The present disclosure relates generally to a sound suppressor for a firearm.
This section provides background information related to the present disclosure and is not necessarily prior art.
Sound is generated by numerous sources when a firearm is discharged or otherwise fired. For example, high-temperature and high-pressure propellant gases escaping and expanding from the muzzle of the firearm can generate a shockwave that produces a loud muzzle blast. Sound suppressors are often used with firearms to slow or cool down the escaping propellant gas, thereby reducing the amount of noise (e.g., sound intensity or volume) generated when the firearm is discharged. Such suppressors often employ baffles, spacers, or packing material to affect the slowing or cooling down of the escaping propellant gas.
While known firearm sound suppressors have proven acceptable for their intended purposes, a continuous need for improvement in the relevant art remains.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
One aspect of the disclosure provides a sound suppressor for a firearm. The sound suppressor may include a housing, an outer shell, an inner shell, and an intermediate member. The housing may extend along, and be disposed about, a central axis. The outer shell may be concentrically disposed within the housing. The inner shell may be concentrically disposed within the outer shell and define a plurality of first apertures. The intermediate member may be disposed between the inner shell and the outer shell and formed at least in part from an acoustic metamaterial.
Implementations of the disclosure may include one or more of the following optional features. In some implementations, each of the first apertures defines a maximum dimension extending across the first aperture. The maximum dimension may be less than one millimeter. In some implementations, the maximum dimension is less than a half millimeter. Each of the first apertures may extend through a thickness of the inner shell. The thickness may be greater than two hundred percent of the maximum dimension.
In some implementations, at least one of the inner shell or the outer shell is formed from one of aluminum or an aluminum alloy.
In some implementations, the sound suppressor includes a sleeve disposed within the inner shell and including a plurality of undulations defining a plurality of second apertures. The sleeve may define a central passage in fluid communication with the plurality of first apertures and the plurality of second apertures. Each of the second apertures may define a second maximum dimension extending across the second aperture. The second maximum dimension may be less than one millimeter. In some implementations, the second maximum dimension is less than a half millimeter. In some implementations, each of the second apertures extends through a thickness of the sleeve. The thickness may be greater than two hundred percent of the second maximum dimension. The sleeve may be formed from one of aluminum or an aluminum alloy. In some implementations, each of the plurality of undulations defines a U-shape or a V-shape.
Another aspect of the disclosure provides a sound suppressor for a firearm. The sound suppressor may include a housing and a door. The housing may extend from a proximal end to a distal end along a central passage. The proximal end may be configured to receive the firearm. The distal end may define an exit opening. The door may be pivotally supported by the housing for rotation between an open position and a closed position. The door may at least partially block the exit opening in the closed position and be configured to rotate from the open position to the closed position upon passage of a projectile through the exit opening.
Implementations of this aspect of the disclosure may include one or more of the following optional features. In some implementations, the sound suppressor includes a biasing member operable to rotate the door from the closed position to the open position after passage of the projectile through the exit opening.
In some implementations, the sound suppressor includes an outer shell, an inner shell, and an intermediate member. The outer shell may be concentrically disposed within the housing. The inner shell may be concentrically disposed within the outer shell and defining a plurality of apertures. The intermediate member may be disposed between the inner shell and the outer shell and formed at least in part from an acoustic metamaterial. Each of the apertures may define a maximum dimension extending across the aperture. The maximum dimension may be less than one millimeter.
In some implementations, the sound suppressor includes a sleeve disposed within the housing. The sleeve may include a plurality of undulations defining a plurality of apertures in fluid communication with the central passage. Each of the plurality of undulations may define a U-shape or a V-shape. Each of the apertures may define a maximum dimension extending across the aperture. The maximum dimension may be less than one millimeter.
Yet another aspect of the disclosure provides a sound suppressor for a firearm. The sound suppressor may include a housing and a first sleeve. The housing may extend along, and be disposed about, a central axis. The first sleeve may be concentrically disposed within the housing and may define a plurality of first undulations disposed about the central axis. Each first undulation may define a plurality of first apertures.
Implementations of this aspect of the disclosure may include one or more of the following optional features. In some implementations, each of the first apertures defines a first maximum dimension extending across the first aperture. In some implementations, the first maximum dimension is less than one millimeter. In some implementations, the first maximum dimension is less than a half millimeter.
In some implementations, the sound suppressor includes a second sleeve. The second sleeve may be concentrically disposed within the first sleeve and may define a plurality of second undulations disposed about the central axis. Each second undulation may define a plurality of second apertures. Each of the second apertures may define a second maximum dimension extending across the second aperture. In some implementations, the second maximum dimension is less than one millimeter. Each of the first apertures may extend through a thickness of the first sleeve. The thickness may be greater than two hundred percent of the first maximum dimension.
In some implementations, at least one of the first sleeve or the second sleeve is formed from one of aluminum or an aluminum alloy.
In some implementations, each of the plurality of first undulations defines a U-shape or a V-shape.
A further aspect of the disclosure provides a sound suppressor for a firearm. The sound suppressor may include a housing and a first sleeve. The housing may define a first central passage. The first sleeve may be disposed within the first central passage and may include a plurality of first undulations defining a second central passage. Each first undulation may define a plurality of first apertures in fluid communication with the first central passage and the second central passage.
