The present invention generally relates to firearms, and more particularly to a user replaceable and interchangeable firearm grip.
Firearms including auto-loading pistols traditionally are offered with a variety of grip styles. The grips may differ in characteristics such as size, shape, material, and surface textures to suit manufacturer and/or user preferences. Grips may sometimes be attached to the grip frame of the firearm with threaded fasteners and other parts which are easily lost in the field, and may make a grip exchange a cumbersome process.
An improved user-replaceable grip is desired.
A user-replaceable firearm grip mounting system is disclosed that provides a mechanically simple and quick grip exchange. The system includes a firearm having a grip frame and grip detachably mountable to the frame. A rotatable camlock mechanism is provided which operably locks and unlocks the grip from the grip frame, thereby allowing rapid exchange of different grips. The camlock mechanism may remain mounted to the grip frame during the grip exchange to eliminate or minimize the possibility of losing parts in the field. In one embodiment, the firearm may be a pistol; however, the camlock mechanism disclosed is readily adaptable to any type firearm or non-firearm which includes a pistol-type grip. Accordingly, the invention is not limited to pistols or firearms alone.
In one embodiment, a firearm with replaceable grip includes a grip frame defining a grip mounting axis, a grip configured for mounting on the grip frame, and a rotary camlock mechanism configured and operable to lock and unlock the grip from the grip frame. The camlock mechanism is rotationally movable between a first locked position preventing removal of the grip from the grip frame and a second unlocked position allowing removal of the grip from the grip frame. The camlock mechanism includes a blocking surface moveable into and out of engagement with an abutment surface on the grip to prevent removal of the grip from the grip frame. In one configuration, the camlock mechanism comprises a rotatable locking cam.
In another embodiment, a firearm with replaceable grip system includes a grip frame defining a grip mounting axis, a grip removably mounted on the grip frame, an abutment surface formed on the grip, and a rotary locking cam rotatably received in a complementary configured open receptacle in the grip frame. The locking cam includes a blocking surface movable between a projecting locked position and a retracted unlocked position. The locking cam further includes an inclined cam track configured to engage the grip frame for converting rotational movement of the locking cam into linear movement with respect to the receptacle. Rotating the locking cam in a first direction moves the blocking surface into alignment with the abutment surface forming the locked position that prevents removal of the grip from the grip frame, and rotating the locking cam in a second direction removes the blocking surface from alignment with the abutment surface forming the unlocked position that allows removal of the grip from the grip frame. In one configuration, the locking cam has a cylindrical shape with circumferentially extending sidewalls.
A method for mounting a replaceable grip on a firearm is provided. The method includes: providing a grip frame including a grip mounting axis and a rotary locking cam rotated to an unlocked position; providing a grip including an abutment surface; positioning the grip on the grip frame in a removal position wherein the abutment surface is located in a first axial position along the grip mounting axis; sliding the grip on the grip frame to a mounting position wherein the abutment surface is located in a second axial position along the grip mounting axis; and rotating the locking cam from the unlocked position to a locked position thereby moving a blocking surface on the locking cam into axial alignment with the abutment surface of the grip between the first and second axial positions; wherein the grip is not removable from the grip frame when the locking cam is in the locked position.
The features of the preferred embodiments will be described with reference to the following drawings where like elements are labeled similarly, and in which:
All drawing shown herein are schematic and not to scale. Parts given a reference number in one figure may be considered to be the same parts where they appear in other figures without a reference number for brevity unless specifically labeled with a different part number and described herein. Reference to whole numerical figure numbers having related figures with an alphabetical suffix shall be construed as a reference to all the figures beginning with that number unless specifically noted otherwise.
The features and benefits of the invention are illustrated and described herein by reference to preferred but non-limiting exemplary embodiments. This description of the embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. Accordingly, the invention expressly should not be limited to such embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
In the description of embodiments disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures may be secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
An exemplary firearm incorporating an embodiment of a replaceable grip system according to principles of the present invention will now be described with reference to a semi-automatic pistol. The principles and features of the embodiments disclosed herein, however, may be embodied with equal benefit in other types of hand-held firearms or weapons including without limitation rifles with pistol-type grips, revolvers, grenade launchers, etc. Accordingly, the invention is not limited in its applicability or scope to pistols alone as described herein. The replaceable grip system is also readily adaptable for use in non-firearm related applications such as without limitation power hand tools (e.g. drills, impact drivers, nail guns, etc.) which may benefit from the ability to easily replace hand grips used in such devices to suit different user and/or manufacturer preferences. The replaceable grip allows end users to select grips with different girths to match variations in hand size for comfort and/or other personal preferences such as grip texture, appearance, color, material, etc.
