This invention relates a so-called “drop-in” replacement trigger mechanism or module, particularly one to fit AK-pattern firearms. It provides a trigger mechanism mounted in a frame or housing independent of the firearm receiver in which at least one of the trigger and hammer does not pivot on an assembly pin extending through the receiver walls.
AK-pattern firearms, while known for their simplicity and reliability, are not known for precision. As used herein, “AK-pattern” firearm is mean to include firearms of the Avtomat Kalashnikov or AK family, including the AK-47, AKM, AK-103, AK-74, AKS and others built on an AK type receiver, such as the Saiga family of rifles and shotguns. While simplicity of design and manufacturing are not mutually exclusive of precision, many owners of AK-pattern firearms made without precision often wish to upgrade certain features and aspects of the firearm with aftermarket products, parts, or accessories. A common “upgrade” is to install a new trigger mechanism, which generally includes a trigger member, disconnector, and hammer with associated springs and pivot pins.
In a standard or OEM (original equipment manufacturer) configuration, the hammer and trigger of an AK-pattern firearm are mounted to pivot on assembly pins that extend through openings in opposite side walls of the receiver. Most commonly, the receiver is formed from a flat sheet of metal that is stamped to form its finished shape. Openings in the receiver side walls that receive assembly pins may be punched or drilled in the sheet of metal prior to stamping. While it is intended that the finished location of these openings be precisely aligned with one another and provide axes of rotation transverse to the receiver and that are exactly parallel to one another, in practice, they may not be. The sometimes imprecise location of these openings makes it difficult to retrofit the firearm with a precision trigger mechanism.
Others have addressed this shortcoming by producing “drop-in” trigger or fire control modules that are held together as a unit by a frame or housing. However, because the final assembly pins that hold the module in place within the receiver extend through and form the axis of rotation for the trigger member and hammer, imprecision in the original receiver can result in distortion of the module causing misalignment of critical interfaces, such as the sear and/or disconnector to the hammer. Some manufacturers of these “drop-in” trigger mechanism units even expect such misalignment and instruct the installer to file or otherwise alter these critical interfaces to make the replacement trigger mechanism functional. While such custom fitting may be within the skill of a gunsmith, many end users who do their own customization by using a “drop-in” replacement trigger unit are not so skilled and expect the replacement mechanism to function properly and easily without modification of critical parts.
“Drop-in” replacement trigger modules designed for other types of firearms, such as the AR15, do not face these problems. The receivers of AR15-pattern firearms are generally milled with relative precision from a billet of material or a forging blank, not a stamped sheet. In addition to the relatively precise placement of openings for the assembly/pivot pins, the interior dimensions of the receiver's trigger group receiving area, including the transverse width between side walls, is typically held to close tolerances. The design of OEM parts for AR15-pattern firearms expect this level of precision, not commonly found in AK-pattern firearms, so the same can be expected from designers and manufacturers of “drop-in” replacement trigger modules for the AR15.
The present invention provides a “drop-in” replacement fire control system module, such as for a firearm that includes a portion defining a trigger group receiving area having laterally spaced apart walls with at least two pairs of laterally opposed openings for receiving assembly pins. The trigger group module comprises a module frame sized to be inserted into the trigger group receiving area and having assembly pin receiving openings positioned to align with the laterally opposed openings in the walls of the trigger group receiving area. A hammer member is pivotally supported by the module frame along a first substantially transverse axis. A trigger member is supported by the module frame along a second substantially transverse axis. At least one of the first and second substantially transverse axes is not coaxially aligned with an assembly pin receiving opening.
According to one aspect of the invention, the frame may include adjustment mechanisms, such as downwardly extendable set screws, to bear against the floor of the receiver or other parts mounted thereon. These adjustment mechanisms may be located longitudinally forward of the hammer pivot axis and/or rearward of the trigger pivot axis.
According to another aspect and method of the invention, a trigger/disconnector subassembly may be easily removed from and installed in the trigger unit's frame or housing. This allows the frame and attached hammer to be inserted into the firearm receiver without complete disassembly of the firearm followed by attachment of the trigger/disconnector subassembly after the frame has been partially or completely installed.
Other aspects, features, benefits, and advantages of the present invention will become apparent to a person of skill in the art from the detailed description of various embodiments with reference to the accompanying drawing figures, all of which comprise part of the disclosure.
Like reference numerals are used to indicate like parts throughout the various figures of the drawing, wherein:
With reference to the drawing figures, this section describes particular embodiments and their detailed construction and operation. Throughout the specification, reference to “one embodiment,” “an embodiment,” or “some embodiments” means that a particular described feature, structure, or characteristic may be included in at least one embodiment. Thus appearances of the phrases “in one embodiment,” “in an embodiment,” or “in some embodiments” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the described features, structures, and characteristics may be combined in any suitable manner in one or more embodiments. In view of the disclosure herein, those skilled in the art will recognize that the various embodiments can be practiced without one or more of the specific details or with other methods, components, materials, or the like. In some instances, well-known structures, materials, or operations are not shown or not described in detail to avoid obscuring aspects of the embodiments.
