rotation of the hammer will not be impeded. This can be accomplished by spring-loading the plunger so that the plunger will retract into the hammer upon impact against end
54
. Plunger
52
is biasing outwardly out of hammer
14
, but retracts to pass by rearward portion
48
and end
54
after trigger
16
has been actuated and hammer
14
is rotated in a forward direction. Although not illustrated, it is well known in the art that hammer
14
can be biased using several techniques, the most common of which is a spring located within the grip three. Similarly, a biasing means such as a spring
31
is utilized to bias transfer bar
30
in a downward direction. The bias supplied to transfer bar
30
must be sufficient to assist transfer bar
30
into its retracted position before an inadvertent release of hammer
14
allows contact with firing pin
22
.
FIG. 2
also illustrates means for coupling transfer bar
30
to trigger
16
or trigger cam
38
, comprising an engagement assembly
60
. In this position engagement assembly
60
is shown in a decoupled relationship. Particularly, receiving member
64
(shown as a protrusion in an end of transfer bar
30
) is shown separated and released from engagement member
68
(shown as an extension, from trigger cam
38
, having a hook). In function, engagement assembly
60
releases or decouples as hammer
14
is drawn back. It is only intended that engagement assembly be coupled or engaged when hammer
14
and the action of the firearm is in the hammer down, safe position. As hammer
14
is drawn back, engagement assembly
60
disengages. Specifically, as hammer
14
is drawn back, receiving member
64
and engagement member
68
disengage and are released from one another. This separation allows transfer bar
30
to relocate or slide within recess
26
to its extended position enabling the firearm to discharge.
Although engagement assembly
60
disengages as hammer
14
is drawn and continues to be disengaged through the entire track of the action of the firearm, and particularly hammer
14
, its alignment is maintained because of the subsequent interaction of transfer bar cam
40
and trigger cam
38
once the action, and particularly hammer
14
, is moved out of its hammer down, safe position. Thus, as discharge occurs and hammer
14
is thrust to its hammer down, safe position, both receiving member
64
and engagement member
68
remain and are properly aligned, wherein receiving member
64
is ready to receive engagement member
68
upon release of trigger
16
.
FIG. 3
depicts the action illustrated in
FIGS. 1 and 2
in the “full-cock” or “ready-to-fire” position. In this position, cam
38
of trigger
16
is not in contact with transfer bar
30
. Transfer bar
30
is in its extended position filling recess
26
and is interposed between firing pin
22
and hammer face
28
. Transfer bar
30
is raised to and held in the extended position by the means for positioning. In this embodiment, the means for positioning is carrier pin
42
, which is attached to hand
18
. Rotation of the hammer to the full-cock position results in the movement of hand
18
and concomitant upward movement of carrier pin
42
and transfer bar
30
to the extended position. Inadvertent release of hammer
14
at this point would result in transfer bar
30
being biased out of the extended position at a point in the travel of hammer
14
between the full-cock and the hammer down positions. In other words, no discharge would occur. Instead, hand
18
, which is attached to hammer
14
would be lowered, thereby lowering carrier pin
42
. The lowering of carrier pin
42
into its retracted position would subsequently allow transfer bar
30
to drop as biasing means or spring
31
exerts a downward force upon transfer bar
30
, thereby causing transfer bar
30
to retract and opening the portion of recess
26
allowing contact of hammer
14
with the rear of receiver
24
without transferring kinetic energy to firing pin
22
.
During intentional firing of the firearm, however, full actuation of trigger
16
results in the pivoting of cam
38
into contact with transfer bar cam
40
and continued pressure on trigger
16
retains transfer bar
30
in the extended position despite the lowering of hand
18
and carrier pin
42
. By maintaining transfer bar
30
in the extended position, the kinetic energy created by the release of hammer
14
is transferred through transfer bar
30
into firing pin
22
thereby discharging the cartridge.