The grip frame 22 includes a vertically elongated rear gripping or grasping portion 23 configured for grasping by a user. The grasping portion 23 includes a front wall 24, opposing rear wall 25, and opposing lateral sidewalls 26a (left), 26b (right). The grasping portion 23 defines a grip mounting axis GA and a transverse axis TA oriented perpendicular to axis GA. Grip mounting axis is oriented transversely to longitudinal axis LA and is oriented substantially parallel to the front and rear walls 24, 25 of the grasping portion 23. Grip mounting axis GA defines an axial grip direction and transverse axis TA defines a transverse grip direction.
The walls of the grasping portion 23 further define a hollow downwardly open magazine well 51 that slideably and insertably receives a removable magazine 50 configured for holding a plurality of ammunition cartridges. The grasping portion 23 of the grip frame 22 may be disposed and inclined at an angle to vertical as shown for improved grasping ergonomics.
Referring to
The grip frame 22 and grip 60 include mating pairs of complementary configured guide or mounting slots and guide or mounting rails, respectively. In one embodiment, referring to
In one embodiment, the mounting slots 70 of the grip frame 22 may form laterally outward and downwardly facing open recesses 72. The mounting slots 70 are defined the rear wall 25 of the grip frame 22 and an opposing parallel axially-extending upper surface 73 formed by a raised protrusion 74 on the rear wall 25 of the frame. In one embodiment, the top end of each slot 70 is closed and the bottom end is open (see, e.g.
The mounting rails 71 may be formed by inwardly facing projections 75 disposed on the grip inside the cavity. In one embodiment, the rails 71 may be formed on L-shaped projections 75 (in transverse cross-section) having one leg attached to the rear wall 61 of the grip 60 and the remaining perpendicular free leg projecting laterally inwards therefrom towards the centerline CL1 of the grip. The perpendicular leg of the L-shaped mounting rails 71 may be spaced apart from the rear wall 61 of the grip 60 forming a gap therebetween for receiving a portion of the frame protrusion 74 therein when the grip is mounted on the grip frame 22.
In one embodiment, the grip frame 22 and grip 60 includes a second mating pair of complementary configured bottom guide or mounting slots and rails. In one embodiment, with continuing reference to
Interaction between the mounting slots 70, 80 and rails 71, 81 prevent withdrawal and removal of the grip 60 from the grip frame 22 in a perpendicular direction to the grip mounting axis GA (i.e. along the transverse axis TA) when the rails are positioned in the slots (see, e.g.
The grip 60 further includes a pair of top mounting tabs 90 which are slideably and insertably received in a mating pair of tab pockets 91 formed in the grip frame 22 (see, e.g.
The grip 60 also includes an elongated locking rail 64 which is slideably received in a corresponding elongated locking slot 65 formed in the grip frame 22. In one embodiment, the locking rail 65 may be disposed and axially aligned with the axial centerline of the grip CL1 being located approximately midway between the lateral sidewalls 62a, 62b of the grip. Locking rail 64 is equidistantly disposed between mounting rails 71. The locking slot 65 may similarly be disposed and axially aligned with the grip mounting axis GA of the grip frame being disposed approximately midway between the lateral sides 26a, 26b of the grip frame 22. When the grip 60 is mounted on the grip frame 22, the locking rail 64 is axially alignable with the mounting axis GA and locking slot 65 of the grip frame for locking the grip to the pistol, as further described herein. The locking slot 65 further functions as an alignment guide or slot to facilitate mounting the grip on the grip frame.
