The present invention relates to apparatuses, systems, computer readable media, and methods for: providing services concerning control of a portable camera in response to activity involving a firearm, using an improved mechanism for providing electricity to electronic circuitry within a firearm, providing services concerning identifying the individual who discharged a firearm based on data from a firearm telematics sensor device, providing services concerning detecting and tracking holstering and unholstering, and monitoring and, optionally, controlling, handheld firearms and other instruments using embedded sensor devices that are configured to send and receive signals over a wireless communications network.
Personal video recorders as used by security and law enforcement personnel, hereafter referred to as body cameras, face many challenges in practical use. Easily portable sources of power, such as batteries, are limited in capacity and adversely impact the duration of body-camera operation. Storage media are limited in capacity and constrain the amount of video information that may be recorded. When the cameras do operate and can store their video data, it can be challenging to identify the portion of video information relevant to a specific event or incident.
Serious incidents for security and law enforcement personnel often involve use or anticipated use of a firearm.
Systems involving linking firearms and video recording have been contemplated—for example, in U.S. Pat. No. 9,140,509 to Sullivan et al., a gun-mounted “electronic evidence-collecting device”—e.g., a camera—is activated by the removal of the gun from its holster. Specifically, a light sensor mounted on the gun is covered when the gun is holstered, and when the gun is removed from its holster, the light sensor receives light and initiates the collection of gun-related data from sensors on the gun, and the sensed, gun-related data is forwarded to a portable device (e.g., a smartphone), which may then automatically call the user's partner and/or the central station to request assistance and backup. However, Sullivan's system has drawbacks—for example, it only contemplates activating data recording in response to unholstering as measured by a light sensor, and the only types of sensors it discloses are a holster sensor, a video camera, a microphone, a direction finder, a clock, and a GPS component. Additionally, Sullivan's system does not contemplate data sensing and recording devices that are not mounted on a handgun, or enabling real-time, granular event and location-based remote monitoring by integrating with a distributed system. The Sullivan system further does not contemplate metadata, or associating metadata with recorded video, as included in certain embodiments of the invention described below.
There is a need for devices and systems that facilitate reducing unnecessary power consumption (e.g., turning off or powering down the camera when needed), and reducing the amount of irrelevant or unnecessary video data to be stored and analyzed, as well as services that enable granular, real-time monitoring of firearm-related activity by a local team as well as by a remote command center. When video is generated, there is a need for facilitating review and analysis of recorded video from cameras that may concern firearm-related activity. Disclosed herein are embodiments of an invention that address those needs.
Although fundamentally mechanical in their operation, modern firearms increasingly make use of electronic circuitry. Sometimes these electronics are embedded in the firearm itself, and other times they are found in accessories attached to the firearm; examples include tactical lights and lasers, electronic scopes, and onboard computer and sensor arrays. With such electronics may come the need for electrical power, most commonly delivered by rechargeable or replaceable batteries.
The need to recharge or replace such batteries imposes compromises on the design of said electronic accessories. These design compromises introduce drawbacks—for example, allowances must be made to facilitate access to the battery or means of charging (e.g., either by removing the accessory from the firearm entirely, removing the battery from the accessory, or connecting a charging cable to the accessory). Moreover, providing readily accessible charging sockets and/or battery compartments can compromise an accessory's resistance to water, dust, and debris. Additionally, frequent removal and reattachment of the accessory to the firearm is inconvenient and a source of increased wear and fragility.
There is a need for devices and systems that facilitate charging of a wide variety of firearm electronics that avoid or minimize these drawbacks. Disclosed herein are embodiments of an invention that address those needs.
Serious incidents for security and law enforcement personnel often involve use or anticipated use of a firearm, which may be initiated by an operator removing a firearm or other implement from a mount (e.g., a holster), and thus it may be helpful to enable real-time communication of such events. The ability to communicate, in real-time, whether an operator has drawn the operator's weapon or other implements has many important applications. For example, real-time communication of an unholstering event may help to keep a command center or supervisor apprised of the status of activities in the field. Such communication may also be useful for a team of operators to stay on top of a coordinated operation, particularly in situations where the team members are unable to speak (e.g., they may be wearing gas masks, staying hidden, or are out-of-earshot) or unable to directly observe what other team members are doing.
Systems involving detecting unholstering have been contemplated—for example, U.S. Pat. Pub. No. 2015/0256990 A1 to Vilrokx et al., describes a system for processing incoming messages from a “smart holster.” The smart holster detects unholstering of a weapon using a pressure sensor (or alternatively, a contact switch). A predictive model is used to process the incoming wireless signals to generate real-time alerts, which alerts are in turn sent to the wireless-enabled holster. The system includes a rule server configured to query a database to retrieve one or more rules, and to apply the one or more rules over the incoming wireless signals. However, this system has drawbacks—for example, it doesn't teach or suggest techniques for detecting unholstering other than use of a pressure sensor or a contact switch. Additionally, it does not suggest coordination of sensor devices using a hub device, such as a mobile device, or local communication between sensor devices worn by separate operators, or pre-loading rules for controlling alerting and other outcomes at the smart holster or a hub device, which would permit faster reaction time and would allow a team to share communications even in the absence of a communication/data connection to a remote server or command center.
Drawbacks that are particularly relevant to contact-related unholstering detection techniques relate to the fact that contact-related sensors as taught in Vilrokx et al. would typically be positioned inside the holster (such as the pressure sensor 114(2)) or at a latch of the holster (such as contact switch sensor 114(3)). This design may have dangerous consequences: If dislodged or damaged, the components of the mechanism could cause items, parts, or debris within the holster to impede drawing a firearm, or possibly enter a trigger guard area, leading to a discharge event.
Detecting and interpreting of the status of weapons, and associated equipment, as might be found on the belt or in the vehicle of a police officer or security guard or soldier, presents unique challenges which this invention addresses. For example, embodiments of the invention described below enable real-time monitoring of drawing a weapon or other mounted implement both locally by a team, as well as remotely, by, for example, a command center. Embodiments of the invention additionally provide for holster sensor devices that do not interfere with a holster or require permanent modification of a holster to function, to facilitate installation and compatibility with existing equipment.
In some circumstances, a firearm has been discharged, but the person who operated the firearm is unknown. For example, an identified firearm may have been used to injure a person or to cause property damage, but there are no witnesses to the event. In some cases, a person may be accused of firing the weapon, but the accused person disputes this. In such circumstances, it would be advantageous to have a way to identify whether a candidate operator is likely to have fired the weapon, or to exclude the candidate operator.
There is a need for devices and systems, including firearm telematics sensor devices, that facilitate such an identification. Disclosed herein are embodiments of an invention that address those needs.
Firearm safety is a topic of political and societal debate in the United States. Prior efforts to improve the safety of handheld firearms have included devices such as manual safeties, decockers, drop safeties, safety notches, firing pin blocks, hammer blocks, magazine disconnects, trigger guards, fingerprint sensors, loaded chamber indicators and even radio controlled proximity activation devices which permit operation of the firearm only when it is within range of a fob or similar device. While these devices offer varying degrees of physical safety, none are concerned with defining an area within and for which a firearm may be enabled or disabled from operation or with notifying an owner of an attempt to access, move or operate the owner's firearm. Further, no existing solutions communicatively couple a firearm to its owner via a wireless telecommunications network and a machine-to-machine (“M2M”) component located within the firearm so as to control a firearm safety mechanism or its equivalent. Nor do any existing solutions establish a network-based (e.g., cloud-based) rule-set through which a firearm owner can establish and/or customize firearm control variables, such as a default trigger safety status. Further, no existing solutions enable a firearm owner to be provided with location, movement, and/or similar information regarding the location and/or status of the firearm (e.g., via a wireless communication network) and further enable the owner to disable the firearm via a user interface of a wireless device (e.g., mobile phone) applet.
The aspects and advantages of the invention will become more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
Disclosed herein are devices/apparatuses, systems, methods, and machine readable media for implementing and using an improved service for controlling a camera. Embodiments of the present invention provide a firearm equipped with certain specialized electronic circuitry, hereafter referred to as a telematics sensor device. In certain embodiments, the telematics sensor device detects when a firearm is in motion, is being discharged (fired), and, in the case of handguns, the firearm's position within its holster.
Disclosed herein are devices/apparatuses, systems, methods, and machine readable media for implementing and using a system for identifying an individual who discharged a firearm, and for recording, assessing, identifying, and transmitting information related to the firing of a firearm. More specifically, the present invention relates to firearm telemetry, and in certain embodiments includes assessing the predictive nature of a trigger-pull and associated activities, which are unique to individual users when firing a weapon. In certain embodiments, using the techniques described herein, it is possible to uniquely identify the individual that fired a firearm. Systems configured according to embodiments of the present invention may thus find application in the forensic analysis of firearm discharges.
Disclosed herein are systems, and methods for implementing a device and service for monitoring the status of an implement on a mount. Embodiments of the present invention provide a mount, such as a holster, equipped with certain specialized electronic circuitry, hereafter referred to as a telematics device. In certain embodiments, the telematics device detects when a firearm or other implement is present or absent from a mount.
Disclosed herein are devices/apparatuses, systems, methods, and machine readable media for implementing and using an improved mechanism for providing power to electronic circuitry within a firearm. Embodiments of the present invention provide a charging unit for a firearm, such as a semi-automatic handgun or rifle, shaped to resemble the form of an ammunition magazine or clip for the firearm. As the shape of an ammunition magazine or clip varies between specific firearms, so too can the charging unit be shaped for individual makes and models of firearms.
The charging device may be shaped to resemble an ammunition magazine. This form facilitates a simple and secure connection to the firearm by repurposing magazine attachment mechanisms already present on or within the firearm. The charging device may be inserted into the firearm while it is not in use, providing power to the firearm's electronics and/or batteries thereof. The charging unit is then removed, leaving the firearm mechanically unchanged and ready for normal operation and use.
As used herein, a “firearm” refers to a ranged weapon, including a handgun, rifle, Taser®, Conducted Electrical Weapon (CEW), or additional types of weapons capable of firing a bullet. Certain embodiments of the disclosure may be specifically adapted for one or more of handguns, rifles, or Tasers. Examples of nonlethal weapons include CEWs and batons. Examples of lethal weapons include handguns and rifles.
As used herein, a “firearm accessory device” refers to an electronic device requiring power that is mounted on or within a firearm. In certain embodiments, firearm accessories may be a telematics sensor device, a laser sight, a fingerprint sensor, a pressure sensor, a taclight (tactical light), a tactical laser, an electronic scope, an onboard computer, sensor arrays, and the like.
As used herein, a “charging device” refers to a removable charging unit for delivering electrical power to a firearm accessory.
As used herein, a “camera” refers to a device comprising electrical and optical components for recording still images, video, and/or audio by imaging light from the visual spectrum, infrared spectrum, and/or other spectra. A “body camera” refers to a camera that is worn by a user.
As used herein, a “telematics sensor device” or “telematics device” refers to a device for detecting and/or recording information derived from the environment of the device, and where the device has two-way wireless communications capability.
As used herein, a “mount” refers to a structure for holding a firearm or other implement. A mount may include a holster, gun rack (e.g., for longarm weapons), vest, or flak jacket.
As used herein, “real time” means information that is updated at least once every five seconds.
As used herein, “off-the-shelf” means a product not specifically designed to accommodate or work with a telematics device—for example, a stock weapon holster or mount with neither means for attaching nor otherwise accommodating a telematics device.
In certain embodiments, the telematics sensor device is equipped with a wireless transceiver. In some embodiments, the transceiver communicates directly with a body camera; in others it communicates indirectly, via an intermediary device, or devices, and one or more network topologies. One embodiment includes the telematics sensor device communicating with a smartphone, which relays the telematics sensor device's messages via wide-area or personal-area networks, which in turn connect with and relay the telematics sensor device's messages to the body camera.
In certain embodiments, unholstering of a firearm (as detected by a telematics sensor device) initiates recording of video by a body camera. That is, when the firearm is unholstered, the sensor device detects the event and signals the body camera (either directly or indirectly) to power up (or wake from standby) and begin recording video information. The recording may be saved locally and/or may be transmitted to a remote facility where it is stored.
In certain embodiments, unholstering of a firearm (as detected by a holster telematics sensor device) “wakes up” a firearm telematics sensor device from standby or low-power mode, and causes the firearm telematics sensor device to switch over to an active state, and may initiate detection or recording of data (including, for example, inertial measurements) by a firearm telematics sensor device. The recording may be saved locally at the firearm telematics sensor device and/or may be transmitted to another device where it is stored.
Telematics devices may operate in various power/activity states, for example, in order to conserve battery life. For example, telematics devices may have an “off” state with no function, and a low power or “sleep” state, in which only limited function is available, such as the function of receiving an instruction to wake to transition to an active state. Telematics devices may have full functionality in an active state. Telematics devices may have additional intermediate states in which only certain functions are active, for example some sensing functions but not others, or some communications functions but not others.
In some embodiments, the body camera is able to record additional, non-video metadata as part of its functionality. The telematics sensor device and/or associated software may discover and detect when a camera possesses such capabilities. Upon detection, the telematics sensor device may provide additional metadata and other data to the body camera for storage with its video recording. Examples of such data may include: time, date, event identifiers, location coordinates, altitude, temperature, ammunition discharged, ammunition remaining, ammunition reloads, firearm orientation, firearm movement, firearm translation, firearm bearing, recorded audio in front of and around the firearm, and recorded video in front of and around the firearm.
Firearm telemetry is a new field of forensic analysis. Sensor circuitry may be embedded within a firearm such that the presence of the circuitry is transparent to (i.e., does not interfere with) the normal operation of the firearm but which is configured to transmit data concerning the operation of the firearm in real-time to a command or dispatch center for real time mapping, observation of certain, perhaps mission-critical, events, (e.g., un-holstering, direction of aim, and firing), and other applications.
Using firearm telematics sensor devices embedded within firearms to capture and relay information concerning the firing event and through subsequent scrutiny of that information, in some embodiments, by analyzing the information (represented in the form of a three-axis waveform) one can uniquely determine the identity of the individual that fired the firearm. That is, the present inventors have determined that each individual firing the same firearm under similar circumstances does so in a manner that creates a unique data signature associated with the predictive nature of the individual's trigger pull. For example, just before firing, an individual's trigger finger begins to move very slightly in a tensing fashion in preparation for (or anticipation of) the firearm's recoil. How each person's trigger finger squeezes the trigger and then relaxes is also unique, and can be recorded and relayed as a firearm sensor device data transmission. This trigger-pull “fingerprint,” if you will, can be stored in a database for subsequent use, e.g., comparison with an unknown trigger pull fingerprint as part of a forensic investigation.