The advantage to this aspect of the invention is that trigger
16
may be actuated without the weight of transfer bar
30
being placed on cam
38
. The weight of transfer bar
30
is not borne by cam
38
until after trigger
16
has actuated the release of hammer
14
. This results in a much lighter and smoother pull and thereby imparts more accuracy to the firearm.
Plunger
52
may be seen in phantom at a position above end
54
. Rotation of hammer
14
to the full-cock position concomitantly rotates plunger
52
around end
54
, thereby releasing end
54
and allowing lug
34
to be biased back into notch
36
.
Engagement assembly
60
is illustrated in its fully disengaged position, wherein receiving member
64
and engagement member
68
are separated, yet still aligned for subsequent engagement. The relationship of engagement assembly
60
in this position is similar to the one described and shown in
FIG. 2
, but with further separation of receiving member
64
and engagement member
68
.
FIG. 4
depicts the action in
FIGS. 1 through 3
after the trigger has been fully actuated, but before the trigger has been released. As previously discussed, if trigger
16
is released before hammer
14
and transfer bar
30
contact firing pin
22
, then transfer bar
30
will be biased into the retracted position and recess
26
will be exposed into which firing pin
22
will enter. Since recess
26
is dimensioned larger than the portion of firing pin
22
, which extends beyond receiver
24
, no contact is made between hammer
14
and firing pin
22
when transfer bar
30
is in a retracted position. When trigger
16
is maintained in the actuated position, however, cam
38
maintains transfer bar
30
in the extended position and the kinetic energy from hammer
14
is transferred through transfer bar
30
into firing pin
22
and the cartridge within the chamber is discharged.
Upon release of the trigger, transfer bar
30
will be biased and assisted downward to once again rest on the means for positioning. Firing pin
22
will be biased outward into recess
26
and the action will be ready to be cycled once again.
FIG. 4
also illustrates the relative position of engagement assembly
60
upon actuation of trigger
16
, but before trigger
16
is released. In this position, hammer
14
is in its hammer down, safe position, thus properly aligning receiving member
64
with engagement member
68
. However, as trigger
16
is not yet released, engagement member
68
is merely positioned ready to engage receiving member
64
. As shown, engagement member
68
is elevated above receiving member
64
due to the backward position of trigger
16
. To properly facilitate the relocation of transfer bar
30
from its extended position to its retracted position, trigger
16
must be released, thus making engagement assembly
60
dependent upon trigger
16
. As trigger
16
begins its release, engagement member
68
is brought into contact with and engages receiving member
64
. As trigger
16
continues to be released progressing towards its resting position, engagement assembly
60
, and particularly the coupling of engagement member
68
and receiving member
64
, facilitates the sliding of transfer bar
30
along recess
26
into its retracted position.
Engagement assembly
60
merely facilitates the relocation of transfer bar
30
as transfer bar
30
also has biasing means
31
coupled thereto that is capable of biasing transfer bar
30
and assisting it into its retracted position. Engagement member
60
and biasing means
31
function together to retract transfer bar
30
.
The engagement assembly of the present invention is advantageous in that it enables the safety mechanism of the present invention to operate in a smooth and efficient manner, as well as preventing transfer bar
30
from being intermittently trapped between firing pin
22
and hammer
14
upon discharge of the firearm and release of hammer
14
from its fully cocked position to its fully down, safe position. In addition, by utilizing an engagement assembly biasing means
31
is not required to be the sole means responsible for retracting transfer bar
30
upon discharge of the firearm. This allows biasing means
31
to be manufactured with a smaller spring tension, which helps to reduce the kick potential of trigger
16
that is experienced when trigger cam
38
and transfer bar cam
40
come in contact with one another. Reducing the kick in trigger
16
helps decrease the chance that trigger
16
will catch the half-cock position if used on a firearm equipped with such a position.