In some embodiments, grip 60 may also include an alignment rail 132 which is slideably received in a mating alignment groove 134 formed in grip frame 22 (see
The firearm grip mounting system further includes a rotary camlock mechanism comprising a rotatable locking cam 100 which is disposed in complementary configured and dimensioned cam receptacle 102 formed in the rear side 25 of the grip frame 22, and more particularly in grasping portion 23. Referring to
With continuing reference to
The cam 100 is rotationally moveable using an appropriately configured key or tool between a locked position and an unlocked position. In one embodiment, the locking cam has a generally cylindrical body including an outward facing top surface 104 (facing away from the grip frame, an opposing inward facing bottom surface 106 (facing towards the grip frame), and circumferentially extending circular sidewall surfaces 105 extending between the top and bottom. The top surface 104 may include a recessed operating socket 108, which may extend partially into or completely through the cam body to bottom surface 106 in various embodiments. In one embodiment, the operating socket 108 is centered in the cam top surface 104 between sidewalls 105 and axially aligned with the cam receptacle centerline CL2 when the cam is mounted therein. The operating socket 108 is configured to receive a working end of a complementary shaped key or tool that may be used to rotate the cam between the locked and unlocked positions. In one embodiment shown, operating socket 108 may be a star shaped hexalobular or T10 socket. This female socket is configured to receive a key or screwdriver having a complementary configured star-shaped male working end which positively engages the socket to rotate the locking cam 100. In other possible embodiments, the operating socket may be shaped as an elongated slot to be operated with a slotted screwdriver or key. It will be appreciated that numerous other shapes of operating socket may be used. In other possible embodiments, the operating socket may have other such conventional shapes such as for example, without limitation, a cross (e.g. Phillips head), hexagon, square, or others. Other non-conventional and special operating socket shapes may also be used wherein a custom key is provided which is configured to engage a complementary configured operating socket.
When the grip 60 is fully mounted on the grip frame 22, the cam 100 is accessible through a cam operating aperture 135 formed through the rear wall 61 of the grip (see, e.g.
The top surface 104 of locking cam 100 may further include a detent recess or pocket 109 configured to engage an inwardly extending free hooked end 110a of an elongated resilient locking cantilevered detent arm 110 (see, e.g.
Top surface 104 of locking cam 100 may further include an alignment mark 107 to facilitate inserting the locking cam 100 into the cam receptacle 102 during initial preassembly of the locking system before installing the grip, as further described herein. Alignment mark 107 may be formed as a recessed feature in top surface 104 of cam 100 in the shape of a line segment in one embodiment. In other embodiments, mark 107 may be formed by etching or a painting the shape onto the top surface of the cam. Other types and shapes of marks may be used.
Referring to
The unlocked end 121 location or position of the locking protrusion 124 in the cam track 120 is associated with an inward recessed position of the locking cam 100 in the receptacle 102 (see, e.g.
The cam track 120 extends circumferentially along the sidewall surfaces 105 of the locking cam 100 through an angular distance denoted angle A1 with respect to the center of the locking cam (see
In other possible embodiments, a single cam track and locking protrusion formed in the cam receptacle may be provided. In such embodiments, a cam track angle A1 equal to or greater than 180 degrees may be used. Numerous other variations are possible in cam track arrangements and angles of movement.
The cam track 120 is angularly disposed or inclined with respect to the top and bottom surfaces 104, 105 of the cam 100 which imparts an axial motion to the cam in a direction parallel to the centerline CL2 of the cam receptacle 102 as the locking protrusion 124 travels along the cam track from unlocked end 121 to locked end 122 (reference
Referring to
In one embodiment, the locking protrusion(s) 124 may each be in the form of a raised tab which extends radially inwards from the circumferential sidewall surfaces of receptacle 102 and towards the axial centerline CL2 of the receptacle. To mount the locking cam 100 in the cam receptacle 102, the cam is slideably and axially inserted into the receptacle along the receptacle centerline CL2 with an orientation such that the locking protrusion 124 enters the assembly slot 123 of the cam and then enters the cam track 120 between the opposing closed ends 121, 122 (see, e.g.
It should be noted that the locking cam 100 is rotatable with respect to the receptacle 102 when the locking protrusion 124 is positioned in the cam track 120 (see, e.g.