Disclosed are new methods and systems for remote detection of, for example, any belt holstered asset and its un-holstering and re-holstering. For example, consider the belted and holstered assets of a law enforcement officer, military personnel, or security guard. Such belt holster assets might include implements including firearms (e.g., ranged weapons, including handguns, rifles, and CEWs), ammunition-related implements such as ammunition clips, magazines, or cartridges for said firearms as well as pepper spray, flashlights, radios, cell phones, night sticks, or handcuffs. Some of these assets are removed or un-holstered for use only in unusual and potentially critical situations, else they are left in-place or holstered.
In one aspect, a monitoring service may include a sensor-based wireless communication device, e.g., a telematics device, so that un-holstering (or holstering) of a belted asset triggers wireless real-time wireless communication and/or notification of the un-holstering event to a remote command or dispatch center, or the like. The purpose of notification may be to enable informed command center decisions relative to the un-holstering event occurring in the field. The decisions might be to come to the immediate aid and assistance to the field personnel, thereby saving lives. Without a telematics device and monitoring service, command and dispatch may remain unaware of a mission critical event unfolding in the field during the most important timeframe, as radio communication may not be possible when personnel are busy and focused on the unfolding event, perhaps with two hands on their firearm or another asset/implement.
In certain embodiments, the telematics device is self-contained, self-powered, and logically connected, via wired or wireless means, to a listening device (e.g., a hub/mobile device, or a server). Further, in certain embodiments, the telematics device may support various methods for replenishing its power source, for example, direct cable or contact charging, inductive wireless charging, or harvesting the motion energy of an operator while deployed. In some embodiments, the telematics device is of ‘universal design’: capable of detecting a firearm or other weapon regardless of make and model, and independent of the cavity or container or holster used to house said weapon. In other embodiments, the telematics device may be optimized to the specifics of a weapon or container; for instance, optimizing for size and mechanical characteristics of specific cavities or containers or holsters.
The telematics device is mechanically sound. Some embodiments feature a hardened design, by means of remaining within the confines of the outer shape of the mount (e.g., container or pouch or holster). Some versions fully encapsulate their electronics within a moisture-proof and water-proof over-molded enclosure.
In certain embodiments, the apparatus is not internal to the cavity or container or holster or pouch, and thereby does not impede or endanger normal operation of the cavity or container or holster or pouch.
The apparatus makes use of a plurality of means of detection. These may be used alone or in combination, generically or in response to specific combinations of weapons and container.
In certain embodiments, the telematics device is equipped with a wireless transceiver. One embodiment includes the telematics device communicating with a smartphone, which relays the telematics sensor device's messages via wide-area or personal-area networks, which in turn connect with and relay the telematics sensor device's messages to other client devices (including mobile clients) and remote servers.
Upon removal of a magazine or clip from a firearm, the charging device 2700 may be inserted into the empty magazine chamber as shown in
In certain embodiments, the charging coil 2804 or receiving coil 204 may be stacked with one or more layers of windings. In certain embodiments, the coil is formed from copper, silver, or gold. In certain embodiments, the coil windings of coil 2804 and coil 204 may range from 17 to 27 winds, for example, 22 winds. In certain embodiments, the gauge of the wire in coil 2804 and coil 204 may range from 28-32 gauge, for example, 30 gauge or 0.266 mm. In certain embodiments, the inductive charging coil is formed using integrated traces upon a printed circuit board.
In certain embodiments, the charging device 2700 may detect when it has been inserted into a firearm and initiate operation. For example, charging device 2700 may automatically start to charge a firearm accessory upon insertion. In certain embodiments, insertion of the device 2700 may cause a switch to be physically flipped, causing device 2700 to activate. In certain embodiments, the charging device 2700 will activate (e.g., begin charging an accessory 2902) in response to a manually triggered event or control. For example, in certain embodiments, base 2702 contains a switch that may be used to activate charging when switched on. In certain embodiments, device 2700 may receive a signal from a mobile device or a server instructing device 2700 to activate. In certain embodiments, device 2700 may detect that it is within close proximity to an accessory device 2902 depicted in
In certain embodiments, charging device 2700 may automatically power down or stop charging when the accessory device 2902 is fully charged in order to facilitate thermal management and avoid overheating. In certain embodiments, charging device 2700 may incorporate a heat sink.
In certain embodiments, charging device 2700 may be used to power two or more accessory devices 302 either simultaneously or in parallel. For example, charging device 2700 may inductively power one or more accessory devices and additionally support lines out from device 2700 to power/charge additional accessory devices 2902.
In certain embodiments, upon insertion of charging device 2700, the firing mechanism of the firearm is disabled. In certain embodiments, the firing mechanism of the firearm is disabled only during active charging. For example, handgun 201 may include a trigger 208 and trigger safety 210, such that in normal operation, a finger is inserted into the trigger guard 212 and used to pull trigger 208 to fire a bullet from the handgun. In certain embodiments, device 2700 may physically interfere with the firing mechanism when mounted on or within a firearm. For example, in certain embodiments, device 2700 may include a protrusion on or near the distal end 2708 that interferes with the movement of the trigger mechanism of the firearm once it is secured in place, or as it is being inserted into a magazine cavity. In certain embodiments, device 2700 may include an extending structure that arrests trigger bar movement. Such a mechanism may prevent or reduce accidental discharge of the firearm during handling of the firearm, and/or while charging.
In certain embodiments, electricity is supplied to the charging device 2700 by means of a socket, plug, or wire connection at a location on the charging device which remains exposed when inserted into a firearm (e.g., port 2703). In some embodiments, the charging device 2700 may accept electrical power in the form of alternating current (AC) and convert this current as required by means of an embedded AC to direct current (DC) conversion circuit. In certain embodiments, the device 2700 will accept power from an already-converted DC power source. Some embodiments may make use of common power and plug standards, such as the USB power specification and connector. In certain embodiments, the charging device 2700 may receive power from a solar panel.
In certain embodiments, the charging unit supplies electrical power to batteries and/or electronics in or attached to a firearm, such as a firearm accessory. In some embodiments, power is provided to the circuitry by means of direct connection, such as metal leads or contacts in direct physical proximity to similar contacts within the firearm, to form a closed circuit. In other embodiments, the charging device 2700 may provide power by means of wireless transmission. For example, as shown in
In certain embodiments, the system may be used to charge an accessory overnight. In certain embodiments, the system may be used to charge the battery of an accessory within 8 hours, within 6 hours, within 4 hours, within 2 hours, within 1 hour, or within 30 minutes.
Device 400 may include one or more sensors 404—e.g., a temperature sensor for monitoring thermal load or ambient temperature, an accelerometer, a magnetometer, a gyroscope, a metal sensor (e.g., pulse induction sensor components), optical/light sensor, microphone, etc. Communication module 406 may include a subscriber identity module (SIM) card, cellular radio, Bluetooth radio, ZigBee radio, Near Field Communication (NFC) radio, wireless local area network (WLAN) radio, GPS receiver, and antennas used by each for communicating data over various networks. Storage 408 may include one or more types of computer readable medium, such as RAM, optical storage devices, or flash memory, and may store an operating system, applications, and communication procedures. The power system/battery 410 may include a power management system, one or more power sources such as a battery and recharging system, AC, DC, a power status indicator, and the like.
In certain embodiments, a telematics device 102 may be installed at standard attachment sites on a mount, such as a holster, as described below with respect to
In some embodiments, the detection by telematics device 102 involves a passive radiating device, such as a magnet. Other times an active radiating device is used, such as a radio frequency transmitter. Sometimes the active radiating device is an RFID (Radio-frequency identification) element. When using a radiating device, a component is attached to the weapon or implement in question, and the proximity (distance) between the weapon/implement and the radiating device is determined.
In other embodiments an inductive coupling mechanism is used, whereby the presence or absence of metallic substance is determined.
Some embodiments employ a photo interruption mechanism (a.k.a. an “optical” method), whereby a beam of visible or invisible light is directed or reflected and its presence or absence is determined.
Still other embodiments measure for change in capacitance, also known as dielectric shift. Some embodiments track the similarities or differences in measurements reported by a chained set of accelerometers.
Certain embodiments opt for a strain gauge or a pressure gauge, while others utilize a mechanically-activated switch. Other embodiments may utilize biometric sensing mechanisms to determine the presence and arrangement of the human user of the weapon or object.
Some means of detection necessitate the use of one or more antennas. When this is the case, some embodiments will utilize antennas external and remote to the primary apparatus (i.e., telematics device 102), enabling independent placement for optimal sensing integrity. Other embodiments will integrate and house antennas within the body of the telematics device 102.
In certain embodiments, beacon(s) 702 may be proximity beacons, such as devices using the Google Eddystone™, iBeacon™, FlyBell™, and/or BLE protocols for monitoring and ranging proximity of components of the system (e.g. holster telematics sensor device(s) 102, firearm telematics sensor device(s) 202, camera(s) 302, and/or mobile device 704) with respect to one or more beacons 702. In certain embodiments, one or more beacons 702 may be positioned at a fixed location or a moving location such as a vehicle.
In certain embodiments, mobile device 704 may be a smartphone, a tablet computer, or a radio, such as a police radio, and web client 706 may be executed at a command and control center (e.g., for police, military, or security professionals). All components of the system 700 are directly or indirectly connected using a combination of communication protocols represented by network 701. Network 701 may include a LAN, wired or wireless network, private or public network, or the internet, including wireless communication protocols such as General Packet Radio Service (GPRS), Enhanced Data rates for GSM Evolution (EDGE), 3G, 4G, Long Term Evolution (LTE) protocols, and communication standards such as Project 25 (P25), Terrestrial Trunked Radio (TETRA), and satellite and/or field radio protocols.
In certain embodiments, one or more computing devices 708 hosts a server 710, such as an HTTP server, and an application 714 that implements aspects of the remote monitoring system (e.g., a situational intelligence platform). For example, status-related files and/or user account information may be stored in data store 716. Application 714 may support an Application Programming Interface (API) 712 providing external access to methods for accessing data store 716. In certain embodiments, client applications running on client devices 102, 202, 302, 702, 704, and 706 may access API 712 via server 710 using protocols such as HTTP or FTP.
In certain embodiments, telematics device 102 may monitor/detect an implement's presence in the mount (e.g., holster 104) and may, for example, record related data in storage 408 at a frequency of: at least once every second, five times every second, or 20 times every second.
In certain embodiments, telematics device 102 may communicate the current status of the implement's presence in the mount (e.g., whether a firearm is holstered or not) to another device over network 701 at a frequency of: at least once per minute, once every 20 seconds, every five seconds, every second, or five times every second.
In certain embodiments, the system may distribute an updated rule set in real time to one or more local systems (where a local system is one or more of the following devices that may be associated with a single user: holster telematics sensor devices 102, firearm sensor devices 202, cameras 302, and mobile device 702). An updated rule set may be distributed at any time, for example, on a regular schedule or on an as-needed basis. The updated rule set may change the configuration of behavior in response to the identification of one or more types of events, or may change how an event is identified. In certain embodiments, an updated rule set may include an instruction to change the status of the camera upon receiving the updated rule set. In certain embodiments, distribution of the updated rule set may be triggered by an instruction from a remote command center (e.g., by way of web client 706 and/or server 710). In certain embodiments, an updated rule set may include an instruction to generate a notification upon receiving the updated rule set. In certain embodiments, distribution of the updated rule set may be triggered by an instruction from a remote command center (e.g., by way of web client 706 and/or server 710). For example, if a team of users is entering a dangerous area, a user at a remote command center may cause the system to distribute an updated rule set to all users of the team instructing each local system to immediately turn on all cameras 302 and ensure that if a weapon discharge is identified at any single local system of the team, a notification is provided to all other members of the team and to the remote command center. For example, if a team of users is entering a dangerous area, a user at a remote command center may cause the system to distribute an updated rule set to all users of the team instructing each local system to immediately send a notification to all users of the team and to the command center upon any unholstering event.
In certain embodiments, telematics sensor device 102 is capable of identifying one or more of the following potential states concerning unholstering: holstered; implement holstered and not being touched by operator; implement holstered and touched by operator (e.g., hand on weapon); implement partially unholstered; implement fully unholstered; implement unholstered and touched by operator (e.g., weapon drawn).
In some embodiments, selecting a particular firearm 804(a,b) in user interface 800 may display user interface 820, shown in
In some embodiments, selecting a particular camera 805(a,b) in user interface 800 may display user interface 860, shown in
Map panel 920 marks the location of the components associated with the users on the map using location markers 924(a,b). The map may be stylized as shown, or may constitute a satellite photograph. A user may adjust the scale of the map using controls 926. Additional information associated with the components at each location 924 is displayed in an overlay window 922(a,b). For example, the overlay window 922 provides information about (1) the user associated with the component(s) at the location; (2) the time stamp associated with the information; (3) the coordinates of the location; (4) the accuracy/error estimate for the location; (5) information about the network type, strength, and operator; (6) hub device battery status. In certain embodiments, additional information about charging status or camera status could be provided as well.
Additional examples regarding step 1102 may be, for example, using geofencing techniques and a beacon 702 located at a user's vehicle. When one or more of holster telematics sensor devices 102, firearm sensor devices 202, or mobile device 704 is no longer within range of the beacon 702 at the vehicle, or moves beyond a certain distance (e.g., 3, 5, 7, 10, 15 feet) from the beacon 702, the system may identify that the user has exited the vehicle (e.g., with a firearm). In another example, a holster telematics sensor device 102 may detect the event of a user unholstering the firearm. In another example, a telematics sensor device or mobile device 704 may detect the proximity of another user, causing the system to identify the event of approaching a second user of the system. In another example, dispatch or another member of the unit that the user is a member of, perhaps aware of a dangerous situation or that another user has unholstered her weapon, may cause the event of a notification having been received by the system by transmitting such a notification via a mobile device 702 or web client 706. In certain embodiments, the system may be configured to automatically provide a notification to all members of a group upon detecting an event concerning another member of the group.
In step 1104, the system may instruct one or more cameras 302 to change status in response to the event. For example, the instruction may be to turn on the camera, wake the camera, activate recording of video at the camera, mark existing video to be retained, and/or mark new video to be retained. In certain embodiments, the camera is constantly or usually recording (e.g., the camera may always be in a recording state when the user is in an on-duty status), and the old video may be periodically overwritten by newly recorded video. In such an embodiment, identification of an event (step 1102) may cause the existing video recording to be marked to be retained (e.g., prevent it from being overwritten by new video). In certain embodiments, a set buffer of recorded video is maintained by the camera 302, and identification of an event will cause the camera to save the existing buffer as well as video recorded after identification of the event. In certain embodiments, the buffer is 5, 10, 30, 60, 120, or 500 seconds. In certain embodiments, the buffer is 5, 10, or 15 minutes. In certain embodiments, the video may be saved by the camera, and in certain embodiments, the video may be streamed or transmitted to mobile device 704 or server 710. In certain embodiments, an instruction to change the status of a camera 302 may be received from mobile device 704 or computing device 708. Such a request may also be initiated by web client 706. In certain embodiments, an instruction to change the status of a camera 302 may be received by the camera from a telematics device.