Implementations of this aspect of the disclosure may include one or more of the following optional features. In some implementations, each of the first apertures defines a first maximum dimension extending across the first aperture. The first maximum dimension may be less than one millimeter. In some implementations, the first maximum dimension is less than a half millimeter.
In some implementations, the sound suppressor includes a second sleeve. The second sleeve may be disposed within the second central passage and may include a plurality of second undulations defining a third central passage. Each second undulation may define a plurality of second apertures in fluid communication with the second central passage and the third central passage. Each of the second apertures may define a second maximum dimension extending across the second aperture. In some implementations, the second maximum dimension is less than one millimeter.
Each of the first apertures may extend through a thickness of the first sleeve. The thickness may be greater than two hundred percent of the first maximum dimension.
In some implementations, at least one of the first sleeve or the second sleeve is formed from one of aluminum or an aluminum alloy.
In some implementations, each of the plurality of first undulations defines a U-shape or a V-shape.
Yet another aspect of the disclosure provides a sound suppressor for a firearm. The sound suppressor may include a housing and a first sleeve. The first sleeve may be disposed within the housing and may include a first inner surface and a first outer surface. At least one of the first inner surface or the first outer surface may define a plurality of first undulations. Each first undulation may define a plurality of first apertures extending through the first inner surface and the first outer surface.
Implementations of this aspect of the disclosure may include one or more of the following optional features. In some implementations, each of the first apertures defines a first maximum dimension extending across the first aperture. The first maximum dimension may be less than one millimeter. In some implementations, the first maximum dimension is less than a half millimeter.
In some implementations, the sound suppressor includes a second sleeve. The second sleeve may be disposed within the first sleeve and may include a second inner surface and a second outer surface. At least one of the second inner surface or the second outer surface may define a plurality of second undulations. Each second undulation may define a plurality of second apertures extending through the second inner surface and the second outer surface. Each of the second apertures may define a second maximum dimension extending across the second aperture. In some implementations, the second maximum dimension is less than one millimeter.
Each of the first apertures may extend through a thickness of the first sleeve. The thickness may be greater than two hundred percent of the first maximum dimension.
In some implementations, at least one of the first sleeve or the second sleeve is formed from one of aluminum or an aluminum alloy.
In some implementations, each of the plurality of first undulations defines a U-shape or a V-shape.
Another aspect of the present disclosure provides a sound suppressor kit for a firearm. The sound suppressor kit includes a housing, a first shell assembly, and a second shell assembly. The first shell assembly is configured to be removably coupled to the housing and configured to reduce a volume of a first sound having a first frequency. The second shell assembly is configured to be removably coupled to the housing and configured to reduce a volume of a second sound having a second frequency that is different than the first frequency.
Implementations of this aspect of the disclosure may include one or more of the following optional features. In some implementations, the housing defines an opening and a passage in fluid communication with the opening. The first shell assembly and the second shell assembly may each be configured to be removably inserted through the opening and into the passage.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected configurations and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the drawings
Example configurations will now be described more fully with reference to the accompanying drawings. Example configurations are provided so that this disclosure will be thorough, and will fully convey the scope of the disclosure to those of ordinary skill in the art. Specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of configurations of the present disclosure. It will be apparent to those of ordinary skill in the art that specific details need not be employed, that example configurations may be embodied in many different forms, and that the specific details and the example configurations should not be construed to limit the scope of the disclosure.
The terminology used herein is for the purpose of describing particular exemplary configurations only and is not intended to be limiting. As used herein, the singular articles “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. Additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” “attached to,” or “coupled to” another element or layer, it may be directly on, engaged, connected, attached, or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” “directly attached to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
The terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections. These elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one clement, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example configurations.
With reference to
With reference to
As illustrated in
In some implementations, the inner and outer surfaces 30, 32 each define a cylinder or a polygonal prism, such that the thickness T1 is uniform along and about the longitudinal axis A1. It will be appreciated, however, that the inner or outer surface 30, 32 may define other shapes within the scope of the present disclosure, such that the thickness T1 varies along or about the longitudinal axis A1.
A portion of the inner or outer surface 30, 32 may include a threaded portion 36 for securing the housing 16 to the endcap 18. For example, as illustrated in
As illustrated in
With reference to
With reference to
The first inner sleeve 20a may define a hollow construct extending along a longitudinal axis A3 and having a proximal end 66, a distal end 68, an inner surface 70, and an outer surface 72. In some implementations, the first inner sleeve 20a may define a polygonal prism extending along the longitudinal axis A3. The distal end 68 may be opposite the proximal end 66. The first inner sleeve 20a may be formed from one or more of a variety of materials, including, for example, aluminum, steel, or another suitable metal material.
As illustrated in
In some implementations, the inner or outer surface 70, 72 each define a plurality of undulations 79 disposed about the longitudinal axis A3. As illustrated in
Each inner peak 80 of the inner surface 70 may be aligned with an outer trough 86 of the outer surface 72, while each inner trough 82 of the inner surface 70 may be aligned with an outer peak 84 of the outer surface 72. In some implementations, the inner surface 70 is substantially parallel to the outer surface 72, and each peak 80, 84 and each trough 82, 86 extends in a direction substantially parallel to the longitudinal axis A3. In this regard, the thickness T2 may be uniform along and about the longitudinal axis A3. It will be appreciated, however, that the inner or outer surface 70, 72 may define other shapes, or one or more of the peaks 80, 84 or troughs 82, 86 may extend in a direction transverse (e.g., helical) to the longitudinal axis A3, within the scope of the present disclosure. In this regard, the thickness T2 may vary along or about the longitudinal axis A3.