To prevent removal of the grip 60 when fully seated and mounted on grip frame 22, locking cam 100 includes a blocking surface 130 which is rotationally alignable with a corresponding abutment surface 131 formed on the grip 60 when the cam is in the locked position (see
Abutment surface 131 is formed on a portion of the grip 60 above the cam receptacle 102 and axially aligned with grip mounting axis GA when the grip is fully mounted on the pistol 20. This positions the abutment surface 131 to engage the blocking surface 130 of the cam 100 when the cam is in the locked position, thereby locating the blocking surface in the axial removal path traveled by the abutment surface to prevent the grip's removal. In one embodiment, the abutment surface 131 of the grip 60 may be formed on a bottom end of locking rail 64. In other embodiments, the abutment surface 131 may be formed on the grip 60 separately from the locking rail 64.
Various portions of or the entire grip frame 22 and grip 60 may be formed of any suitable material or combination of materials including metals and non-metals. Exemplary, but non-limiting non-metals may include glass or nylon reinforced and unreinforced polymers, fiberglass, graphite composite materials, and others. In one non-limiting embodiment, the grip and grip frame may be made of a reinforced or unreinforced polymer.
For reasons including ease of manufacture, the grip mounting rails 71 and locking rail 64 may be formed on a separate prefabricated grip insert 112 which is attached to the body of the grip 60 (see, e.g.
The cam receptacle 102 may also be formed on a separate prefabricated grip frame insert 140 which is attached to the grip frame body. Referring to
An exemplary method for mounting a replaceable grip on a firearm will now be described with reference to
In general, the method includes first providing the pistol 20 which includes the foregoing grip frame 22 with the present camlock mechanism and a grip 60. The locking cam 100 has been inserted into cam receptacle 102 (see
The grip 60 is then positioned behind the rear wall 25 of grip frame 22 and moved forward in a horizontal direction generally non-parallel and transverse to the grip mounting axis GA of the grip frame 22 (along transverse axis TA) to abut the grip with the rear wall of the grip frame. The rear wall 25 and at least portions of the sidewalls 26a, 26b of the grip frame 22 are concomitantly received in the forwardly open cavity 63 of the grip 60. Preferably, the mounting rails 71, 81 and locking rail 64 of the grip are initially positioned vertically below the lower entrances (i.e. open bottom ends) of the mating mounting slots 70, 80 and locking slot 65 of the grip frame 22. The top mounting rails 71 have a length sized less than the vertical dimension of the rail entrance 82 between the raised protrusions 73, 143 to allow insertion of rails 71 through the entrance and against the rear wall 25 of grip frame 22. This axially aligns the mounting rails 71, 81 with their respective mounting slots 70, 80.
While holding the grip 60 pressed against the rear of the grip frame 22, the grip is next slid axially upwards parallel and substantially along the grip mounting axis GA of the grip frame. This moves the mounting rails 71, 81 on the grip into and engages the mounting slots 70, 80 of the grip frame (see, e.g.
After the grip 60 is in the foregoing fully mounted position, the locking cam 100 is rotated using an appropriate configured key or tool to move the locking protrusion 124 of the cam receptacle 102 from the unlocked end 121 of the cam track 120 to the opposite locked end 122 (see, e.g.
It bears noting that rotating the cam 100 to the locked position also resiliently engages the hooked end 110a of locking cantilevered detent arm 110 with detent pocket 109 of the cam. Advantageously, this maintains the locked position of the cam 100 and prevents rotation to the unlocked position that might be caused by vibrations created by recoil forces from firing the pistol 20.
To remove the grip 60 from the grip frame 22, the foregoing mounting process is reversed. This permits removal of the first grip 60 and replacement with a second grip which may have at least one feature different than the first grip such as without limitation size, shape, material, and/or surface textures. Advantageously, this permits the pistol user to change grips easily to suit changing grip preferences and/or environmental conditions.
While the foregoing description and drawings represent preferred or exemplary embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope and range of equivalents of the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. In addition, numerous variations in the methods/processes as applicable described herein may be made without departing from the spirit of the invention. One skilled in the art will further appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims and equivalents thereof, and not limited to the foregoing description or embodiments. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/899,031 filed Nov. 1, 2013, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61899031 | Nov 2013 | US |