In step 1106, a component of the local system (e.g., holster telematics sensor devices 102, firearm sensor devices 202, cameras 302, or mobile device 704) may notify server 710 with the updated status for the camera(s). By this step, the system enables real time, remote monitoring of events and recording of events by the camera(s). In the absence of an available connection with remote devices (e.g., computing device 708/server 710), other local users, e.g., within a unit in the same geographical area, may share updated status across the unit using personal area networks and/or local area networks. In certain embodiments, the notification may constitute or include an alert message to communicate a dangerous situation to dispatch and/or unit members. An alert may be a prominent notification displayed on, for example, a mobile device 704 or web client 706.
In step 1108, a component of the local system (e.g., holster telematics sensor devices 102, firearm sensor devices 202, cameras 302, or mobile device 704) may record various metadata for association with the event and recorded video concerning the event. In certain embodiments, metadata are constantly recorded, and in step 1108 they are associated with the event and video. In certain embodiments, one or more types of metadata commence being recorded upon identification of the event in step 1102. In certain embodiments, each category of metadata may be saved as a separate track—for example, each category of metadata may be separately associated with the video recording. In one example, for each metadata measurement, the information is associated with a start time and an end time (or a single time point) that corresponds to the time parameter for the video recorded by each camera 302. In certain embodiments, the system may provide a user interface for selecting which categories of metadata should be displayed with the video recording (e.g., using the same mechanism used for displaying subtitles). In certain embodiments, the system may provide a user interface for rendering a video file that is “watermarked” with selected categories of metadata.
Categories of metadata may include, for example, a time stamp, the category of event, the current date, coordinates for the location of one or more components of the local system, altitude, temperature, firearm orientation, firearm movement, firearm translation, and firearm bearing (e.g., N30° E). Metadata may further include the ammunition type (e.g., 0.380 ACP, 0.45 ACP), and/or the remaining ammunition (e.g., 10 of 15 rounds).
The consequence of identifying an event (e.g., the rules concerning each event, and the particulars of process 1100 and, e.g., steps 1104 and 1106) may be configured, e.g. through a user interface accessed via link 810 in user interface 800, and such configurations may be retained in data store 716 and/or mobile device 704.
RF module 1206 may include a cellular radio, Bluetooth radio, NFC radio, WLAN radio, GPS receiver, and antennas used by each for communicating data over various networks.
Audio processor 1208 may be coupled to a speaker 1210 and microphone 1212. Touch sensitive display 1216 receives touch-based input. Other input modules or devices 1218 may include, for example, a stylus, voice recognition via microphone 1212, or an external keyboard.
Accelerometer 1220 may be capable of detecting changes in orientation of the device, or movements due to the gait of a user. Optical sensor 1222 may sense ambient light conditions, and acquire still images and video.
System 1300 includes a bus 1306 or other communication mechanism for communicating information, and a processor 1304 coupled with the bus 1306 for processing information. Computer system 1300 also includes a main memory 1302, such as a random access memory or other dynamic storage device, coupled to the bus 1306 for storing information and instructions to be executed by processor 1304. Main memory 1302 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 1304.
System 1300 includes a read only memory 1308 or other static storage device coupled to the bus 1306 for storing static information and instructions for the processor 1304. A storage device 1310, which may be one or more of a hard disk, flash memory-based storage medium, magnetic tape or other magnetic storage medium, a compact disc (CD)-ROM, a digital versatile disk (DVD)-ROM, or other optical storage medium, or any other storage medium from which processor 1304 can read, is provided and coupled to the bus 1306 for storing information and instructions (e.g., operating systems, applications programs and the like).
Computer system 1300 may be coupled via the bus 1306 to a display 1312 for displaying information to a computer user. An input device such as keyboard 1314, mouse 1316, or other input devices 1318 may be coupled to the bus 1306 for communicating information and command selections to the processor 1304.
The processes referred to herein may be implemented by processor 1304 executing appropriate sequences of computer-readable instructions contained in main memory 1304. Such instructions may be read into main memory 1304 from another computer-readable medium, such as storage device 1310, and execution of the sequences of instructions contained in the main memory 1304 causes the processor 1304 to perform the associated actions. In alternative embodiments, hard-wired circuitry or firmware-controlled processing units (e.g., field programmable gate arrays) may be used in place of or in combination with processor 1304 and its associated computer software instructions to implement the invention. The computer-readable instructions may be rendered in any computer language including, without limitation, Objective C, C#, C/C++, Java, assembly language, markup languages (e.g., HTML, XML), and the like. In general, all of the aforementioned terms are meant to encompass any series of logical steps performed in a sequence to accomplish a given purpose, which is the hallmark of any computer-executable application. Unless specifically stated otherwise, it should be appreciated that throughout the description of the present invention, use of terms such as “processing”, “computing”, “calculating”, “determining”, “displaying”, “receiving”, “transmitting” or the like, refer to the action and processes of an appropriately programmed computer system, such as computer system 1300 or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within its registers and memories into other data similarly represented as physical quantities within its memories or registers or other such information storage, transmission or display devices.
In some embodiments, a firearm telematics sensor device 202 may be capable of detecting inertial measurements such as the movements depicted in the system 1500 with a firearm shown at the origin of the axes as depicted in
A firearm may also be rotated, and measurements of rotation within system 1500 may be detected as roll (e.g., rotation around X axis 1501), pitch (e.g., rotation around Y axis 1502), and yaw (e.g., rotation around Z axis 1503). The absolute orientation of a firearm (e.g., detected as a compass bearing) may also be detected by certain embodiments of a firearm telematics sensor device (e.g., resulting in measurements such as N76° E, referring to the direction the barrel is pointed toward—i.e., the direction of aim; along the positive X axis in
In certain embodiments, inertial measurements such as acceleration, velocity, or displacement of the firearm along a spatial axis may be plotted, such as the exemplary plots shown in
In certain embodiments, the inertial measurements and other measurements may be associated with a time point. Firearm telematics sensor device 202 may have an internal clock to relate each measurement along a time point, or in certain embodiments the measurements are related by their order in time, and may be associated with a time point at another component of the systems of the invention.
In some embodiments, when active, firearm telematics sensor device 202 may scan each data series (e.g., raw data such as acceleration measurements, or one or more of X(t), Y(t), and Z(t)) to identify windows of time that represent a firearm discharge (e.g., as distinguished from dropping the firearm, running while carrying the firearm, or unholstering the firearm). A discharge event may be associated with a characteristic pattern that is generally associated with firing of a weapon, and more specifically associated with a particular person's signature when firing a particular make and model of firearm under similar conditions. Stated another way, in some embodiments, the firearm telematics sensor device 202 is able to diagnose whether a shot has been fired, and firearm telematics sensor device 202, or another component may conduct a finer level of classification concerning whether the same person fired a type of weapon, of if a different person fired the type of weapon.
Similar conditions may refer to, for example: firing of a firearm having the same make and model; firing of a firearm of the same category of firearm (e.g., a handgun vs. a rifle); firing of a firearm where the operator is under a similar level of physical and/or emotional stress—e.g., weapon fired immediately after operator has jogged 500 feet vs. weapon fired without any physical activity.
Next, a test firearm signature is generated based on the inertial measurements during the discharge event (1604). E.g., three plots representing a weapon discharge (e.g., X(t), Y(t), Z(t) of plots 1550) may constitute all or part of a firearm signature that represents a particular individual's characteristic pattern of firing a weapon under similar conditions. Generating the signature may involve filtering the raw measurements using a band pass filter, or normalizing the data, and/or using other data processing steps.
Next, a database of existing firearm signatures is searched using the test firearm signature. That is, the similarity between the test firearm signature and the signatures in the database is evaluated (1606). Similarity between the signatures may be evaluated using methods such as a least-squares comparison, principal component analysis, or Pearson correlation.
In some embodiments, the entire database of signatures is evaluated, and information about a ranked list of signatures is provided. In some embodiments, only information about the top hits (e.g., the most likely hits to the test signature) is provided (1608). The top hits may be information about the firearm signatures that were more similar than a threshold value of similarity. The threshold value may correspond to a likelihood that the test signature and the top hits are associated with the same firearm operator. In some embodiments, the top hits may represent a greater than 50%, 75%, 90%, 95%, or 99% chance that the operator for the test signature is the same operator associated with the top hits.
(1) X is an independent variable relative to time, and is a horizontal axis;
(2) Y is a dependent variable relative to magnitude of direction of each of the axes, and is a vertical axis; and
(3) Z is a dependent variable relative to acceleration and amplitude of X and Y, and is an axis orthogonal to both X and Y.
In certain embodiments, the firearm telematics sensor device is configured to measure, capture, and transmit information relating to the slightest movement of the firearm in the three spatial dimensions (denoted X, Y, and Z herein) over the course of time. The present invention involves determining and measuring any changes in the position and orientation of the firearm during three distinct timeframes: prior to (e.g., in anticipation of) firing the firearm, the firing of the firearm (the firing event), and subsequent to (e.g., immediately after) the firing event. We call the information captured during these time periods the “trigger pull associated telemetry.”
In this example, the trigger pull telemetry is a three-axis waveform, which is a byproduct of digital transmission, and includes the digital interpretation of finger discipline toward controlling the recoil or flipping motion associated with the firing of a firearm. The finger trigger motion just prior to and during the squeezing of a firearm trigger is measured as an event (acceleration over time), which appears as an impulse of energy followed by a three-axis waveform.
For example, suppose that 100 different users of the same firearm, with each user firing the firearm at the same target (or similar targets) under similar circumstances was analyzed. Assume that firearm telemetry for each firing event is captured and relayed to a central facility separately by the sensor device circuitry as trigger pull telemetry. The trigger pull telemetry (e.g., the three-axis trigger pull fingerprints) for each user is then stored in a database. Each instance of trigger pull telemetry is stored so as to be associated with the identity of the user whose trigger pull fingerprint it is.
Now assume that any one of the 100 users again fired the same firearm, but this time did so anonymously. In this example the newly captured trigger pull telemetry is evaluated against the database of previously captured trigger pull telemetry to identify a matching three-axis trigger pull fingerprint. Such matching may involve a least squares analysis or similar form of graphical analysis to identify the trigger pull fingerprint from the database most closely matching the anonymous trigger pull fingerprint.
Further, if the trigger pull fingerprint associated with an anonymous user is determined to not match any of the trigger pull fingerprints stored in the database, the lack of a match can be used as evidence to demonstrate that none of the users registered in the database fired the firearm.
Charging device 2700 may include a sensor/detector 404—e.g., a temperature sensor for monitoring thermal load, or a mechanism for detecting over-current or over-voltage or other improper charging conditions which would adversely affect the battery.
Certain embodiments, such as system 2200, include mobile device 704 as well as telematics device 102 and/or charging device 2700. In certain embodiments, mobile device 704 (which may function as a hub device relative to telematics device 102 and any other telematics devices or charging device 2700 associated with the operator) may be a smartphone, a smart watch, a tablet computer, or a radio, such as a police radio. In system 2200, mobile device 704 is in communication with telematics device 102 via network 701. Network 701 may include a personal area network (PAN) such as Bluetooth or ZigBee, a local area network (LAN), a wired or wireless network, private or public network, or the internet, including wireless communication protocols such as General Packet Radio Service (GPRS), Enhanced Data rates for GSM Evolution (EDGE), 3G, 4G, Long Term Evolution (LTE) protocols, and communication standards such as Project 25 (P25), Terrestrial Trunked Radio (TETRA), and satellite and/or field radio protocols.
In certain embodiments, charging device 2700 is in communication with a mobile device 704 via a network 701. (In certain embodiments, charging device 2700 is alternately or additionally in communication with a remote server (not shown in
In step 2304, the receiving device (e.g., server 710 or mobile device 704) provides the current status of the implement (e.g., holstered/unholstered and/or location of the implement) to another device, such as a client device of a team member (e.g., another mobile device), or distributes the status system-wide to other client devices, via server 710.
In step 2306, a receiving client device displays the status to a user, e.g., using a user interface plotting the location and other status information regarding an implement and its operator such as user interface 900 or 1000 shown in
The consequence of identifying a holstering or unholstering event may be configured, e.g. through a user interface accessed via link 810 in user interface 800, and such configurations may be retained in data store 716, telematics device 102, and/or mobile device 704.
Exemplary procedure to enable function of one embodiment of telematics sensor device 102:
(1) CPU initialization and power-up
(2) Self-calibration
(3) Duty-cycle for power savings
Set timer
Sleep
Timer fires; sensor device wakes up
Conduct measurement
Decision Point:
Report State
Jump to beginning of duty-cycle and repeat
If REPORT, examine report
Determine whether REPORT belongs to subset of types of REPORTs configured to be reported
Store and transmit REPORT
Monitor power
If power is low, indicate as such and transmit status
Jump to (3) and repeat
In certain embodiments, an instruction to activate or deactivate charging may be received from mobile device 704 or computing device 708. Such a request may be initiated by web client 706.
In the above-referenced U.S. application Ser. No. 13/954,903, methods and systems for monitoring and, optionally, controlling, handheld firearms using embedded telematics sensor devices configured to send and receive signals over a signaling channel of a wireless communications network were described. Briefly, a firearm configured in accordance with the invention described in the '903 Application includes a firing mechanism and a telematics sensor device. The telematics sensor device includes a subscriber identity module (SIM) configured to communicate with a server over a signaling channel of a wireless communications network. The telematics sensor device is configured to enable/disable the firing mechanism in accordance with instructions received by the SIM from the server.
Described herein are methods and systems for monitoring and, optionally, controlling, multiple handheld firearms or related instruments using embedded telematics sensor devices which communicate with a personal hub device worn or carried by an individual utilizing the firearms or related instruments. The hub is configured to send and receive signals over a signaling channel of a first wireless communications network in the fashion described in the '903 Application and to communicate with the embedded telematics sensor devices in each of the firearms and other instruments over one or more second wireless communications networks. The first wireless communications network is preferably a mobile telecommunications network, that includes a common signaling channel, such as one compliant with signaling system 7 (SS-7), which refers to a set of standards defining telephony signaling protocols. Thus, in one embodiment, the first wireless communication network may be a Global System for Mobile Communications (GSM) telecommunications network. The second wireless communication network(s) may be short-range radio frequency (RF) communications networks, such as those compliant with Bluetooth or Bluetooth Low Energy (BLE) wireless communication protocols. The second wireless communication network may be a single network through which all of the firearms and related instruments carried by an individual communicate with the hub device or it may be a plurality of ad hoc wireless communications networks by which each individual firearm or other instrument communicates with the hub device but not with others of the firearms or related instruments. For purposes of the present description, a single, second wireless communication network will be referred to, but readers should recognize that this is simply for purposes of ease of description and actual instantiations of the invention may include multiple such networks.