As illustrated in
The apertures 90 may collectively define one or more patterns extending along or about the longitudinal axis A3. For example, in some implementations, the apertures 90 may collectively define a helical pattern extending from the proximal end 66 to the distal end 68. In some implementations, a plurality of groups of the apertures 90 may each collectively define a circle extending about the longitudinal axis A3, such that the plurality of groups of the apertures 90 collectively define (i) a plurality of circular patterns extending about the longitudinal axis A3 and (ii) a plurality of linear patterns extending along (e.g., substantially parallel to) the longitudinal axis A3. In this regard, the distance between each aperture 90 and an adjacent aperture 90 may be less than 10 millimeters. In some implementations, the distance between each aperture 90 and an adjacent aperture 90 is less than 5 millimeters. In this regard, the distance between each aperture 90 and an adjacent aperture 90 may be between 100% and 5000% of the maximum dimension D2 of the apertures 90.
The second inner sleeve 20b may define a hollow construct extending along a longitudinal axis A4 and having a proximal end 96, a distal end 98, an inner surface 100, and an outer surface 102. The distal end 98 may be opposite the proximal end 96. The second inner sleeve 20b may be formed from one or more of a variety of materials, including, for example, aluminum, steel, or another suitable metal material.
As illustrated in
In some implementations, the inner or outer surface 100, 102 each define a plurality of undulations 109 disposed about the longitudinal axis A4. As illustrated in
Each inner peak 110 of the inner surface 100 may be aligned with an outer trough 116 of the outer surface 102, while each inner trough 112 of the inner surface 100 may be aligned with an outer peak 114 of the outer surface 102. In some implementations, the inner surface 100 is substantially parallel to the outer surface 102, and each peak 110, 114 and each trough 112, 116 extends in a direction substantially parallel to the longitudinal axis A4. In this regard, the thickness T3 may be uniform along and about the longitudinal axis A4. It will be appreciated, however, that the inner or outer surface 100, 102 may define other shapes, or one or more of the peaks 110, 114 or troughs 112, 116 may extend in a direction transverse (e.g., helical) to the longitudinal axis A4, within the scope of the present disclosure. In this regard, the thickness T3 may vary along or about the longitudinal axis A4.
As illustrated in
The apertures 120 may collectively define one or more patterns extending along or about the longitudinal axis A4. For example, in some implementations, the apertures 120 may collectively define a helical pattern extending from the proximal end 96 to the distal end 98. In some implementations, a plurality of groups of the apertures 120 may each collectively define a circle extending about the longitudinal axis A4, such that the plurality of groups of the apertures 120 collectively define (i) a plurality of circular patterns extending about the longitudinal axis A4 and (ii) a plurality of linear patterns extending along (e.g., substantially parallel to) the longitudinal axis A4. In this regard, the distance between each aperture 120 and an adjacent aperture 120 may be less than 10 millimeters. In some implementations, the distance between each aperture 120 and an adjacent aperture 120 is less than 5 millimeters. In this regard, the distance between each aperture 120 and an adjacent aperture 120 may be between 100% and 5000% of the diameter D3 of the apertures 120.
With reference to
As illustrated in
The expansion device 23 may extend along a longitudinal axis A5 and include an inner member 133a and an outer member 133b. The inner and outer members 133a, 133b may each include, respectively, a proximal end 134a, 134b, a distal end 135a, 135b, an inner surface 136a, 136b, and an outer surface 137a, 137b. The distal end 135a, 135b may be opposite the proximal end 134a, 134b, respectively. The expansion device 23, including each of the inner and outer members 133a, 133b, may be formed from one or more of a variety of materials, including, for example, aluminum, steel, or another suitable metal material.
As illustrated in
The proximal end 134a, 134b of the inner and outer members 133a, 133b, respectively, may define an entrance opening, while the distal end 135a, 135b of the inner and outer members 133a, 133b, respectively, may define an exit opening 139a, 139b. In this regard, the entrance opening may be in fluid communication with the exit opening 139a, 139b through the passage 138a, 138b, respectively.
In some implementations, the inner surfaces 136a, 136b and the outer surfaces 137a, 137b each define a cylinder or a polygonal prism, such that the thickness T4a, T4b is uniform along and about the longitudinal axis A5. It will be appreciated, however, that the inner surfaces 136a, 136b or outer surfaces 137a, 137b may define other shapes within the scope of the present disclosure, such that the thickness T4a, T4b varies along or about the longitudinal axis A5.
With reference to
As previously described, in the assembled configuration, expansion device 23 and the first inner sleeve 20a may be disposed within the housing 16. In this regard, the maximum diameter, or other similar dimension, defined by the outer surface 137b of the outer member 133b may be less than or equal to the diameter of the inner surface 30 of the housing 16. In this regard, the outer surface 137b of the outer member 133b and the inner surface 30 of the housing 16 may collectively define a passage 148 (
Similarly, the maximum diameter, or other similar dimension, defined collectively by the outer peaks 84, may be less than or equal to the diameter of the inner surface 30 of the housing 16. In some implementations, the maximum diameter defined collectively by the outer peaks 84 may be equal to the diameter of the inner surface 30 of the housing 16 such that the outer surface 72 of the first inner sleeve 20a engages the inner surface 30 of the housing 16 proximate to each of the peaks 84.