Referring first to
When a person, whether a gunsmith or an end user, wishes to replace the components of the trigger mechanism, the mounting pins 20, 28 are removed by driving them axially, such as with a punch, from their assembled position through the openings 22, 30 in the receiver 10. Thus, the hammer 12 (and related spring) and the trigger member/disconnector 14, 16 (and related springs) may be removed through the open top of the receiver 10.
Referring now to
The unit 34 also includes a trigger member 50 that is pivotally mounted on a mounting pin 52 having ends that extend through opposite openings 54 in the side walls 46, 48 of the frame 36. The trigger member 50 includes a shoe or finger lever portion 56 that can be straight, curved, or formed in any desired configuration. The trigger member 50 also includes sear hook portions 58 which pivotally move with trigger member 50 in a direction opposite that of the finger lever portion 56, above the mounting pin 52. Also mounted on the trigger member 50 is a disconnector 60 which pivots in a limited range of motion on a pivot pin 62, separate and independent of the pivotal movement of the trigger member 50. A coil spring 64 biases the disconnector 60 toward a position at which its hook 66 can engage an end edge 68 of the hammer 38 when the hammer 38 is reset by cycling action of the firearm prior to release of the trigger member 50. The trigger member 50 is biased toward a release or reset position by a trigger spring 70 (shown in
Referring specifically to
Referring again generally to
Referring to
Referring now to
With reference to
Some prior art “drop-in” replacement trigger modules for the AK-pattern platform have used adjustable set screws that bear against the floor 78 of the receiver 10 in order to prevent lateral or other unintended movement of the module after installation. In these prior examples, threaded vertical openings on lateral sides of a module frame have been positioned longitudinally in between the hammer and trigger axes of rotation, which are provided by the mounting pins 20, 28 in those examples. Set screws within these threaded openings are adjusted to extend below the frame of the module and bear against the floor 78 of the receiver 10. In some cases, over-tensioning or extension of the set screws have been known to deform the floor 78 of the receiver 10, leading to an unsightly appearance and/or other undesirable consequences.
According to another aspect of the present invention, adjustable securement means may be provided at forward and rearward locations on the frame 36. These may be positioned longitudinally forward of the hammer 38 axis of rotation and/or rearward of the trigger 50 axis of rotation and assembly pin 28. For example, as shown in
As can be observed from a comparison of
Referring now also to
As best depicted in
As previously described, the trigger member 50 of the illustrated embodiment may include an enlarged passageway 76 positioned to allow movement of the trigger member 50 when a mounting pin 28 is inserted through the mounting pin opening 74 of the frame 36 and enlarged passageway 76. In this embodiment, the trigger sub assembly must be reinstalled on the frame 36 before insertion of the rear assembly pin 28. If desired, however, the trigger member 50 could be formed with an open bottom slot (not shown), instead of the enlarged passageway 76, to allow removal and reinstallation of the trigger sub assembly 108 after the frame 36 has been secured to the receiver 10 with the rear assembly pin 28.
Accordingly, the present invention provides a replacement fire control system module and/or method of assembly for a firearm in which at least one of the original assembly pins that act as a pivot access for the hammer and trigger is used only to secure the module frame 36 to the receiver 10 and not as a pivot axis for moving parts of the replacement module. This construction allows the pivot axes of the hammer and trigger to be maintained precisely parallel to each other when the module is installed, even if the mounting holes for the hammer and trigger pins in the receiver are not precisely aligned.
While one or more embodiments of the present invention have been described in detail, it should be apparent that modifications and variations thereto are possible, all of which fall within the true spirit and scope of the invention. Therefore, the foregoing is intended only to be illustrative of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not intended to limit the invention to the exact construction and operation shown and described. Accordingly, all suitable modifications and equivalents may be included and considered to fall within the scope of the invention, defined by the following claim or claims. Unless expressly specified, steps of a method disclosed or claimed herein may be performed in a different sequence and/or some steps may be performed simultaneously.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/255,768, filed Nov. 16, 2015.
Number | Name | Date | Kind |
---|---|---|---|
4679487 | Houseman | Jul 1987 | A |
6722072 | McCormick | Apr 2004 | B1 |
6772548 | Power | Aug 2004 | B1 |
7162824 | McCormick | Jan 2007 | B1 |
7293385 | McCormick | Nov 2007 | B2 |
7600338 | Geissele | Oct 2009 | B2 |
8220193 | Lynch | Jul 2012 | B1 |
9046313 | Lutton | Jun 2015 | B1 |
9146067 | Stakes | Sep 2015 | B2 |
20090071053 | Thomele | Mar 2009 | A1 |
20110185615 | Gangl | Aug 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20170138689 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
62255768 | Nov 2015 | US |