In the example illustrated in
Although intended primarily for use with handheld firearms and related instruments, for example, pistols, revolvers, rifles, electroshock weapons, etc., the present invention may be adapted for use with any firearm or similar instrument. Therefore, as used herein, the term firearm should be understood as including handheld firearms, electroshock weapons, and other, similar instruments, as may be used by law enforcement personnel, private security personnel, military personnel, hunters, individuals engaged in personal safety activities, and others. Further, while the embedded telematics sensor device may be a separate module that is integrated into the firearm as an after-market accessory, in some instances the functionality provided by the embedded telematics sensor device may be integrated within the firearm at the time of its manufacture, either as a separate module or as an embedded part of the mode selection or safety mechanism. Therefore, the use of the term embedded telematics sensor device is for convenience only and should be understood to include integrated modules and similar mechanisms providing the functionality described herein. Such telematics sensor devices and the hub 12 may find application in both consumer as well as commercial applications.
Because different firearms have different safety mechanisms, a detailed discussion of such mechanisms is not included herein. For purposes of the present invention, it is sufficient to recognize that virtually all firearms include such safety mechanisms and it is intended that in some embodiments of the invention the embedded telematics sensor devices will be included in a firing enable pathway and use a solenoid so as to act as an electrical-mechanical trigger safety gating means to permit or prevent such firing. In some instances this may require retrofitting of the firearm to include a suitable firing detent mechanism that can be enabled or disabled through an electronic signal from the telematics sensor device. In other instances, new firearms may be designed and constructed for inclusion of such enable/disable means. For firearms with electrical firing mechanisms, the telematics sensor device may be coupled to a switch in an electrical pathway in the firing mechanism and may be used to close or open the switch in accordance with firing authorization having been received or not.
More specifically, in one embodiment of the invention a blocking or gating means (which in one embodiment may be a cylindrical metal bar or rod) moves along an axis between a safety position and a firing position initiated by the action of a solenoid (energized/not energized), responsive to communications via the electronic components of the telematics sensor device (e.g., an electrical pulse). The blocking or gating means is movable between a first position, where the firing pin is operable to discharge the firearm, to a second position, where it is not. A first electric pulse causes the solenoid to move the blocking or gating means from the first position to the second, and a second electric pulse causes solenoid to return the blocking or gating means to its original position.
Although not shown in detail in
Turning now to
Importantly for purposes of the present invention, SIMs store network-specific information used to authenticate and identify subscribers on a mobile telephony network. These identifiers include an integrated circuit card identifier (ICCID), which identifies both the issuer of the SIM as well as a unique account number (e.g., of the subscriber), and the IMSI, which identifies the SIM to the network. In operation, the SIM also stores network state information, including a location area identity (LAI), which is updated whenever the SIM changes locations.
The SIM, as a component of the present system, is configured in accordance with embodiments of the present invention to transmit and receive signals over a dedicated signaling channel of wireless telecommunications network 22. Such mechanisms are commonly referred to as common channel signaling, distinguishing them from channel associated signaling which involves transporting signaling information on the same channel as will ultimately carry a voice conversation. Common channel signaling provides a distinct advantage in that the path and facility used to transport the signaling information is distinct from the channels that carry voice conversations, allowing for significant performance improvements in both the time it takes to communicate the signaling information and the use of network facilities. In the United States, common channel signaling is usually referred to as SS-7, which refers to a set of standards defining telephony signaling protocols. Thus, the present invention makes use of the SS-7 signaling channel of a wireless telecommunications network 22, which in one embodiment is a GSM telecommunications network.
In a GSM telecommunications network, a mobile switching center (MSC) is responsible for setting up and releasing end-to-end connections, based on signaling information received over the SS-7 signaling channel. The MSC is generally included within a mobile telephone switching office (MTSO) and is communicatively coupled to a home location register (HLR) and a central database that stores information concerning each subscriber authorized to use the network. This information includes the IMSI associated with the SIM and the current LAI.
In accordance with the present invention, communications between a SIM in hub 12 and an HLR 24 over the SS-7 signaling channel make use of USSD (Unstructured Supplementary Service Data) messages. USSD messages may be up to 182 alphanumeric characters per signaling packet. USSD messages create a real-time connection during a USSD session. The connection remains open, allowing a two-way exchange of data. This makes USSD sessions ideally suited as a communications vehicle between SIMs included in hub 12 and applications (e.g., instantiated on mobile phones 30, personal computers 32 and/or similar devices, and/or control centers 34) configured to permit firearm owners and/or users to authorize or block the use of those firearms (e.g., by authorizing or preventing the release of the firearm's safety mechanism). Some characters within the 182-character packet are otherwise un-used for transmission purposes and may be applied and used for transmission of telematics sensor device-related information, such as battery status, firearm status, etc., and for instructions signaling a solenoid to enable or disable a trigger safety mechanism.
As shown, hub 12 having a SIM that is configured in accordance with the present invention is communicatively coupled to a subscriber mobile device 30 over a wireless communications network 22. Details of the network 22 are not illustrated at this level; however, communications between the SIM and an application running on the mobile device 30 make use of the network's signaling channel rather than a voice or other channel. The application may be configured to provide alerts to the subscriber in response to the SIM signaling any movement or, optionally, attempted operation of the firearm and allows the subscriber to track such movements and/or enable or disable such operation remotely.
In addition to communicating the movement/attempted operation information to the mobile device 30, the network components may be configured to alert other units. For example, in the case of firearms associated with a police force or similar unit, alerts may be provided to a watch commander or other individual at control center 34, including via use of portable visual displays, such as mobile phone devices, where the control center itself may be mobile. This may act as a monitoring means for deployment of officers' firearms and/or an early warning indicator of the use of those firearms. Similarly, gun clubs and other private organizations may monitor the movements and/or use of their firearms (or members' firearms on the premises) so as to ensure they are being used and/or transported within guidelines established by the respective organizations. Personal computers 32 or control/command centers 34 may be used for such purposes.
Also shown in
Also shown in
In accordance with embodiments of the present invention, the CAD control center also receives information from hub 12 as hub 12 communicates with telematics sensor devices embedded in firearm 16 and other devices. Thus, a dispatcher may be provided with information concerning the movement, discharge or other operation of a firearm or other instrument and may relay such information through the CAD control center to other emergency services personnel. Alternatively, CAD server 40 may relay such information automatically, for example by sending alerts to mobile phones 44 and/or personal computers 46 (or MDUs) used by such personnel.
Thus far the hub 12 has been described primarily as a relay unit for communicating with one or more telematics sensor devices embedded in firearms and related instruments. In some embodiments, the hub may include additional features, such as location determining devices (e.g., global positioning system (GPS) receivers), and sensors for detection of illegal drugs, chemicals, gasses, and vapors associated with explosive devices, etc. Information obtained by such receivers/sensors may be communicated to a control station and/or mobile device, etc., via the same signaling channel used to relay information from a firearm. Thus, the hub may serve as a central communications facility for instrumentation and equipment carried by a police officer, security guard, soldier or other individual.
Thus, in one embodiment the present invention includes telematics sensor devices 202 in one or more firearms or related instruments, a personal hub that includes a SIM and, optionally, other receivers/sensors, and which is configured to communicate information received over a short range wireless communication network from the telematics sensor devices associated with the firearms and related instruments to a remote monitoring station via a signaling channel of a wireless telecommunications network. In addition to information received from the embedded telematics sensor devices 202 associated with the firearms and related instruments, the hub may also communicate information from its own associated receivers and/or sensors over the wireless telecommunications network to provide operators at the remote monitoring station with a more complete description of the environment in which the user associated with the firearms is operating. The hub is also configured to receive information over the signaling channel of the telecommunications network from the remote monitoring station (and/or other sources) and, responsive thereto, to send commands via the short range wireless network to the embedded telematics sensor devices associated with the firearms and related instruments to enable/disable operation of those firearms or related instruments.
In various embodiments, the telematics sensor devices associated with the firearms and other instruments may be configured to provide an alert upon one or more of: movement of the firearm, an attempted operation of the firearm, disabling of a safety of the firearm, and a change in mode of the firearm. To facilitate such actions, the telematics sensor device may include a motion detector. Upon receipt of such an alert, the hub 12 may be configured to transmit same to the remote monitoring station over the telecommunications network. In one embodiment, the telematics sensor device associated with a firearm or related instrument may be configured to periodically transmit an electronic heartbeat signal to the hub so that the hub knows the associated firearm is nearby (it is envisioned that the short range wireless communication network over which the hub and firearm telematics sensor device communicate has an effect range of a few meters to perhaps a few tens of meters). In the event the hub does not receive a heartbeat signal (which may be coded to uniquely identify the associated firearm or related instrument), the hub may transmit an alert message to the remote control station to act as a warning that the firearm has potentially become separated from its authorized user.
To this end, hubs may be configured to operate only with designated telematics sensor devices 202 (firearms) but to detect the heartbeats transmitted by other telematics sensor devices. In this way, a hub passing near a location of a stolen firearm may detect a heartbeat transmitted by that firearm, and, upon recognizing that the heartbeat is not associated with a telematics sensor device for which the hub is configured to operate, may pass the heartbeat information to a remote control center. At the remote control center, the heartbeat may be decoded to identify the associated firearm and, if recognized as being associated with a stolen firearm, an alert may be provided to law enforcement and/or other personnel in the area (e.g., via a CAD MDU). In some cases, the remote control center may wirelessly configure the hub that received the heartbeat from the stolen firearm to communicate with the telematics sensor device associated with that firearm and disable the firearm.
Within buildings and other structures or urban canyons, location determination based on Global Positioning System (GPS) receivers is not always reliable or accurate. Accordingly, the hubs are not limited to the use of GPS location determination but may also include other location determination means, such as mobile telecommunications network triangulation using femtocell devices deployed to provide cell tower location coordinates. Use of femtocell triangulation requires installing low-powered cellular base stations that have a range of approximately 40 feet. Such femtocell technology works well within buildings, for precise floor, hallway, or similar location determinations.
In accordance with embodiments of the invention, a SIM of a hub 12 communicatively couples the telematics sensor device embedded in a firearm 16 over a wireless network to a cloud-based platform (e.g., an HLR) that includes computer-based decision-making and database rule-sets for signaling information. The cloud-based platform is further communicatively coupled to a mobile device (such as a smart phone) and/or control center, which includes a firearm monitoring and safety application. The application enables the firearm owner or other user to communicate with the telematics sensor device in the firearm, for example to receive status information such as alerts produced by motion sensors included in the firearm. The user can respond to such alerts via a user interface of the application, for example to cause a solenoid to cause blocking or gating means included in the firearm to move between a first position and a second position, and vice versa. In other embodiments, the telematics sensor device may be enabled solely for purposes of tracking the location of the firearm and may not play a role in enabling or disabling the firing of the weapon.
In operation, when a hub configured in accordance with the present invention is powered on, it enters an initialization mode in which the SIM searches for a nearest base transceiver station (BTS) of a wireless telecommunications network. To facilitate communications between the SIM and the network equipment, the hub may include a radio transceiver and an antenna. The antenna may be located at or near the exterior surface of the hub and/or may have an exposed portion thereof so as to provide for a robust communication pathway.
In the initialization mode, the SIM included in the hub scans for a signal from one or more BTS signals and, if there is more than one, will generally select the one with the strongest received signal strength and that has a system identifier indicating compatibility with the SIM's network operator. The system identifier is typically broadcast by a BTS on a control channel. Once a BTS has been selected, the SIM will register with the network and, if the carrier that operates this network is not the same carrier as operates the firearm monitoring service of the present invention, the network operator will signal (using an SS-7 channel) the appropriate home carrier (i.e., the carrier associated with the present firearm monitoring service).
Network registration may vary depending on the country and/or carriers involved, but generally will include the SIM selecting a channel slot for transmission and, through the use of the radio transceiver, using the signal control path to transmit its associated phone number and IMSI to the BTS. The BTS forwards the signaling information to the local network operator's MTSO, which initiates a handshake with the SIM. The SIM responds with its unique authentication key, which is then used for encrypting and authenticating all further communications between the SIM and the MTSO. While a SIM is powered on, network registration is automatic and ongoing, occurring every several seconds and lasting only a few milliseconds. Power consumption during such registration operations is minimal.
The SS-7 protocol for SIM network registration includes specific signaling packet length(s), field(s) identity, and character length, and in addition to phone number and IMSI, the fields include a “message waiting indicator” and “feature request.” These fields may be used in accordance with the present invention for communication of some of the information required for geospatial location awareness and an “enable” or “disable” instruction over the SS-7 signaling channel.
Mobile communications between the BTS and the hub occurs through the use of radio signaling transmissions, using a full-duplex configuration and separate transmit and receive frequencies. The BTS transmits on the frequency that the hub receiver is tuned to, while the hub transmits on the radio frequency that the BTS receiver is tuned to. The BTS acts as a conduit for information transfer between the hub and the MTSO. Subscriber-specific information for use by the MTSO is contained in the HLR, which also performs an important role in tracking the hub (i.e., its associated SIM) as it moves around the network. In one embodiment, this tracking involves the use of LAI information stored by the SIM.
During registration, the SIM stores network state information, including the LAI, received from the BTS. When the firearm changes location and/or the mode of the firearm is changed (e.g., going from a “safe” mode to a “fire” mode or a “single shot” mode to a “semi-automatic” mode, etc.), the SIM stores the new LAI. Further, in accordance with the present invention, the SIM encrypts the LAI and stores it in a dial buffer of the device.
Thereafter, and periodically, a server operated by the firearm monitoring service provider may attempt to place a voice call to the SIM. This is done using the SIM information stored in the HLR. The SIM, however, is configured not to accept voice calls and responds to the attempt with a “do-not-allow” or “wink-back” message. In accordance with the present invention, this message includes the contents of the dial buffer; i.e., the encrypted LAI. At the server, the dial buffer information is combined with the information gleaned from an SS-7 “location request” solicited by the server to provide detailed location information for the SIM (i.e., for the associated firearm). Because no actual voice or data transmission occurs power consumption is minimized in these transactions. In some instances, Global Positioning System (GPS) information may be included in addition to LAI in order to further define the location of the firearm user. The GPS information may be associated with the hub (if so equipped) and/or with the BTS in communication with the SIM.