Similarly, as previously described, in the assembled configuration, the second inner sleeve 20b may be disposed within the first inner sleeve 20a. As illustrated in
In some implementations, the first inner sleeve 20a and the expansion device 23 are concentrically disposed within the housing 16, and the second inner sleeve 20b is concentrically disposed within the first inner sleeve 20a, such that the longitudinal axis A1 is aligned with the longitudinal axes A2, A5 and the longitudinal axes A2, A5 are aligned with the longitudinal axis A3.
With reference to
As illustrated in
The insulator 24 may be disposed within one or both of the housing 16 and the endcap 18. For example, in some implementations, a first portion of the insulator 24 is disposed within the housing 16 and a second portion of the insulator 24 is disposed within the endcap 18. In particular, the first portion of the insulator 24 may be disposed within the endcap 18 such that (i) the outer surface 146 engages the inner surface 48 of the endcap 18 and (ii) the proximal end 140 is aligned (e.g., coplanar or flush) with the proximal end 44 of the endcap 18. The second portion of the insulator 24 may be disposed within the housing 16 such that (i) the outer surface 146 engages the inner surface 100 of the second inner sleeve 20b and (ii) the distal end 142 abuts one of the baffles 22.
With reference to
The sound suppressor 14′ may include a housing 16′, the endcap 18, one or more inner sleeves 20, one or more baffles 22, the expansion device 23, the insulator 24, and an intermediate shell 152. The housing 16′ may define a square or rectangular prism extending along and about the longitudinal axis A1. The shell 152 may extend along a longitudinal axis A6 and include a proximal end 154, a distal end 156, an inner surface 158, and an outer surface 160. The distal end 156 may be opposite the proximal end 154. The shell 152 may be formed from one or more of a variety of materials, including, for example, aluminum, steel, or another suitable metal material.
As illustrated in
The proximal end 154 may define an entrance opening, while the distal end 156 may define an exit opening 164. In this regard, the entrance opening may be in fluid communication with the exit opening 164 through the passage 162.
In the assembled configuration, the shell 152 may be disposed within (e.g., concentrically) the housing 16′ such that the proximal end 154 abuts the endcap 18, and the distal end 156 abuts the distal end 28 of the housing 16′. The outer surface 130 of the baffles 22 may engage the inner surface 158 of the shell 152.
With reference to
The sound suppressor 14″ may include a housing 16″, the endcap 18, one or more of the inner sleeves 20, one or more of the baffles 22, the insulator 24, an intermediate shell assembly 152″, and a door assembly 178. In this regard, while the suppressor 14″ is generally shown to include multiple inner sleeves 20a and baffles 22, it will be appreciated that the suppressor 14″ may include one inner sleeve 20a and no baffles 22 within the scope of the present disclosure, such that a single sleeve 20a extends from the proximal end 26 of the housing 16″ to the distal end 28 of the housing 16″.
The shell assembly 152″ may extend along the longitudinal axis A6 and include an inner shell or member 180a, an outer shell or member 180b, and an intermediate member 180c. As illustrated, the inner, outer, and intermediate members 180a, 180b, 180c may be integrally formed. For example, in some implementations, the shell assembly 152″ is a unitary, monolithic piece formed from the inner, outer, and intermediate members 180a, 180b, 180c. In this regard, the shell assembly 152″, including each of the inner, outer, and intermediate members 180a, 180b, 180c, may be formed from one or more of a variety of materials, including, for example, aluminum, steel, or another suitable metal material. In some implementations, the shell assembly 152″ may form an acoustic metamaterial construct configured to deviate the soundwaves transmitted through the shell assembly 152″ and reduce the volume of sound produced by such soundwaves. In particular, the inner, outer, and intermediate members 180a, 180b, 180c may be formed from, or other otherwise define, a material or construct configured to control, direct, and manipulate sound waves. For example, each of the inner, outer, and intermediate members 180a, 180b, 180c may be formed from an acoustic metamaterial configured to deviate the soundwaves transmitted through the inner member 180a and reduce the volume of sound produced by such soundwaves.
The inner and outer members 180a, 180b may each include, respectively, a proximal end 182a, 182b, a distal end 184a, 184b, an inner surface 186a, 186b, and an outer surface 188a, 188b. The distal ends 184a, 184b may be opposite the proximal ends 182a, 182b, respectively. As illustrated in
The inner member 180a may define a plurality of perforations or apertures 191a extending through the inner surface 186a and outer surface 188a. In some implementations, the apertures 191a define a circular or cylindrical shape extending through the inner surface 186a and outer surface 188a. In this regard, the apertures 191a may define a diameter greater than 0.75 millimeters. In particular, the apertures 191a may define a diameter greater than 1.0 millimeter. The apertures 191a may collectively define one or more patterns extending along or about the longitudinal axis A6. For example, as illustrated in
As illustrated in
In some implementations, the inner surfaces 186a, 186b and the outer surfaces 188a, 188b each define a cylinder or a polygonal prism, such that the thickness T5a, T5b is uniform along and about the longitudinal axis A6. It will be appreciated, however, that the inner surfaces 186a, 186b or outer surfaces 188a, 188b may define other shapes within the scope of the present disclosure, such that the thickness T5a, T5b varies along or about the longitudinal axis A6.