The present invention may be embodied in other specific forms without departing from its spirit of essential characteristics. The described embodiments are to be considered in all respects only al illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope
Claims
- 1. A mechanism for use with a firearm having a hammer, a cartridge receiving chamber in front of said hammer, a firing pin interposed between a face of said hammer and said cartridge receiving chamber so as to strike and fire a cartridge in said chamber upon actuation by a trigger, said mechanism comprising:a) an elongated recess formed within said face of said hammer; b) an elongated transfer bar disposed within said recess and slidably movable therein between an extended position and a retracted position, said elongated transfer bar being interposed between said hammer and said firing pin in said extended position, said elongated transfer bar being juxtaposed to said firing pin in said retracted position, thereby exposing a portion of said recess capable of receiving said firing pin therein, thereby preventing contact with said hammer; c) means, independent of said trigger, for positioning said transfer bar into said extended position and said retracted position; d) a trigger cam operated upon by said trigger, said trigger cam being capable of supporting said transfer bar to maintain said transfer bar in said extended position after said trigger has been actuated; and e) means, dependent upon said trigger, for facilitating the retraction of said transfer bar from said extended position into said retracted position upon the release of said trigger subsequent to discharge of said firearm when said hammer is in a hammer down, safe position.
- 2. The mechanism as recited in claim 1, wherein said means for facilitating said relocation of said transfer bar comprises an engagement assembly, said engagement assembly itself comprising:a) a receiving member; and b) an engagement member capable of releasably coupling said receiving member, wherein said receiving member and said engagement member may be positioned on either of said transfer bar and said trigger cam.
- 3. The mechanism as recited in claim 2, wherein said receiving member comprises a protrusion extending from said transfer bar and proximate said trigger.
- 4. The mechanism as recited in claim 2, wherein said engagement member is a hook extending from said trigger cam.
- 5. A safety mechanism for use with a firearm having a hammer, a cartridge receiving chamber in front of said hammer, a firing pin interposed between a face of said hammer and said cartridge receiving chamber so as to strike and fire a cartridge in said chamber upon actuation by a trigger, said safety mechanism comprising:a) an elongated recess formed within said face of said hammer; b) an elongated transfer bar disposed within said recess and slidably movable therein between an extended position and a retracted position, said elongated transfer bar being interposed between said hammer and said firing pin in said extended position, said elongated transfer bar being juxtaposed to said firing pin in said retracted position, thereby exposing a portion of said recess capable of receiving said firing pin therein, thereby preventing contact with said hammer, said transfer bar further comprising means for coupling said trigger so as to facilitate the relocation of said transfer bar from said extended position to said retracted position upon the release of said trigger subsequent discharge of said firearm; c) means, independent of said trigger, for positioning said transfer bar into said extended position and said retracted position; and d) a trigger cam operated upon by said trigger, said trigger cam being capable of supporting said transfer bar to maintain said transfer bar in said extended position after said trigger has been actuated.
- 6. A safety mechanism for use with a firearm having a hammer, a cartridge receiving chamber in front of said hammer, a firing pin interposed between a face of said hammer and said cartridge receiving chamber so as to strike and fire a cartridge in said chamber upon actuation by a trigger, said safety mechanism comprising:a) an elongated recess formed within said face of said hammer; b) an elongated transfer bar disposed within said recess and slidably movable therein between an extended position and a retracted position, said elongated transfer bar being interposed between said hammer and said firing pin in said extended position, said elongated transfer bar being juxtaposed to said firing pin in said retracted position, thereby exposing a portion of said recess capable of receiving said firing pin therein, thereby preventing contact with said hammer; c) means, independent of said trigger, for positioning said transfer bar into said extended position and said retracted position; d) a trigger cam operated upon by said trigger, said trigger cam being capable of supporting said transfer bar to maintain said transfer bar in said extended position after said trigger has been actuated, said trigger cam further comprising means for coupling said transfer bar so as to facilitate the relocation of said transfer bar from said extended position to said retracted position upon the release of said trigger subsequent discharge of said firearm.
US Referenced Citations (24)