To facilitate the operations described herein, the service provider's HLR 24 is configured to include parameters useful for monitoring firearms, which parameters may include but are not limited to: name of registrant (often, though not necessarily the firearm owner), purchase date, make and type of firearm, location purchased, description of authorized use areas (i.e., description of geo-fence boundaries), description of authorized use dates and/or times (e.g., times-of-day/days-of-week, etc.). An associated database 28 is configured with rule sets that define messages to be sent to a hub. For example, rules that are based on HLR parameters defining geo-fences and/or use dates and/or times may be provided. When information from a hub is received at the server, the server consults the HLR to retrieve the associated use parameters for firearms associated with that hub and issues instructions in accordance with those parameters. For example, in the case of a subscriber that has defined permitted uses of a firearm to be on weekends from 09:00 to 11:00, upon receipt of a signal from a hub indicating that a safety has been disabled, the server will retrieve the associated parameters from the HLR, compare the permitted use days/times with the current day/time and issue an enable or disable instruction to the hub for relay to the firearm accordingly. Similar enable/disable instructions based on geo-fence rule sets and decisions based upon real-time receipt of hub location information may also be dispatched. Logs of such decisions and instructions may be kept for later review and assessment.
Ideally, the HLR and any associated database are accessible only via authenticated accesses by the firearm owner and/or authorized individuals. In some countries, law enforcement personnel may be permitted to access and/or override certain parameters. For example, in some countries, law enforcement personnel or governmental authorities may be able to enforce firearm-free zones through one or more default HLR parameters applied to all firearms registered with the service provider. Changes in HLR parameters may, in some circumstances, also be subject to “waiting periods” in order to permit review by law enforcement or other government authorities.
Applications running on a subscriber's mobile device may be used to configure the geo-fences and other parameters stored at the HLR. In addition, the application may be used to receive location information concerning the hub. For example, subscribers may use the application to poll the HLR for current location information and/or may receive alerts when location updates are received by the HLR in response to detected movements of the firearm.
The computer- or controller-based devices described herein generally will include includes a bus or other communication mechanism for communicating information, and a processor coupled with the bus for processing information. Such devices also will include main memory, such as a RAM or other dynamic storage device, coupled to the bus for storing information and instructions to be executed by processor. Main memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor. Such devices further will include a ROM or other static storage device coupled to the bus for storing information and instructions for the processor. A storage device, such as a hard disk or flash drive, may also be provided and coupled to the bus for storing information and instructions. Execution of the sequences of instructions contained in the main memory, ROM and/or storage device causes the processor to perform the process steps described herein. Such devices also include a communication interface coupled to the bus, which communication interface provides a two-way data communication path as is known in the art. For example, such a communication interface may be a local area network (LAN) interface to provide a data communication connection to a compatible LAN.
Thus, methods and systems for monitoring and, optionally, controlling, handheld firearms and related instruments that make use of one or more embedded telematics sensor devices configured to send and receive signals over a wireless communications network have been described. In various embodiments, the present invention provides a safety mechanism for a firearm in which a personal hub is used as a communications gateway to and from the firearm and, optionally, a decision-gate in the firing enable path thereof.
In addition or as an alternative to the above, the following embodiments are described:
Embodiment 1 is directed to a system for controlling a camera, comprising:
Embodiment 2 is directed to embodiment 1, the local system further comprising a beacon, wherein the beacon is mounted on a vehicle, and the one or more cameras are configured to change status based upon a detection of proximity to the beacon.
Embodiment 3 is directed to embodiment 1, the local system further comprising a mobile device, wherein the mobile device is in communication with the one or more cameras and the one or more telematics sensor devices via the personal area network, wherein the mobile device is configured to receive information regarding events from the one or more telematics sensor devices, and the mobile device is configured to provide instructions regarding camera status to the one or more cameras.
Embodiment 4 is directed to embodiment 1, further comprising a server that is directly or indirectly in communication with the one or more camera devices and with the one or more telematics sensor devices using a wide area network.
Embodiment 5 is directed to embodiment 4, further comprising an updated rule set received from the server.
Embodiment 6 is directed to a user interface on a display of a computing device that includes a processor, comprising:
a display area for displaying the status of a body camera; and
a user control configured to change the status of the body camera,
wherein the status of the body camera may be selected from the group consisting of recording, not recording, powered on, and standby mode.
Embodiment 7 is directed to embodiment 6, wherein the computing device is a mobile computing device.
Embodiment 8 is directed to method for activating a camera associated with a user, comprising:
Embodiment 9 is directed to embodiment 8, wherein the instruction to change the status of the camera was initiated by a remote command center.
Embodiment 10 is directed to embodiment 8, further comprising:
Embodiment 11 is directed to embodiment 8, wherein the event is selected from the group consisting of: user exits a vehicle with a firearm, user enters a vehicle with a firearm, holstering a firearm, unholstering a firearm, discharging a firearm, approaching a second user of the system, a firearm is separated from the user, loud noise is detected, and receiving a notification from a second user of the system or dispatch or command.
Embodiment 12 is directed to embodiment 11, wherein the event is unholstering a firearm, and the event was detected using a sensor device relying on a pulse induction mechanism.
Embodiment 13 is directed to embodiment 8, wherein the instruction to change the status of the camera is selected from the group consisting of: turning on the camera, waking the camera, activating recording of video at the camera, marking existing video to be retained, and/or marking new video to be retained.
Embodiment 14 is directed to embodiment 13, wherein at least 30 seconds of existing video is marked to be retained.
Embodiment 15 is directed to embodiment 8, wherein the camera is mounted on a vehicle, mounted on eyegear, clipped to a vest, or mounted on a lanyard.
Embodiment 16 is directed to embodiment 8, wherein the information provided to a remote server includes an alert.
Embodiment 17 is directed to embodiment 8, wherein an alert message is distributed to multiple recipients.
Embodiment 18 is directed to embodiment 8, wherein the firearm is a handgun, a Taser, a baton, or a rifle.
Embodiment 19 is directed to embodiment 8, wherein the information provided to a remote server is only provided when the firearm is associated with an on-duty status.
Embodiment 20 is directed to embodiment 8, wherein the metadata comprises a time stamp and the category of event.
Embodiment 21 is directed to embodiment 8, wherein the metadata is selected from one or more of: date, coordinates, altitude, firearm orientation, movement, translation, bearing.
Embodiment 22 is directed to embodiment 8, wherein the metadata comprises the ammunition type, and/or the ammunition remaining.
Embodiment 23 is directed to embodiment 8, wherein the metadata are provided as one or more tracks that map to a video file.
Embodiment 1a is directed to a system for identifying the individual who discharged a firearm, comprising:
Embodiment 2a is directed to embodiment 1a, the local system further comprising a mobile device, wherein the mobile device is in communication with the one or more telematics sensor devices via a personal area network.
Embodiment 3a is directed to embodiment 2a, wherein the mobile device is configured to execute the instructions.
Embodiment 4a is directed to embodiment 2a, wherein a remote server is configured to execute the instructions.
Embodiment 5a is directed to embodiment 1a, the local system further comprising a holster telematics sensor device mounted on a holster for the firearm, and wherein the one or more telematics sensor devices associated with the firearm are activated and begin making inertial measurements when the holster telematics sensor device determines that the firearm is unholstered.
Embodiment 6a is directed to embodiment 1a, wherein the one or more telematics sensor devices are further configured to identify an event comprising the discharge of the firearm, and wherein the instructions further include associating the event with one or more of the group selected from: a geographic location of the event, and the direction of aim for the firearm.
Embodiment 7a is directed to embodiment 1a, wherein the database further comprises data concerning firing events associated with a firearm operator, wherein the data include firearm bearing and geographic location.
Embodiment 8a is directed to a method for identifying the individual who discharged a firearm, comprising:
Embodiment 9a is directed to embodiment 8a, wherein the test firearm signature is a set of three waveforms corresponding to a time period encompassing a trigger pull and discharge of the firearm.
Embodiment 10a is directed to embodiment 9a, wherein the three waveforms represent movements within three spatial axes.
Embodiment 11a is directed to embodiment 10a, wherein the inertial measurements are filtered with a band pass filter in order to generate the test firearm signature.
Embodiment 12a is directed to embodiment 8a, wherein the similarity is determined using a least-squares comparison, principal component analysis, or Pearson correlation.
Embodiment 13a is directed to embodiment 9a, wherein the time period and corresponding waveform data are segmented into: prior to discharge, discharge, and subsequent to discharge.
Embodiment 14a is directed to embodiment 10a, wherein the three waveforms are based upon linear acceleration along three spatial axes.
Embodiment 15a is directed to embodiment 10a, wherein the three waveforms are based upon rotation about three spatial axes.
Embodiment 16a is directed to embodiment 10a, wherein the three waveforms are based upon a combination of acceleration and rotation with respect to three spatial axes.
Embodiment 1b is directed to a system for detection of the status of an implement on a mount, comprising:
Embodiment 2b is directed to embodiment 1b, wherein the implement is selected from the group consisting of: a lethal weapon, a nonlethal weapon, a policing implement, a camera, an ammunition-related implement, and a radio.
Embodiment 3b is directed to embodiment 1b, wherein the telematics device uses inductive coupling to detect the presence or absence of the implement.
Embodiment 4b is directed to embodiment 1b, wherein the telematics device uses a dielectric-shift-based mechanism to detect the presence or absence of the implement.
Embodiment 5b is directed to embodiment 1b, wherein the status of the mount is provided to a mobile device via a personal area network.
Embodiment 6b is directed to embodiment 1b, wherein the status of the mount is communicated to a server.
Embodiment 7b is directed to embodiment 1b, wherein the status of the mount is communicated in real time.
Embodiment 8b is directed to embodiment 1b, wherein the mount is a holster, and the telematics device is external to an interior cavity of the holster.
Embodiment 9b is directed to embodiment 1b, wherein the telematics device is attached to the mount using a reversible adhesive or an interposer, and the mount is off-the-shelf.
Embodiment 10b is directed to embodiment 1b, wherein the telematics device is configured to wirelessly receive instructions to suspend or resume status monitoring, and to wirelessly receive a profile including parameters for detecting the presence or absence of an implement.
Embodiment 11b is directed to embodiment 1b, wherein the status of the mount further comprises the location of the mount.
Embodiment 12b is directed to a method for sharing the status of an implement on a mount, comprising:
Embodiment 13b is directed to embodiment 12b, wherein the determination and the location are received by way of a mobile device in communication with the telematics device mounted on the mount, and the current status is provided via a user interface that includes changes in status and displays the location of the implement on a map.
Embodiment 14b is directed to embodiment 12b, wherein the determination and the location were received at a mobile device, and the current status of the implement as well as the current status of other implements are provided via a graphical user interface that displays the status of each implement on a map.
Embodiment 15b is directed to embodiment 14b, wherein the statuses displayed on the map were obtained via a personal or local area network without relaying communications via a remote server.
Embodiment 16b is directed to embodiment 12b, wherein the determination is updated one or more times per five seconds.
Embodiment 17b is directed to embodiment 12b, wherein the determination is updated one or more times per second.
Embodiment 18b is directed to embodiment 13b, wherein the mobile device is a radio.
Embodiment 19b is directed to embodiment 13b, wherein the mobile device provides the user interface.
Embodiment 20b is directed to embodiment 13b, wherein a client device that is different from the mobile device provides the user interface.
Embodiment 21b is directed to embodiment 12b, wherein the current status is provided as an alert message.
Embodiment 22b is directed to a method for sharing the status of an implement on a mount, comprising:
Embodiment 23b is directed to embodiment 22b, wherein the one or more automated task is one or more of initiating forensic logging, opening a radio channel, and waking from a sleep state.
Embodiment 1c is directed to a system for charging a firearm accessory, comprising:
Embodiment 2c is directed to embodiment 1c, wherein the charging device is secured within the magazine chamber by way of a standard magazine catch.
Embodiment 3c is directed to embodiment 1c, wherein the charging device comprises an inductive charging coil.
Embodiment 4c is directed to embodiment 1c, wherein the charging device forms a direct connection with the accessory by positioning contacts on the accessory in physical proximity to contacts on the charging device.
Embodiment 5c is directed to embodiment 1c, wherein the accessory comprises circuitry configured to provide and receive communications with a remote device over a wireless subsystem.
Embodiment 6c is directed to embodiment 1c, wherein the charging device comprises circuitry configured to provide and receive communications with a remote device over a wireless subsystem.
Embodiment 7c is directed to embodiment 1c, wherein the charging device disables the firing mechanism of the firearm upon securing the charging device within the magazine chamber.
Embodiment 8c is directed to embodiment 2c, wherein the charging device comprises a protrusion that physically interferes with movement of the trigger mechanism of the firearm.
Embodiment 9c is directed to embodiment 3c, wherein the inductive charging coil is formed using a stacked winding or is formed using integrated traces upon a printed circuit board.
Embodiment 10c is directed to embodiment 1c, wherein the time to charge the accessory is less than 8 hours.
Embodiment 11c is directed to embodiment 1c, wherein the system automatically halts charging when the accessory reaches a target charge level.
Embodiment 12c is directed to embodiment 1c, wherein the charging device comprises a rechargeable battery.
Embodiment 13c is directed to embodiment 1c, wherein the charging device includes visual indicators that show the status of charging.
Embodiment 14c is directed to a method for charging a firearm accessory, comprising:
Embodiment 15c is directed to embodiment 14c, wherein the status message further comprises information about the amount of remaining battery charge for a battery of the firearm accessory, or the rate of charging for the battery of the firearm accessory.
Embodiment 16c is directed to embodiment 14c, wherein the status message is provided by the firearm accessory.
Embodiment 17c is directed to embodiment 14c, wherein the status message is provided by the charging device.
Embodiment 18c is directed to embodiment 14c, wherein the method further comprises receiving, at the firearm, a message to activate or deactivate charging of the firearm accessory, and activating or deactivating charging accordingly.
Embodiment 19c is directed to embodiment 14c, wherein the remote device is a mobile device.
Embodiment 20c is directed to embodiment 14c, wherein the remote device is a server.
The foregoing description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” and the like are used merely as labels, and are not intended to impose numerical requirements on their objects.