The intermediate member 180c may be disposed within the housing 16″. For example, the intermediate member 180c may be disposed within the passage 190b of the outer member 180b and extend from the proximal ends 182a, 182b to the distal ends 184a, 184b of the inner and outer members 180a, 180b. In particular, the intermediate member 180c may be disposed between the inner and outer members 180a, 180b, such that the intermediate member 180c engages the outer surface 188a of the inner member 180a and the inner surface 186b of the outer member 180b.
As illustrated in
With reference to
With reference to
Each fin 198 may include one or more perforations or apertures 204 extending therethrough. In particular, the apertures 204 may define a circular or cylindrical shape extending through the fins 198. In this regard, the apertures 204 may define a diameter greater than 0.75 millimeters. In particular, the apertures 204 may define a diameter greater than 1.0 millimeter. As illustrated in
As previously described, the fins 194, 196, or 198 may define, or otherwise be formed at least in part from, a material or construct configured to control, direct, and manipulate sound waves. For example, the fins 194, 196, or 198 may be formed from, or otherwise define, an acoustic metamaterial configured to deviate the soundwaves transmitted through the intermediate member 180c and reduce the volume of sound produced by such soundwaves.
With reference to
The housing 16″ may be substantially similar to the housing 16′ except as otherwise shown and described herein. As illustrated in
With reference to
The shell assembly 152′″ may extend along the longitudinal axis A6 and include an inner shell or member 180a′″, an outer shell or member 180b″′, and an intermediate member 180c′″. The structure and function of the inner member 180a′″, the outer member 180b′″, and the intermediate member 180c′″ may be substantially similar to that of the inner member 180a, the outer member 180b, and the intermediate member 180c, respectively, apart from any exceptions described herein or shown in the Figures. Accordingly, the structure and/or function of similar features will not be described in detail. As illustrated in
With reference to at least
As illustrated in
The intermediate member 180c′″ may be disposed within the housing 16″. For example, the intermediate member 180c′″ may be disposed within the passage 190b′″ of the outer member 180b′″ and extend from the proximal ends 182a′″, 182b′″ to the distal ends 184a′″, 184b′″ of the inner and outer members 180a′″, 180b′″. In particular, the intermediate member 180c′″ may be disposed between the inner and outer members 180a′″, 180b′″, such that the intermediate member 180c′″ engages the outer surface 188a′″ of the inner member 180a′″ and the inner surface 186b′″ of the outer member 180b′″.
As illustrated in
The fins 196′″ may extend in a direction substantially (+/−5 degrees) perpendicular to the longitudinal axis A6 and substantially (+/−5 degrees) perpendicular to the fins 194′″. In particular, each fin 196′″ may extend from and between adjacent ones of the fins 194′″, such that a plurality of fins 196′″ surround the longitudinal axis A6. In this regard, as illustrated in
With reference to
Each fin 198′″ may include one or more of the perforations or apertures 204 extending therethrough. As previously described, the fins 194′″, 196′″, or 198′″ may define, or otherwise be formed at least in part from, a material or construct configured to control, direct, and manipulate sound waves. For example, the fins 194′″, 196′″, or 198′″ may be formed from, or otherwise define, an acoustic metamaterial configured to deviate the soundwaves transmitted through the intermediate member 180c′″ and reduce the volume of sound produced by such soundwaves.
In an assembled configuration, the inner sleeves 20, 20a, the baffles 22, the insulator 24, and the intermediate shell assembly 152″, 152′″ may be removably disposed within the housing 16, 16′, 16″. In this regard, a method of assembling the sound suppressor 14, 14′, 14″, 14′″ may include placing the inner sleeves 20, 20a, the baffles 22, the insulator 24, and the intermediate shell assembly 152″, 152′″ within the housing 16, 16′, 16″. In some implementations, the inner sleeves 20, 20a, the baffles 22 and the insulator 24 may be disposed within the intermediate shell assembly 152″, 152′″ prior to placing the intermediate shell assembly 152″, 152′″ within the housing 16, 16′, 16″. Accordingly, placing the inner sleeves 20, 20a, the baffles 22, the insulator 24, and the intermediate shell assembly 152″, 152′″ within the housing 16, 16′, 16″ may include translating the intermediate shell assembly 152″, 152′″, including the inner sleeves 20, 20a, the baffles 22, the and insulator 24 disposed therein, through the entrance opening 35 and the passage 34 along the axis A1 until the proximal end 182a, 182a′″ of the inner member 180a, 180a′″ and the proximal end 182b, 182b′″ of the outer member 180b, 180b′″ abut the distal end 28 of the housing 16, 16′, 16″. The method of assembling the sound suppressor 14, 14′, 14″, 14′″ may also include coupling the endcap 18, including a portion of the insulator 24 disposed therein, to the housing 16, 16′, 16″. For example, the method may include coupling the threaded portion 62 of the endcap 18 to the threaded portion 39 of the housing 16, 16′, 16″ until the shoulder 60 of the endcap 18 abuts the distal end 184a, 184a′″ of the inner member 180a, 180a′″ and the distal end 184b, 184b′″ of the outer member 180b, 180b′″ to secure the intermediate shell assembly 152″, 152′″, including the inner sleeves 20, 20a, the baffles 22, the and insulator 24 disposed therein, within the housing 16, 16′, 16″, and prevent movement (e.g., translation, rotation, etc.) of the intermediate shell assembly 152″, 152′″, including the inner sleeves 20, 20a, the baffles 22, the and insulator 24 disposed therein, relative to the axis A1 of the housing 16, 16′, 16″.
With reference to
The plurality of intermediate shell assemblies 152″, 152′″ may include one or more of the shell assemblies 152″ and one more of the shell assemblies 152′″. While the kit 230 is generally shown as including zero shells 152, two shell assemblies 152″ and two shell assemblies 152′″, it will be appreciated that the kit 230 may include more or less than zero shells 152, more or less than two shell assemblies 152″ and more or less than two shell assemblies 152′″ within the scope of the present disclosure. In this regard, each shell assembly 152″, 152′″ may define different sound-reducing characteristics relative to the others of the other shell assemblies 152″, 152′″. In particular, the construct, including the size, location, quantity or orientation of the inner sleeves 20, 20a, the apertures 90, the peaks 84, the troughs 86, the fins 194, 196, 198, 194′″, 196′″, 198′″, the apertures 191a, 191b, the apertures 204, the angle a, the thicknesses T5a, T5b, or the vents 214 of a first shell assembly 152″, 152′″ may be different than the size, location, quantity or orientation of the inner sleeves 20, 20a, the apertures 90, the peaks 84, the troughs 86, the fins 194, 196, 198, 194′″, 196′″, 198′″, the apertures 191a, 191b, the apertures 204, the angle a, the thicknesses T5a, T5b, or the vents 214 of a second shell assembly 152″, 152′″ of the plurality of intermediate shell assemblies 152″, 152′″. Accordingly, the profile or characteristics (e.g., frequency, amplitude, period, etc. of sound waves) of a sound suppressed by the first of the plurality of intermediate shell assemblies 152″, 152′″ may be different (e.g., greater than or less than) than the profile or characteristics of a sound suppressed by the second of the plurality of intermediate shell assemblies 152″, 152′″. Thus, a user may use a first shell assembly 152″, 152′″ in the housing 16, 16′, 16″ during use of the suppressor 14, 14′, 14″, 14′″ with a first firearm 12 producing a first set of sound characteristics (e.g., frequency, amplitude, period, etc. of sound waves), and a second shell assembly 152″, 152′″ in the housing 16, 16′, 16″ during use of the suppressor 14, 14′, 14″, 14′″ with a second firearm 12 that is different than the first firearm and produces a second set of sound characteristics that are different than the first set of sound characteristics. In this regard, the user may remove the first shell assembly 152″, 152′″ from the housing 16, 16′, 16″ after use of the suppressor 14, 14′, 14″, 14′″ with the first firearm 12, and insert the second shell assembly 152″, 152′″ in the housing 16, 16′, 16″ during use of the suppressor 14, 14′, 14″, 14′″ with the second firearm 12.
In use, a bullet or other projectile may be discharged from the firearm 12, producing high pressure gas and generating a sound. High pressure gas may exit the barrel of the firearm 12 and pass through the sound suppressor 14, 14′, 14″, 14′″. As the high pressure gas passes through the sound suppressor 14, 14′, 14″, 14′″ the configuration and arrangement (e.g., relative size, shape, location, quantity, orientation, material, etc.), as described herein, of the housing 16″, the sleeves 20a, 20b, the expansion device 23, the shell assembly 152″, 152′″ and/or the door assembly 178 can help to reduce the volume of sound generated by the firearm 12. For example, high pressure gas passing through the sound suppressor 14, 14′, 14″, 14′″ and the passage 34, and out of the opening 38, may apply a force on the door 208 and produce a torque about the axis A7. The force produced by the high pressure gas may rotate the door 208 about the axis A7 from the open position (
The configuration and arrangement of the apertures 90, 120, 191a, 204 can help to resist the flow of gas therethrough, thereby absorbing the energy of the expanding gas and reducing the volume of the sound generated by the gas. In particular, the size, shape, and arrangement of the apertures 90, 120, 191a, 204 restricts or impedes the flow of gas therethrough, thereby generating friction between the gas and the sleeves 20a, 20b, the inner member 180a, 180a′″, the outer member 180b, 180b′″, and the intermediate member 180c, 180c′″ at the apertures 90, 120, 191a, 204 respectively.
The friction generated between the gas and the sleeves 20a, 20b, the inner member 180a, 180a′″, the outer member 180b, 180b′″, or the intermediate member 180c, 180c′″ converts the kinetic energy of the gas flowing through the suppressor 14, 14′, 14″, 14′″ into heat energy. Similarly, the configuration and arrangement of the inner member 180a, 180a′″, the outer member 180b, 180b′″, or the intermediate member 180c, 180c′″ can help to capture and dissipate the kinetic energy of the gas flowing through the suppressor 14, 14′, 14″. For example, the acoustic metamaterial of the inner member 180a, 180a′″, the outer member 180b, 180b′″, or the intermediate member 180c, 180c′″ can absorb various wavelengths of soundwaves passing through the suppressor 14, 14′, 14″, 14′″, thereby reducing the volume of the sound generated by the firearm 12. The configuration and arrangement of the housing 16′, housing 16″ (e.g., the square or rectangular prism cross-sectional shape) can help to prevent the formation of a helical vortex of gas flowing through the suppressor 14, 14′, 14″, 14′″, thereby reducing the amount of energy in, and the volume of sound generated by, the gas.