This application is a continuation of U.S. patent application Ser. No. 16/952,973, filed Nov. 19, 2020, which is a continuation of U.S. patent application Ser. No. 16/701,754, filed Dec. 3, 2019 (now issued as U.S. Pat. No. 10,866,054), which is a continuation of U.S. patent application Ser. No. 16/158,106, filed Oct. 11, 2018 (abandonded), which is a continuation of U.S. patent application Ser. No. 15/934,817, filed Mar. 23, 2018 (now issued as U.S. Pat. No. 10,107,583), which is a divisional of U.S. patent application Ser. No. 15/415,642 (now issued as U.S. Pat. No. 9,958,228), filed Jan. 25, 2017, which is a continuation-in-part of: (1) U.S. patent application Ser. No. 14/970,104, filed Dec. 15, 2015, which claims the benefit of U.S. Provisional Application No. 62/092,133, filed Dec. 15, 2014, (2) U.S. patent application Ser. No. 14/970,109, filed Dec. 15, 2015, which claims the benefit of U.S. Provisional Application No. 62/092,153, filed Dec. 15, 2014, (3) U.S. patent application Ser. No. 14/970,112, filed Dec. 15, 2015, which claims the benefit of U.S. Provisional Application No. 62/092,167, filed Dec. 15, 2014, (4) U.S. patent application Ser. No. 14/986,139, filed Dec. 31, 2015, which claims the benefit of U.S. Provisional Application No. 62/283,807, filed Sep. 14, 2015 and (5) U.S. patent application Ser. No. 15/189,917, filed Jun. 22, 2016 (now U.S. Pat. No. 9,658,012), which is a continuation of U.S. patent application Ser. No. 14/023,371, filed Sep. 10, 2013 (now U.S. Pat. No. 9,395,132), which is a continuation-in-part of U.S. patent application Ser. No. 13/954,903, filed Jul. 30, 2013 (now U.S. Pat. No. 9,404,698), which is a continuation-in-part of U.S. patent application Ser. No. 13/913,478, filed Jun. 9, 2013 (now U.S. Pat. No. 9,400,150), which claims the benefit of: (a) U.S. Provisional Pat. Appl. No. 61/853,179, filed Apr. 1, 2013, (b) U.S. Provisional Pat. Appl. No. 61/853,971, filed Apr. 16, 2013, and (c) U.S. Provisional Pat. Appl. No. 61/825,985, filed May 21, 2013; the disclosure of each of these applications is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4291481 | Hillberg | Sep 1981 | A |
4409670 | Herndon et al. | Oct 1983 | A |
4488370 | Lemelson | Dec 1984 | A |
4556872 | Masoncup et al. | Dec 1985 | A |
4811578 | Masoncup et al. | Mar 1989 | A |
4863130 | Marks, Jr. | Sep 1989 | A |
4918473 | Blackshear | Apr 1990 | A |
5027104 | Reid | Jun 1991 | A |
5096287 | Kakinami et al. | Mar 1992 | A |
5111289 | Lucas et al. | May 1992 | A |
5194845 | Sirmon et al. | Mar 1993 | A |
5289321 | Secor | Feb 1994 | A |
5381155 | Gerber | Jan 1995 | A |
5446659 | Yamawaki | Aug 1995 | A |
5449103 | Tilley | Sep 1995 | A |
5453939 | Hoffman et al. | Sep 1995 | A |
5473729 | Bryant et al. | Dec 1995 | A |
5479149 | Pike | Dec 1995 | A |
5487234 | Dragon | Jan 1996 | A |
5497419 | Hill | Mar 1996 | A |
5525966 | Parish | Jun 1996 | A |
5526133 | Paff | Jun 1996 | A |
5553311 | Mclaughlin et al. | Sep 1996 | A |
5585798 | Yoshioka et al. | Dec 1996 | A |
5642285 | Woo et al. | Jun 1997 | A |
5655461 | Gilbert | Aug 1997 | A |
5668675 | Fredricks | Sep 1997 | A |
5675925 | Wurger | Oct 1997 | A |
5689442 | Swanson et al. | Nov 1997 | A |
5742336 | Lee | Apr 1998 | A |
5752632 | Sanderson et al. | May 1998 | A |
5798458 | Monroe | Aug 1998 | A |
5815093 | Kikinis | Sep 1998 | A |
5850613 | Bullecks | Dec 1998 | A |
5878283 | House et al. | Mar 1999 | A |
5886739 | Winningstad | Mar 1999 | A |
5890079 | Levine | Mar 1999 | A |
5926210 | Hackett et al. | Jul 1999 | A |
5953844 | Harling et al. | Sep 1999 | A |
5978017 | Tino | Nov 1999 | A |
5983161 | Lemelson et al. | Nov 1999 | A |
5996023 | Winter et al. | Nov 1999 | A |
6008841 | Charlson | Dec 1999 | A |
6028528 | Lorenzetti et al. | Feb 2000 | A |
6052068 | Price R-W et al. | Apr 2000 | A |
6097429 | Seeley et al. | Aug 2000 | A |
6100806 | Gaukel | Aug 2000 | A |
6121881 | Bieback et al. | Sep 2000 | A |
6141609 | Herdeg et al. | Oct 2000 | A |
6144375 | Jain et al. | Nov 2000 | A |
6163338 | Johnson et al. | Dec 2000 | A |
6175300 | Kendrick | Jan 2001 | B1 |
6223461 | Mardirossian | May 2001 | B1 |
6272781 | Resnick | Aug 2001 | B1 |
6298290 | Abe et al. | Oct 2001 | B1 |
6310541 | Atkins | Oct 2001 | B1 |
6314364 | Nakamura | Nov 2001 | B1 |
6321478 | Klebes | Nov 2001 | B1 |
6326900 | Deline et al. | Dec 2001 | B2 |
6333694 | Pierce et al. | Dec 2001 | B2 |
6333759 | Mazzilli | Dec 2001 | B1 |
6357156 | Klebes et al. | Mar 2002 | B1 |
6363647 | Kaminski | Apr 2002 | B2 |
6370475 | Breed et al. | Apr 2002 | B1 |
RE37709 | Dukek | May 2002 | E |
6389340 | Rayner | May 2002 | B1 |
6396403 | Haner | May 2002 | B1 |
6405112 | Rayner | Jun 2002 | B1 |
6415542 | Bates et al. | Jul 2002 | B1 |
6421943 | Caulfield et al. | Jul 2002 | B1 |
6429769 | Fulgueira | Aug 2002 | B1 |
6449540 | Rayner | Sep 2002 | B1 |
6452572 | Fan et al. | Sep 2002 | B1 |
6477801 | O'Dwyer | Nov 2002 | B1 |
6510642 | Riener | Jan 2003 | B2 |
6518881 | Monroe | Feb 2003 | B2 |
6525672 | Chainer et al. | Feb 2003 | B2 |
6546119 | Ciolli et al. | Apr 2003 | B2 |
6560463 | Santhoff | May 2003 | B1 |
6591242 | Karp et al. | Jul 2003 | B1 |
6678984 | Rapp et al. | Jan 2004 | B1 |
6681195 | Poland et al. | Jan 2004 | B1 |
6697103 | Fernandez et al. | Feb 2004 | B1 |
6718239 | Rayner | Apr 2004 | B2 |
6727816 | Helgeson | Apr 2004 | B1 |
6735897 | Schmitter et al. | May 2004 | B1 |
6748792 | Freund et al. | Jun 2004 | B1 |
6823621 | Gotfried | Nov 2004 | B2 |
6831556 | Boykin | Dec 2004 | B1 |
6856873 | Breed et al. | Feb 2005 | B2 |
6970183 | Monroe | Nov 2005 | B1 |
6975204 | Silver | Dec 2005 | B1 |
7004848 | Konow | Feb 2006 | B2 |
7012632 | Freeman et al. | Mar 2006 | B2 |
7034683 | Ghazarian | Apr 2006 | B2 |
7038590 | Hoffman et al. | May 2006 | B2 |
D529528 | Ross. , Jr. et al. | Oct 2006 | S |
7116224 | Mickler | Oct 2006 | B2 |
7119832 | Blanco et al. | Oct 2006 | B2 |
7126472 | Kraus et al. | Oct 2006 | B2 |
7147155 | Weekes | Dec 2006 | B2 |
7158167 | Yerazunis et al. | Jan 2007 | B1 |
7180407 | Guo et al. | Feb 2007 | B1 |
7190882 | Gammenthaler | Mar 2007 | B2 |
7275691 | Wright et al. | Oct 2007 | B1 |
7281397 | Victor | Oct 2007 | B2 |
7359553 | Wendt et al. | Apr 2008 | B1 |
7371021 | Ross. , Jr. et al. | May 2008 | B2 |
7389604 | Newkirk et al. | Jun 2008 | B2 |
7436955 | Yan et al. | Oct 2008 | B2 |
7448996 | Khanuja et al. | Nov 2008 | B2 |
7456875 | Kashiwa | Nov 2008 | B2 |
7488996 | Chang | Feb 2009 | B2 |
7496140 | Winningstad et al. | Feb 2009 | B2 |
7500794 | Clark | Mar 2009 | B1 |
7508941 | O'Toole et al. | Mar 2009 | B1 |
7536457 | Miller | May 2009 | B2 |
7539533 | Tran | May 2009 | B2 |
7561037 | Monroe | Jul 2009 | B1 |
7594416 | Bosin | Sep 2009 | B2 |
7600339 | Schumacher et al. | Oct 2009 | B2 |
7602301 | Stirling et al. | Oct 2009 | B1 |
7659827 | Gunderson et al. | Feb 2010 | B2 |
7680947 | Nicholl et al. | Mar 2010 | B2 |
7697035 | Suber et al. | Apr 2010 | B1 |
7703229 | Parhofer et al. | Apr 2010 | B2 |
7744483 | Konow | Jun 2010 | B2 |
7804426 | Etcheson | Sep 2010 | B2 |
7806525 | Howell et al. | Oct 2010 | B2 |
7843491 | Vallone et al. | Nov 2010 | B2 |
7849624 | Holt et al. | Dec 2010 | B2 |
7853944 | Choe | Dec 2010 | B2 |
7886471 | Glock | Feb 2011 | B2 |
7921588 | Brown et al. | Apr 2011 | B2 |
7996771 | Girgensohn et al. | Aug 2011 | B2 |
8046948 | Mauch et al. | Nov 2011 | B2 |
8077029 | Daniel et al. | Dec 2011 | B1 |
8127482 | O'Shaughnessy et al. | Mar 2012 | B2 |
8166693 | Hughes et al. | May 2012 | B2 |
8175314 | Webster | May 2012 | B1 |
8205372 | Anzeloni | Jun 2012 | B2 |
8269617 | Cook et al. | Sep 2012 | B2 |
8312660 | Fujisaki | Nov 2012 | B1 |
8314708 | Gunderson et al. | Nov 2012 | B2 |
8339257 | Cazanas et al. | Dec 2012 | B2 |
8373567 | Denson | Feb 2013 | B2 |
8375838 | Rudakevych et al. | Feb 2013 | B2 |
8384539 | Denny et al. | Feb 2013 | B2 |
8402799 | Victor | Mar 2013 | B2 |
8456293 | Trundle et al. | Jun 2013 | B1 |
8503972 | Haler et al. | Aug 2013 | B2 |
8508353 | Cook et al. | Aug 2013 | B2 |
8520069 | Haler | Aug 2013 | B2 |
8584388 | Fujisaki | Nov 2013 | B1 |
8604906 | Halferty et al. | Dec 2013 | B1 |
8606492 | Botnen | Dec 2013 | B1 |
8653974 | Crook | Feb 2014 | B2 |
8676428 | Richardson et al. | Mar 2014 | B2 |
8707758 | Keays | Apr 2014 | B2 |
8725462 | Jain et al. | May 2014 | B2 |
8726556 | Willingham | May 2014 | B1 |
8733006 | Williams et al. | May 2014 | B2 |
8744642 | Nemat-Nasser et al. | Jun 2014 | B2 |
8781292 | Ross et al. | Jul 2014 | B1 |
8781442 | Link, II | Jul 2014 | B1 |
8819979 | Kelly | Sep 2014 | B2 |
8849501 | Cook et al. | Sep 2014 | B2 |
8850733 | Oster | Oct 2014 | B1 |
8854199 | Cook et al. | Oct 2014 | B2 |
8887050 | Siracusano, Jr. | Nov 2014 | B1 |
8887430 | Wichner | Nov 2014 | B2 |
8922335 | Deweese et al. | Dec 2014 | B2 |
8930072 | Lambert et al. | Jan 2015 | B1 |
8931195 | Milde, Jr. | Jan 2015 | B2 |
8947252 | Wilson | Feb 2015 | B2 |
8966797 | Carlson | Mar 2015 | B2 |
8989914 | Nemat-Nasser et al. | Mar 2015 | B1 |
8996234 | Tamari et al. | Mar 2015 | B1 |
9066199 | Forst et al. | Jun 2015 | B2 |
9140509 | Sullivan et al. | Sep 2015 | B2 |
9175915 | Harvey | Nov 2015 | B2 |
9250030 | Henry | Feb 2016 | B2 |
9253452 | Ross et al. | Feb 2016 | B2 |
9336675 | Miller et al. | May 2016 | B2 |
9395132 | Stewart et al. | Jul 2016 | B2 |
9400150 | Stewart et al. | Jul 2016 | B2 |
9404698 | Stewart et al. | Aug 2016 | B2 |
9546835 | Efremkina | Jan 2017 | B2 |
9640062 | Schuler et al. | May 2017 | B2 |
9666056 | Herrera et al. | May 2017 | B2 |
9752840 | Betro | Sep 2017 | B1 |
9779307 | Laska et al. | Oct 2017 | B2 |
9958228 | Stewart et al. | May 2018 | B2 |
10006742 | Campbell | Jun 2018 | B1 |
10009046 | Armstrong | Jun 2018 | B1 |
10058290 | Proud | Aug 2018 | B1 |
10866054 | Stewart et al. | Dec 2020 | B2 |
20010032405 | Kaminski | Oct 2001 | A1 |
20010032407 | Cain et al. | Oct 2001 | A1 |
20010033228 | Kisreman et al. | Oct 2001 | A1 |
20020013517 | West et al. | Jan 2002 | A1 |
20020032510 | Turnball et al. | Mar 2002 | A1 |
20020032976 | Riener | Mar 2002 | A1 |
20020044065 | Quist et al. | Apr 2002 | A1 |
20020049881 | Sugimura | Apr 2002 | A1 |
20020084130 | Ghazarian et al. | Jul 2002 | A1 |
20020112390 | Harling et al. | Aug 2002 | A1 |
20020131768 | Gammenthaler | Sep 2002 | A1 |
20020135336 | Zhou et al. | Sep 2002 | A1 |
20020159434 | Gosior et al. | Oct 2002 | A1 |
20020178635 | Martin | Dec 2002 | A1 |
20020191952 | Fiore et al. | Dec 2002 | A1 |
20030040917 | Fiedler | Feb 2003 | A1 |
20030056638 | Poole | Mar 2003 | A1 |
20030080878 | Kirmuss | May 2003 | A1 |
20030081935 | Kirmuss | May 2003 | A1 |
20030081942 | Melnyk et al. | May 2003 | A1 |
20030095688 | Kirmuss | May 2003 | A1 |
20030106917 | Shelter et al. | Jun 2003 | A1 |
20030133018 | Ziemkowski | Jul 2003 | A1 |
20030173408 | Mosher, Jr. et al. | Sep 2003 | A1 |
20030215010 | Kashiwa | Nov 2003 | A1 |
20030215114 | Kyle | Nov 2003 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20040043765 | Tolhurst | Mar 2004 | A1 |
20040090469 | Moon et al. | May 2004 | A1 |
20040098584 | Sherman et al. | May 2004 | A1 |
20040145457 | Schofield et al. | Jul 2004 | A1 |
20040168002 | Accarie et al. | Aug 2004 | A1 |
20040199785 | Pederson | Oct 2004 | A1 |
20040223054 | Rotholtz | Nov 2004 | A1 |