The heat energy generated by the friction of the gas flowing through the suppressor 14, 14′, 14″, 14′″ is absorbed by the sleeves 20a, 20b, thereby reducing the temperature and the pressure of the gas flowing through the suppressor 14, 14′, 14″, 14′″. As the pressure of the gas flowing through the suppressor 14, 14′, 14″, 14′″ is reduced, the volume of the sound generated by the gas flowing through the exit opening 38 of the housing 16, 16′, 16″ may be reduced. For example, the configuration of the suppressor 14, 14′, 14″, 14′″ described herein may reduce the volume of the sound generated by the gas flowing through the exit opening 38 of the housing 16, 16′, 16″, upon the firing or discharging of the firearm 12, by more than 30 decibels. In some implementations, the configuration of the suppressor 14, 14′, 14″, 14′″ described herein may reduce the volume of the sound generated by the gas flowing through the exit opening 38 of the housing 16, 16′, 16″, upon the firing or discharging of the firearm 12, by more than 40 decibels.
After the suppressor 14, 14′, 14″, 14′″ has reduced the pressure of the gas therein to a predetermined level, the force of the biasing member 212 on the door 208 will overcome the opposing force of the gas on the door 208, thereby causing the door 208 to rotate about the axis A7 from the closed position (
The following Clauses provide an exemplary configuration for a sound suppressor for a firearm, as described above.
Clause 1: A sound suppressor for a firearm, the sound suppressor comprising, a housing extending along, and disposed about, a central axis, and a first sleeve concentrically disposed within the housing and defining a plurality of first undulations disposed about the central axis, each first undulation defining a plurality of first apertures.
Clause 2: The sound suppressor of Clause 1, wherein each of the first apertures defines a first maximum dimension extending across the first aperture, and wherein the first maximum dimension is less than one millimeter.
Clause 3: The sound suppressor of Clause 2, wherein the first maximum dimension is less than a half millimeter.
Clause 4: The sound suppressor of Clause 2, wherein each of the first apertures extends through a thickness of the first sleeve, and wherein the thickness is greater than two hundred percent of the first maximum dimension.
Clause 5: The sound suppressor of Clause 1, further comprising a second sleeve concentrically disposed within the first sleeve and defining a plurality of second undulations disposed about the central axis, each second undulation defining a plurality of second apertures.
Clause 6: The sound suppressor of Clause 5, wherein each of the second apertures defines a second maximum dimension extending across the second aperture, and wherein the second maximum dimension is less than one millimeter.
Clause 7: The sound suppressor of Clause 5, wherein at least one of the first sleeve or the second sleeve is formed from one of aluminum or an aluminum alloy.
Clause 8: The sound suppressor of Clause 1, wherein each of the plurality of first undulations defines a U-shape or a V-shape.
Clause 9: A sound suppressor for a firearm, the sound suppressor comprising, a housing defining a first central passage, and a first sleeve disposed within the first central passage and including a plurality of first undulations defining a second central passage, each first undulation defining a plurality of first apertures in fluid communication with the first central passage and the second central passage.
Clause 10: The sound suppressor of Clause 9, wherein each of the first apertures defines a first maximum dimension extending across the first aperture, and wherein the first maximum dimension is less than one millimeter.
Clause 11: The sound suppressor of Clause 10, wherein the first maximum dimension is less than a half millimeter.
Clause 12: The sound suppressor of Clause 10, wherein each of the first apertures extends through a thickness of the first sleeve, and wherein the thickness is greater than two hundred percent of the first maximum dimension.
Clause 13: The sound suppressor of Clause 9, further comprising a second sleeve disposed within the second central passage and including a plurality of second undulations defining a third central passage, each second undulation defining a plurality of second apertures in fluid communication with the second central passage and the third central passage.
Clause 14: The sound suppressor of Clause 13, wherein each of the second apertures defines a second maximum dimension extending across the second aperture, and wherein the second maximum dimension is less than one millimeter.
Clause 15: The sound suppressor of Clause 13, wherein at least one of the first sleeve or the second sleeve is formed from one of aluminum or an aluminum alloy.
Clause 16: The sound suppressor of Clause 9, wherein each of the plurality of first undulations defines a U-shape or a V-shape.
Clause 17: A sound suppressor for a firearm, the sound suppressor comprising, a housing, and a first sleeve disposed within the housing and having a first inner surface and a first outer surface, at least one of the first inner surface or the first outer surface defining a plurality of first undulations, each first undulation defining a plurality of first apertures extending through the first inner surface and the first outer surface.
Clause 18: The sound suppressor of Clause 17, wherein each of the first apertures defines a first maximum dimension extending across the first aperture, and wherein the first maximum dimension is less than one millimeter.
Clause 19: The sound suppressor of Clause 18, wherein the first maximum dimension is less than a half millimeter.
Clause 20: The sound suppressor of Clause 18, wherein each of the first apertures extends through a thickness of the first sleeve, and wherein the thickness is greater than two hundred percent of the first maximum dimension.
Clause 21: The sound suppressor of Clause 17, further comprising a second sleeve disposed within the first sleeve and having a second inner surface and a second outer surface, at least one of the second inner surface or the second outer surface defining a plurality of second undulations, each second undulation defining a plurality of second apertures extending through the second inner surface and the second outer surface.
Clause 22: The sound suppressor of Clause 21, wherein at least one of the first sleeve or the second sleeve is formed from one of aluminum or an aluminum alloy.
Clause 23: The sound suppressor of Clause 17, wherein each of the plurality of first undulations defines a U-shape or a V-shape.
Clause 24: A sound suppressor for a firearm, the sound suppressor comprising, a housing extending along, and disposed about, a central axis, an outer shell concentrically disposed within the housing, an inner shell concentrically disposed within the outer shell and defining a plurality of first apertures, and an intermediate member disposed between the inner shell and the outer shell and formed at least in part from an acoustic metamaterial.
Clause 25: The sound suppressor of Clause 24, wherein each of the first apertures defines a maximum dimension extending across the first aperture, and wherein the maximum dimension is less than one millimeter.
Clause 26: The sound suppressor of Clause 25, wherein the maximum dimension is less than a half millimeter.
Clause 27: The sound suppressor of Clause 25, wherein each of the first apertures extends through a thickness of the inner shell, and wherein the thickness is greater than two hundred percent of the maximum dimension.
Clause 28: The sound suppressor of Clause 24, wherein at least one of the inner shell or the outer shell is formed from one of aluminum or an aluminum alloy.
Clause 29: The sound suppressor of Clause 24, further comprising a sleeve disposed within the inner shell and including a plurality of undulations defining a plurality of second apertures.
Clause 30: The sound suppressor of Clause 29, wherein the sleeve defines a central passage in fluid communication with the plurality of first apertures and the plurality of second apertures.
Clause 31: The sound suppressor of Clause 29, wherein each of the second apertures defines a second maximum dimension extending across the second aperture, and wherein the second maximum dimension is less than one millimeter.
Clause 32: The sound suppressor of Clause 31, wherein the second maximum dimension is less than a half millimeter.
Clause 33: The sound suppressor of Clause 31, wherein each of the second apertures extends through a thickness of the sleeve, and wherein the thickness is greater than two hundred percent of the second maximum dimension.
Clause 34: The sound suppressor of Clause 29, wherein the sleeve is formed from one of aluminum or an aluminum alloy.
Clause 34: The sound suppressor of Clause 29, wherein each of the plurality of undulations defines a U-shape or a V-shape.
Clause 35: A sound suppressor for a firearm, the sound suppressor comprising, a housing extending from a proximal end to a distal end along a central passage, the proximal end configured to receive the firearm, the distal end defining an exit opening, and a door pivotally supported by the housing for rotation between an open position and a closed position, the door at least partially blocking the exit opening in the closed position, wherein the door is configured to rotate from the open position to the closed position upon passage of a projectile through the exit opening.
Clause 36: The sound suppressor of Clause 35, further comprising a biasing member operable to rotate the door from the closed position to the open position after passage of the projectile through the exit opening.
Clause 37: The sound suppressor of Clause 35, further comprising, an outer shell concentrically disposed within the housing, an inner shell concentrically disposed within the outer shell and defining a plurality of apertures, and an intermediate member disposed between the inner shell and the outer shell and formed at least in part from an acoustic metamaterial.
Clause 38: The sound suppressor of Clause 37, wherein each of the apertures defines a maximum dimension extending across the aperture, and wherein the maximum dimension is less than one millimeter.
Clause 39: The sound suppressor of Clause 35, further comprising a sleeve disposed within the housing and including a plurality of undulations defining a plurality of apertures in fluid communication with the central passage.
Clause 40: The sound suppressor of Clause 39, wherein each of the plurality of undulations defines a U-shape or a V-shape.
Clause 41: The sound suppressor of Clause 39, wherein each of the apertures defines a maximum dimension extending across the aperture, and wherein the maximum dimension is less than one millimeter.
Clause 42: The sound suppressor of Clause 41, wherein each of the apertures extends through a thickness of the sleeve, and wherein the thickness is greater than two hundred percent of the maximum dimension.
Clause 43: A sound suppressor kit for a firearm, the sound suppressor kit comprising, a housing, a first shell assembly configured to be removably coupled to the housing and configured to reduce a volume of a first sound having a first frequency, and a second shell assembly configured to be removably coupled to the housing and configured to reduce a volume of a second sound having a second frequency that is different than the first frequency.
Clause 44: The sound suppressor kit of Clause 44, wherein the housing defines an opening and a passage in fluid communication with the opening, and wherein the first shell assembly and the second shell assembly are each configured to be removably inserted through the opening and into the passage.
The foregoing description has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular configuration are generally not limited to that particular configuration, but, where applicable, are interchangeable and can be used in a selected configuration, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This U.S. patent application is a continuation of, and claims priority under 35 U.S.C. § 120 from, 18/524,183, filed on Nov. 30, 2023, which is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 17/217,771, filed on Mar. 30, 2021, which is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 16/887,137, filed on May 29, 2020, which is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 16/266,843, filed on Feb. 4, 2019, which claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/626,871, filed on Feb. 6, 2018. The disclosures of these prior applications are considered part of the disclosure of this application and are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62626871 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18524183 | Nov 2023 | US |
Child | 18667230 | US | |
Parent | 17217771 | Mar 2021 | US |
Child | 18524183 | US | |
Parent | 16887137 | May 2020 | US |
Child | 17217771 | US | |
Parent | 16266843 | Feb 2019 | US |
Child | 16887137 | US |