20050000139 | Mauch et al. | Jan 2005 | A1 |
20050030151 | Singh | Feb 2005 | A1 |
20050035161 | Shioda | Feb 2005 | A1 |
20050046583 | Richards | Mar 2005 | A1 |
20050066567 | Newkirk et al. | Mar 2005 | A1 |
20050066587 | Newkirk et al. | Mar 2005 | A1 |
20050068169 | Copley et al. | Mar 2005 | A1 |
20050094966 | Elberbaum | May 2005 | A1 |
20050100329 | Lao et al. | May 2005 | A1 |
20050134966 | Burgner | Jun 2005 | A1 |
20050153729 | Logan et al. | Jul 2005 | A1 |
20050167172 | Fernandez | Aug 2005 | A1 |
20050188583 | Jackson et al. | Sep 2005 | A1 |
20050206532 | Lock | Sep 2005 | A1 |
20050228234 | Yang | Oct 2005 | A1 |
20050232469 | Schofield et al. | Oct 2005 | A1 |
20050250501 | Mobin et al. | Nov 2005 | A1 |
20050262751 | Leslie | Dec 2005 | A1 |
20060009238 | Stanco et al. | Jan 2006 | A1 |
20060028811 | Ross., Jr. et al. | Feb 2006 | A1 |
20060042142 | Sinha | Mar 2006 | A1 |
20060072014 | Geng et al. | Apr 2006 | A1 |
20060082730 | Franks | Apr 2006 | A1 |
20060087439 | Tolliver | Apr 2006 | A1 |
20060098088 | Raghunath | May 2006 | A1 |
20060158968 | Vanman et al. | Jul 2006 | A1 |
20060164220 | Harter, Jr. et al. | Jul 2006 | A1 |
20060164534 | Robinson et al. | Jul 2006 | A1 |
20060170770 | MacCarthy | Aug 2006 | A1 |
20060176149 | Douglas | Aug 2006 | A1 |
20060183505 | Willrich | Aug 2006 | A1 |
20060208857 | Wong | Sep 2006 | A1 |
20060220826 | Rast | Oct 2006 | A1 |
20060223518 | Haney | Oct 2006 | A1 |
20060244601 | Nishimura | Nov 2006 | A1 |
20060256822 | Kwong et al. | Nov 2006 | A1 |
20060270465 | Lee et al. | Nov 2006 | A1 |
20060274828 | Siemens et al. | Dec 2006 | A1 |
20060282021 | DeVaul et al. | Dec 2006 | A1 |
20060287821 | Lin | Dec 2006 | A1 |
20060293571 | Bao et al. | Dec 2006 | A1 |
20070021134 | Liou | Jan 2007 | A1 |
20070033170 | Sull et al. | Feb 2007 | A1 |
20070037605 | Logan | Feb 2007 | A1 |
20070064108 | Haler | Mar 2007 | A1 |
20070067079 | Kosugi | Mar 2007 | A1 |
20070074438 | Parhofer et al. | Apr 2007 | A1 |
20070102508 | McIntosh | May 2007 | A1 |
20070117083 | Winneg et al. | May 2007 | A1 |
20070132567 | Schofield et al. | Jun 2007 | A1 |
20070152811 | Anderson | Jul 2007 | A1 |
20070172053 | Poirier | Jul 2007 | A1 |
20070177023 | Beuhler et al. | Aug 2007 | A1 |
20070180749 | Schumacher et al. | Aug 2007 | A1 |
20070211025 | Sato | Sep 2007 | A1 |
20070229350 | Scalisi et al. | Oct 2007 | A1 |
20070257781 | Denson | Nov 2007 | A1 |
20070257782 | Etcheson | Nov 2007 | A1 |
20070257804 | Gunderson et al. | Nov 2007 | A1 |
20070257815 | Gunderson et al. | Nov 2007 | A1 |
20070257987 | Wang | Nov 2007 | A1 |
20070260361 | Etcheson | Nov 2007 | A1 |
20070268158 | Gunderson et al. | Nov 2007 | A1 |
20070271105 | Gunderson et al. | Nov 2007 | A1 |
20070271830 | Holt et al. | Nov 2007 | A1 |
20070271831 | Newkirk et al. | Nov 2007 | A1 |
20070277420 | Newkirk et al. | Dec 2007 | A1 |
20070284474 | Olson et al. | Dec 2007 | A1 |
20070285222 | Zadnikar | Dec 2007 | A1 |
20070287425 | Bates | Dec 2007 | A1 |
20070297320 | Brummette et al. | Dec 2007 | A1 |
20080001735 | Tran | Jan 2008 | A1 |
20080002599 | Yau et al. | Jan 2008 | A1 |
20080030580 | Kashiwa et al. | Feb 2008 | A1 |
20080032268 | Farrell et al. | Feb 2008 | A1 |
20080039962 | McRae | Feb 2008 | A1 |
20080042825 | Denny et al. | Feb 2008 | A1 |
20080043736 | Stanley | Feb 2008 | A1 |
20080049830 | Richardson | Feb 2008 | A1 |
20080061991 | Urban | Mar 2008 | A1 |
20080063252 | Dobbs et al. | Mar 2008 | A1 |
20080079581 | Price | Apr 2008 | A1 |
20080092610 | Kuo et al. | Apr 2008 | A1 |
20080100705 | Kister et al. | May 2008 | A1 |
20080120051 | Ivanisevic et al. | May 2008 | A1 |
20080121097 | Rudakevych et al. | May 2008 | A1 |
20080122603 | Plante et al. | May 2008 | A1 |
20080129518 | Carlton-Foss | Jun 2008 | A1 |
20080143481 | Abraham et al. | Jun 2008 | A1 |
20080144705 | Rackin et al. | Jun 2008 | A1 |
20080211906 | Lovric | Sep 2008 | A1 |
20080239064 | Iwasaki | Oct 2008 | A1 |
20080246656 | Ghazarian | Oct 2008 | A1 |
20080266118 | Pierson et al. | Oct 2008 | A1 |
20080289237 | Pikielny | Nov 2008 | A1 |
20080299989 | King et al. | Dec 2008 | A1 |
20090002491 | Haler | Jan 2009 | A1 |
20090002556 | Manapragada et al. | Jan 2009 | A1 |
20090037374 | Delia et al. | Feb 2009 | A1 |
20090063847 | Haynes et al. | Mar 2009 | A1 |
20090064557 | Hughes et al. | Mar 2009 | A1 |
20090069953 | Hale | Mar 2009 | A1 |
20090070820 | Li | Mar 2009 | A1 |
20090122142 | Shapley | May 2009 | A1 |
20090141129 | Dischinger | Jun 2009 | A1 |
20090169068 | Okamoto | Jul 2009 | A1 |
20090207252 | Raghunath | Aug 2009 | A1 |
20090213204 | Wong | Aug 2009 | A1 |
20090243794 | Morrow | Oct 2009 | A1 |
20090252486 | Ross., Jr. et al. | Oct 2009 | A1 |
20090255160 | Summers | Oct 2009 | A1 |
20100060734 | Chou | Mar 2010 | A1 |
20100177891 | Keidar et al. | Jul 2010 | A1 |
20100188201 | Cook et al. | Jul 2010 | A1 |
20100191411 | Cook et al. | Jul 2010 | A1 |
20100192444 | Cabahug et al. | Aug 2010 | A1 |
20100238009 | Cook et al. | Sep 2010 | A1 |
20100238262 | Kurtz et al. | Sep 2010 | A1 |
20100242076 | Potesta et al. | Sep 2010 | A1 |
20100250021 | Cook et al. | Sep 2010 | A1 |
20100265331 | Tanaka | Oct 2010 | A1 |
20100284683 | Fressola et al. | Nov 2010 | A1 |
20100315235 | Adgoke et al. | Dec 2010 | A1 |
20100324859 | McNelis et al. | Dec 2010 | A1 |
20110006151 | Beard | Jan 2011 | A1 |
20110018493 | Bayne et al. | Jan 2011 | A1 |
20110018998 | Guzik | Jan 2011 | A1 |
20110030262 | O'Shaughnessy et al. | Feb 2011 | A1 |
20110056108 | McCord et al. | Mar 2011 | A1 |
20110061280 | Emde et al. | Mar 2011 | A1 |
20110069151 | Orimoto | Mar 2011 | A1 |
20110084820 | Walter et al. | Apr 2011 | A1 |
20110094003 | Spiewak et al. | Apr 2011 | A1 |
20110119979 | Gussalli Beretta et al. | May 2011 | A1 |
20110173869 | Uhm | Jul 2011 | A1 |
20110283586 | Scallie et al. | Nov 2011 | A1 |
20110300944 | Raynal | Dec 2011 | A1 |
20120038689 | Ishii | Feb 2012 | A1 |
20120056722 | Kawaguchi | Mar 2012 | A1 |
20120063736 | Simmons et al. | Mar 2012 | A1 |
20120090038 | Pacella et al. | Apr 2012 | A1 |
20120142314 | Mohammed | Jun 2012 | A1 |
20120162436 | Cordell et al. | Jun 2012 | A1 |
20120170905 | Brundula | Jul 2012 | A1 |
20120189286 | Takayama et al. | Jul 2012 | A1 |
20120220307 | Wohlert et al. | Aug 2012 | A1 |
20120242816 | Cruz | Sep 2012 | A1 |
20120268259 | Igel et al. | Oct 2012 | A1 |
20120297654 | Williams et al. | Nov 2012 | A1 |
20120329538 | Hall | Dec 2012 | A1 |
20130021153 | Keays | Jan 2013 | A1 |
20130027837 | Myers | Jan 2013 | A1 |
20130039634 | M | Feb 2013 | A1 |
20130080836 | Stergiou et al. | Mar 2013 | A1 |
20130096731 | Tamari et al. | Apr 2013 | A1 |
20130222640 | Baek et al. | Aug 2013 | A1 |
20130226942 | Denoual et al. | Aug 2013 | A1 |
20130239453 | Trimble | Sep 2013 | A1 |
20130303203 | Wang et al. | Nov 2013 | A1 |
20130318847 | Kelly | Dec 2013 | A1 |
20140037262 | Sako et al. | Feb 2014 | A1 |
20140049636 | O'Donnell et al. | Feb 2014 | A1 |
20140092299 | Phillips et al. | Apr 2014 | A1 |
20140094992 | Lambert et al. | Apr 2014 | A1 |
20140121958 | Schenken et al. | May 2014 | A1 |
20140162584 | Cope | Jun 2014 | A1 |
20140173961 | Goren et al. | Jun 2014 | A1 |
20140173962 | Goren et al. | Jun 2014 | A1 |
20140195105 | Lambert et al. | Jul 2014 | A1 |
20140202058 | Zhou | Jul 2014 | A1 |
20140210625 | Nemat-Nasser | Jul 2014 | A1 |
20140215883 | Milde, Jr. | Aug 2014 | A1 |
20140215885 | Sullivan et al. | Aug 2014 | A1 |
20140227671 | Olmstead et al. | Aug 2014 | A1 |
20140250753 | Karmanov Kotliarov et al. | Sep 2014 | A1 |
20140259841 | Carlson | Sep 2014 | A1 |
20140290109 | Stewart et al. | Oct 2014 | A1 |
20140290110 | Stewart et al. | Oct 2014 | A1 |
20140311215 | Keays et al. | Oct 2014 | A1 |
20140338244 | Chukwa | Nov 2014 | A1 |
20140360073 | Stewart et al. | Dec 2014 | A1 |
20140366421 | Arif et al. | Dec 2014 | A1 |
20140366422 | Henry | Dec 2014 | A1 |
20140378088 | Goel et al. | Dec 2014 | A1 |
20150040453 | Ballard et al. | Feb 2015 | A1 |
20150041538 | Teetzel et al. | Feb 2015 | A1 |
20150051502 | Ross | Feb 2015 | A1 |
20150063776 | Ross et al. | Mar 2015 | A1 |
20150068093 | Milde, Jr. et al. | Mar 2015 | A1 |
20150078727 | Ross et al. | Mar 2015 | A1 |
20150088335 | Lambert et al. | Mar 2015 | A1 |
20150103246 | Phillips et al. | Apr 2015 | A1 |
20150113851 | Bensayan et al. | Apr 2015 | A1 |
20150154556 | Skaaksrud | Jun 2015 | A1 |
20150198399 | Goren et al. | Jul 2015 | A1 |
20150199547 | Fraccaroli | Jul 2015 | A1 |
20150206419 | Johnson et al. | Jul 2015 | A1 |
20150241153 | Mardirossian | Aug 2015 | A1 |
20150254968 | Sanders et al. | Sep 2015 | A1 |
20150256990 | Vilrokx et al. | Sep 2015 | A1 |
20150260487 | Steil | Sep 2015 | A1 |
20150369554 | Kramer | Dec 2015 | A1 |
20150369559 | Del Rosario | Dec 2015 | A1 |
20160042767 | Araya et al. | Feb 2016 | A1 |
20160054080 | Haimi | Feb 2016 | A1 |
20160072540 | Davis et al. | Mar 2016 | A1 |
20160086472 | Herrera et al. | Mar 2016 | A1 |
20160116241 | Efremkina | Apr 2016 | A1 |
20160165192 | Saatchi et al. | Jun 2016 | A1 |
20160169603 | Stewart et al. | Jun 2016 | A1 |
20160172876 | Stewart et al. | Jun 2016 | A1 |
20160173832 | Stewart et al. | Jun 2016 | A1 |
20160190859 | Blum et al. | Jun 2016 | A1 |
20160286156 | Kovac | Sep 2016 | A1 |
20160377373 | Feldstein | Dec 2016 | A1 |
20170003101 | Madrid et al. | Jan 2017 | A1 |
20170016696 | Koskan et al. | Jan 2017 | A1 |
20170059265 | Winter et al. | Mar 2017 | A1 |
20170059274 | Crist et al. | Mar 2017 | A1 |
20170061781 | Ware et al. | Mar 2017 | A1 |
20170160041 | Stewart et al. | Jun 2017 | A1 |
20170238649 | Buck, IV et al. | Aug 2017 | A1 |
20180231349 | Wagner et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
102010019451 | Nov 2011 | DE |
2273624 | Jun 1994 | GB |
2320389 | Jun 1998 | GB |
2343252 | May 2000 | GB |
2351055 | Dec 2000 | GB |
2417151 | Feb 2006 | GB |
2425427 | Oct 2006 | GB |
2455885 | Jul 2009 | GB |
2485804 | May 2012 | GB |
08-153298 | Jun 1996 | JP |
2000137263 | May 2000 | JP |
2383915 | Mar 2010 | RU |
WO 9005076 | May 1990 | WO |
WO 9738526 | Oct 1997 | WO |
WO 9831146 | Jul 1998 | WO |
WO 0039556 | Jul 2000 | WO |
WO 0051360 | Aug 2000 | WO |
WO 200184069 | Apr 2001 | WO |
WO 0249881 | Jun 2002 | WO |
WO 02095757 | Nov 2002 | WO |
WO 03049446 | Jun 2003 | WO |
WO 2014052898 | Apr 2014 | WO |
WO 2014145079 | Sep 2014 | WO |
WO 2014161083 | Oct 2014 | WO |
WO 2015156921 | Oct 2015 | WO |
WO 2016048638 | Mar 2016 | WO |
WO 2016200556 | Dec 2016 | WO |
WO 2017117617 | Jul 2017 | WO |
WO 2018151785 | Aug 2018 | WO |
Entry |
---|
“Breathalyzer.” Wikipedia (last modified Aug. 14, 2014), http://en.wikipedia.org/wiki/Breathalyzer, WayBack Machine captured Sep. 4, 2014, 11 pages. |
“Controller Area Network (CAN) Overview”, National Instruments White Paper (Aug. 1, 2014), 6 pages. |
“Using In-Car Video, the Internet, and the Cloud to keep police officers safe is the subject of CopTrax live, free webinar.” Stalker Press Room, Posted Date: Jul. 31, 2014, 14 pages. |
Asian Wolf High Quality Angel Eye Body Video Spy Camera Recorder System, http://www.asianwolf.com/covert-bodycam-hq-angeleye.html, WayBack Machine captured Dec. 8, 2013, 3 pages. |
Brick House Security Body Worn Cameras / Hidden Cameras / Covert Spy Cameras, http://www.brickhousesecurity. com, accessed Mar. 2, 2016, 3 pages. |
Brown, “TP-Link TL-WDR3500 Wireless N600 Router Review”, Legitreviews.com, posted: Mar. 6, 2013, http://www.legitreviews.com/tp-link-tl-wdr3500-wireless-n600-router-review-under-50-wireless-router_2149, 5 pages. |
Diakopoulos; et al., “Videotater: An Approach for Pen-Based Digital Video Segmentation and Tagging”, UIST'06, Oct. 15-18, 2006, Montreux, Switzerland, pp. 221-224. |
Digital Ally First Vu Mountable Digital Camera Video Recorder, http://www.opticsplanet.com/digital-ally-first-vu-mountable-digital...CIKohcX05rkCFSio7AodUOIAOg&ef_id=UjCGEAAAAWGEjrQF:20130925155534:s, accessed Mar. 2, 2016, 6 pages. |
Drift X170, http://driftinnovation.com/supportlfirmware-update/x170/, accessed Mar. 2, 2016, 5 pages. |
Dyna Spy Inc. hidden cameras, https://www.dynaspy.com/hidden-cameras/spy-cameras/body-worn-wearable-spy-cameras, WayBack Machine captured Jan. 22, 2013. |
ECplaza HY-001 HD law enforcement DVR, http://fireeye.en.ecplaza.net/law-enforcement-dvr--238185-1619696.html, accessed Mar. 2, 2016, 4 pages. |
Edesix VideoBadge, http://www.edesix.com/edesix-products, WayBack Machine captured Sep. 28, 2013, 2 pages. |
English abstract of Korean Utility Model Reg. No. 20-0236817.accessed Mar. 1, 2016, 3 pages. |
English language translation of W02001/84069 A1 (Nov. 8, 2001) (Delsy Electronic Components AG), 158 pgs. |
European Telecommunications Standards Institute, “Digital cellular telecommunications system; Unstructured Supplementary Service Data (USSD)—Stage 2 (GSM 03.90),” Dec. 1996, 35 pgs. |
File History of U.S. Appl. No. 13/967,151, filed Aug. 14, 2013, entitled Computer Program, Method, and System for Managing Multiple Data Recording Devices; Inventor: Ross, Stanton E. et al., (1331 pages). |
File History of U.S. Patent Application No. 14/040,23 3, filed Sep. 27, 2013, entitled Computer Program, Method, and System for Managing Multiple Data Recording Devices; Inventor: Ross, Stanton E. et al., 168 pages). |
File History of U.S. Appl. No. 14/040,329, filed Sep. 27, 2013, entitled Portable Video and Imaging System; Applicant: Digital Ally, Inc., 451 pages. |
File History of U.S. Appl. No. 14/517,368, filed Oct. 17, 2014, entitled Forensic Video Recording With Presence Detection; Applicant: Digital Ally, Inc., 349 pages. |
Freudenrich, Craig, Ph.D.; “How Breathalyzers Work—Why Test?. ” HowStuffWorks, http://electronics.howstuffworks.com/gadgets/automotive/breathalyzerl.htm, accessed Mar. 2, 2016, 6 pages. |
GSM Overview (http://www.telecomspace.com/gsm.html), accessed May 27, 2014, 4 Pgs. |
Gunnegate, LLC, PCT/US2013/045002, filed Jun. 10, 2013, International Search Report and Written Opinion,ISAI KR, dated Dec. 17, 2013 (14 pg,). |
http://www.k-h-b.com/subl_02.html, WayBack Machine captured Mar. 22, 2006, 2 pages. |
International Search Report and Written Opinion dated Feb. 12, 2016, from the International Searching Authority, for International Application No. PCT/US2015/065847 (filed Dec. 15, 2015), 11 pgs. |
International Search Report and Written Opinion dated Feb. 16, 2016, from the International Searching Authority, for International Application No. PCT/US2015/065850 (filed Dec. 15, 2015), 15 pages. |
International Search Report and Written Opinion dated Mar. 17, 2016, from the International Searching Authority, for International Patent Application No. PCT/US15/68295 (filed Dec. 31, 2015), 12 pages. |
International Search Report and Written Opinion dated Feb. 26, 2016, from the International Searching Authority, for International Patent Application No. PCT/US15/65844 (filed Dec. 15, 2015), 15 pages. |
Isaw Advance Hull HD EXtreme, www.isawcam.co.kr, WayBack Machine captured Aug. 7, 2013, 2 pages. |
Jacobsen; et al., “TCP Extensions for High Performance”, Newtowrk Working Group (May 1992), Request for Comment 1323, https://www.ietf.org/rfc/rfcl323.txt, 37 pages. |
Kopin Corporation; Home Page; Printed Date: Oct. 16, 2014; Posted Date: Unknown; <http://www.kopin.com>. |
Korean Utility Model Reg. No. 20-0236817. published Oct. 8, 2001, 11 pages. |
Kustom Signals VieVu, http://www.kustomsignals.com/index.php/mvideo/vievu, WayBack Machine captured Jun. 16, 2012, 3 pages. |
Lea-Aid Scorpion Micro Recorder Patrol kit, http://www.leacorp.com/products/SCORPION-Micro-Recorder-Patrol- kit.html, accessed Mar. 1, 2016, 2 pages. |
New Rearview-Mirror-Based Camera Display Takes the Guesswork Out of Backing Up, http://news.thomasnet.com/fullstory/rearview-mirror-display-eliminates-blind-spots-497750, accessed Feb. 26, 2016, 4 pages. |
Notification Concerning Transmittal of International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) dated Apr. 9, 2015; International Application No. PCT/US2013/062415; International Filing Date: Sep. 27, 2013; 6 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated January 3 0, 2014; International Application No. PCT/US2013/062415; International Filing Date: Sep. 27, 2013; 7 pages. |
Oregon Scientific ATC Chameleon Dual Lens HD Action Camera. http://www.oregonscientificstore.com/Oregon-Scientific-ATC-Chameleon-Duai-Lens-HD-Action-Camera.data, WayBack Machine captured Feb. 9, 2014, 4 pages. |
Padgette; et al., “Guide to Bluetooth Security: Recommendations of the National Institute of Standards and Technology”, National Institute of Standards and Technology, U.S. Dep't of Commerce, NIST Special Publication 800-121, Revision 1 (Jun. 2012), 47 pages. |
Panasonic Handheld AVCCAM HD Recorder/Player, http://www.panasonic.com/business/provideo/ag-hmr10.asp, WayBack Machine captured Aug. 26, 2013, 2 pages. |
Point of View Cameras Military & Police, http://pointofviewcameras.com/military-police, WayBack Machine captured Dec. 10, 2013. |
POV.HD System Digital Video Camera, http://www.vio-pov.com/index.php, WayBack Machine captured Nov. 27, 2013, 6 pages. |
Renstrom, Joel I; “Tiny 3D Projectors Allow You To Transmit Holograms From A Cell Phone.” Giant Freakin Robot (Jun. 13, 2014), http://www.giantfreakinrobot.com/sci/coming-3d-projectors-transmit-holograms-cell-phone.html, 4 pages. |
Reveal Media RS3-SX high definition video recorder, http://www.revealmedia.com/buy-t166/cameras/rs3-sx.aspx, WayBack Machine captured Jul. 31, 2013, 2 pages. |
S.R. Lewis, “Future System Specifications for Traffic Enforcement Equipment”, S.R. 1 Source: 1EE Colloquium (Digest), N 252, Publication Date: Nov. 18, 1996, Abstract only (2 pgs.). |
Salman; et al., “Overview of the IEEE 802.15.4 standards for Low rate Wireless Personal Area Networks”, 2010 7th International Symposium on Wireless Communication Systems (ISWCS), Sep. 19-22, 2010, Abstract only (2 pgs.). |
Samuel W. Daskam, Law Enforcement Armed Robbery Alarm System Utilizing Recorded Voice Addresses Via Police Radio Channels, Source: Univ. of Ky, Off of Res and Eng., Serv (UKY BU107), pp. 18-22, 1975, Abstract only (1 pg). |
Scorpion Micro DV Video Audio Recorder, http://www.leacorp.com/scorpion-micro-dv-video-audio-recorder/, accessed Feb. 22, 2016, 2 pages. |
SIV Security in Vehicle Driving Partner, http://www.siv.co.kr/, accessed Mar. 4, 2016, 1 page. |
Spy Chest Mini Spy Camera / Self Contained Mini camcorder / Audio & Video Recorder, http://www.spytechs.com/ spy_cameras/mini-spy-camera.htm, WayBack Machine captured May 9, 2013, 3 pages. |
Stalker VUE Law Enforcement Grade Body Worn Video Camera/Recorder, http://www.stalkerradar.com/law_vue.shtml, WayBack Machine captured Sep. 28, 2013, 3 pages. |
Supplementary European Search Report dated Sep. 28, 2010 in European Patent Application No. 06803645.8, 6 pages. |
SUV Cam, http://www.elmo.co.jp/suv-cam/en/product/index.html, WayBack Machine captured Sep. 13, 2013, 2 pages. |
Taser Axon Body On Officer Video/Police Body Camera, http://www.taser.com/products/on-officer-video/axon-body- on-officer-video, WayBack Machine captured Sep. 4, 2013. |
Taser Axon Flex On-Officer Video/Police Video Camera, http://www.taser.com/products/on-officer-video/taser- axon, WayBack Machine captured Jul. 25, 2011, 3 pages. |
Taser Cam Law Enforcement AudioNideo Recorder (gun mounted), http://www.taser.com/products/on-officer-video/laser-cam, WayBack Machine captured Sep. 8, 2013, 4 pages. |
Tide Leader police body worn camera, http://tideleader.en.forbuyers.com/product/14899076, accessed Mar. 2, 2016, 3 pages. |
U.S. Appl. No. 90/013,489, filed Apr. 16, 2015, Re-Examination of U.S. Pat. No. 8,781,292, 1362 pages. |
uCorder Pockito Wearabel Mini Peke! Camcorder, http://www.ucorder.com/, WayBack Machine captured Aug. 27, 2013, 17 pages. |
Veho MUVI HD, http://veho-uk.fastnet.co.uk/main/shop.aspx?category=CAMMUVIHD, WayBack Machine captured Mar. 10, 2013, 6 pages. |
Veho MUVI portable wireless speaker with dock, http://veho-uk.fastnet.co.uk/main/shop.aspx?category=camcorder, WayBack Machine captures Mar. 10, 2013, 7 pages. |
Vidmic Officer Worn Video & Radio Accessories, http://www.vidmic.com/, WayBack Machine captures Jul. 17, 2013, 1 page. |
VIFVU Products, http://www.vievu.com/vievu-products/vievu-squared, WayBack Machine captured Oct. 1, 2013, 2 pages. |
W. Fincham, “Data Recorders for Accident Investigation”, Monitoring of Driver and Vehicle Performance (Digest No. 1997/122), Publication Date: Apr. 10, 1997, Abstract Only (2 pgs.). |
Wasson, Brian; “Digital Eyewear for Law Enforcement.”Wassom.com (Dec. 9, 2013), http://www.wassom.com/digital-eyewear-for-law-enforcement.html, 4 pages. |
WatchGuard CopVu Wearable Video Camera System, http://watchguardvideo.com/copvu/overview, WayBack Machine captured Sep. 22, 2013, 2 pages. |
Wikipedia Signaling System No. 7 (http://web.archive.org/web/20121128195932/https://en.wikipedia.org/wiki/Signalling System No. 7), web on the internet archive Nov. 28, 2012, 7 pgs. |
WolfCom 3rd Eye, X1 AN Recorder for Police and Military, http://wolfcomusa.com/Products/Products.html, WayBack Machine captured Jul. 19, 2013, 3 pages. |
Xiong et al. “Semantic Retrieval of Video” IEEE Signal Processing Magazine, special issue on Semantic Retrieval of Multimedia, Mar. 2006, vol. 23(2), 13 pages. |
Zepcam Wearable Video Technology, Zepam Mobile Video Technology, http://www.zepcam.com/product.aspx, accessed: Mar. 3, 2016, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20210341250 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
62283807 | Sep 2015 | US | |
62092167 | Dec 2014 | US | |
62092153 | Dec 2014 | US | |
62092133 | Dec 2014 | US | |
61825985 | May 2013 | US | |
61853971 | Apr 2013 | US | |
61853179 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15415642 | Jan 2017 | US |
Child | 15934817 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16952973 | Nov 2020 | US |
Child | 17303829 | US | |
Parent | 16701754 | Dec 2019 | US |
Child | 16952973 | US | |
Parent | 16158106 | Oct 2018 | US |
Child | 16701754 | US | |
Parent | 15934817 | Mar 2018 | US |
Child | 16158106 | US | |
Parent | 14023371 | Sep 2013 | US |
Child | 15189917 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15189917 | Jun 2016 | US |
Child | 15415642 | US | |
Parent | 14986139 | Dec 2015 | US |
Child | 15189917 | US | |
Parent | 14970109 | Dec 2015 | US |
Child | 14986139 | US | |
Parent | 14970112 | Dec 2015 | US |
Child | 14970109 | US | |
Parent | 14970104 | Dec 2015 | US |
Child | 14970112 | US | |
Parent | 13954903 | Jul 2013 | US |
Child | 14023371 | US | |
Parent | 13913478 | Jun 2013 | US |
Child | 13954903 | US |