The present invention relates to firearms, and more particularly to a firearm having a shell holder mounted on the firearm's exterior.
Shotguns are popular for use for hunting small, fast-moving targets, target shooting sports, and in close quarters combat or defense. One of the main disadvantages of shotguns is that a typical 12 gauge pump shotgun is limited to six or seven shots in the magazine tube and one in the chamber. This necessitates the need to carry additional shells for reloading. Furthermore, since a shotgun is slower to reload than a magazine-fed rifle, the shells must be readily accessible to avoid additional reloading time. However, the shells must also be retained within the carrier until they are needed without falling out.
A variety of prior art devices are known for attaching shells to the exterior of a shotgun. A typical receiver-mounted shell holder is the SureShell shotshell carrier manufactured by Mesa Tactical of Costa Mesa, Calif. The SureShell uses an elastomeric tube that partially protrudes into the shell carrier receptacles to retain shells within the receptacles until they are needed. The force required to remove a shell from a receptacle is not readily adjustable. Adjustability might be beneficial when a mission demands either high retention forces, or looser extraction forces, or based on the dimensional variations and surface conditions of the shells used. Adjustment of the SureShell device would require substituting either a stiffer (or softer) elastomeric tube or one that offers more or less dimensional interference. Because of the repeated friction, elastomeric tubes are subject to wear. They may also require the user to adopt a twisting motion of the shell in order to more quickly and reliably remove a shell from the carrier, which may present limitations for some users.
Therefore, a need exists for a new and improved firearm with shell holder that allows the user to adjust the amount of force required to remove a shell from each individual receptacle of the shell holder. In this regard, the various embodiments of the present invention substantially fulfill at least some of these needs. In this respect, the firearm with shell holder according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in doing so provides an apparatus primarily developed for the purpose of allowing adjustment of the amount of force required to remove a shell from each individual receptacle of the shell holder.
The present invention provides an improved firearm with shell holder, and overcomes the above-mentioned disadvantages and drawbacks of the prior art. As such, the general purpose of the present invention, which will be described subsequently in greater detail, is to provide an improved firearm with shell holder that has all the advantages of the prior art mentioned above.
To attain this, the preferred embodiment of the present invention essentially comprises a body including a plurality of bores, a plurality of elastomeric elements, each associated with a different selected one of the bores, each elastomeric element having a protruding portion that protrudes a selected distance into the bore, a plurality of movable adjustment elements, each connected to the body and each operably engaged to a different selected one of the elastomeric elements, wherein the selected distance the protruding portion of the elastomeric element protrudes into the bore is adjustable based on an adjustment position of each adjustment element, and the selected distance is independently adjustable for each elastomeric element. The shell holder may be for a shotgun. The movable adjustment elements may include a plurality of jaws movable with respect to the body. There may be a gap defined between the body and each jaw. The elastomeric elements may be received within the gaps. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject matter of the claims attached.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood and in order that the present contribution to the art may be better appreciated.
The same reference numerals refer to the same parts throughout the various figures.
An embodiment of the firearm with shell holder of the present invention is shown and generally designated by the reference numeral 10.
A shell holder 100 is attached to the left side 108 of the receiver 102. The shell holder has seven shell receptacles 12. The quantity of shell receptacles is selected to provide the maximum number possible without contacting or interfering with the pump action forend 118. Each shell receptacle receives a shell 110 having a front 112 and a rear 114. The shells can be inserted front down (brass up) into the shell receptacles as shown in
Each shell receptacle has a top 14, a bottom 16, and a central bore 18. The additional features of the shell receptacles will be described in the discussion of the subsequent Figures. The shell receptacles 12 extend continuously from the front 70 of the mounting plate 20 to the rear 40 of the mounting plate. A portion of the mounting plate and gasket 26 extend towards the bottom 106 of the receiver 102 below the shell receptacles. Two apertures 32, 34 are positioned at the rear of the mounting plate and are separated by an indentation 72. The gasket has corresponding apertures that are not visible. The indentation 72 provides a window for viewing the firearm's serial number 116 without requiring removal of the shell holder 100. The apertures in the mounting plate and gasket are axially registered with the front and rear trigger pin apertures (not visible) of the firearm. The apertures each receive a bolt 36, 38 that replace the front and rear trigger pins of the firearm and removably attach the shell holder to the left side 108 of the receiver.
The elastomer 56 has ears 80, 82 on the top 88 and ears 84, 86 on the bottom 90. The ears of the elastomer are received in the minor slots 62, 64 and prevent rotational movement of the elastomer within the major slot 60. The elastomer has a central aperture 92 that effectively renders the elastomer hollow and highly compressible. If the elastomer were solid, the elastomer would resist compression and perhaps even experience damage before sufficient extrusion into the bore 18 occurred. The jaw 50 has ears 66, 68 that are received in the minor slots and prevent rotational movement of the jaw within the major slot. The jaw has a curved portion 54 that has the same radius of curvature as the bore of the shell receptacle 12. Both the curved portion of the jaw and the bore of the shell receptacle have a radius of curvature selected to closely conform to the exterior of a 12 gauge shotgun shell 110.
To assemble the components of a shell receptacle 12, first the ears 80, 82, 84, and 86 of the elastomer 56 are inserted into the minor slots 62, 64. The elastomer is inserted into the major slot 60 such that the protruding portion 58 extends outward into the bore 18 of the shell receptacle 12. The elastomer is pressed into the major minor slots until the top 88 of the elastomer contacts the top 120 of the major slot. In this position, the aperture 78 of the elastomer is axially registered with the aperture 74 adjacent to the shell receptacle. Subsequently, the jaw is inserted into the major slot with the ears 66, 68 in the minor slots and the curved portion 54 facing towards the bore of the shell receptacle. Once the jaw abuts the bottom 90 of the elastomer, with the aperture 76 of the jaw axially registered with the aperture 78 of the elastomer, a locknut 42 is inserted into the hex aperture 52 of the jaw. The aperture 94 in the locknut is axially registered with the aperture 76 of the jaw. Finally, the threaded end 46 of an adjustment bolt 44 is inserted through the apertures 74, 78, 76, and threadably engaged by the aperture 94. Once the threaded end of the adjustment bolt is threadably engaged with the locknut, the components of the shell receptacle are fixed in position unless the adjustment bolt is rotated. The elastomer is effectively received within an adjustable gap 122 (shown in
The clockwise rotation of the hex key 96 has drawn the locknut upward onto the threaded end 46 of the adjustment bolt 44. As the locknut is drawn upward, the locknut urges the jaw 50 upward as well. As a result, the gap 122 between the jaw and the top 120 of the major slot 60 decreases. As the gap decreases, the elastomer 56 is compressed as the aperture 92 in the elastomer closes. As a result, the protruding portion 58 of the elastomer 56 is extruded outward into the bore 18 of the shell receptacle 12 and obstructs a larger portion of the bore than was the case before the adjustment bolt was tightened. A comparison of the degree of protrusion of the protruding portions of the elastomers in
Because each shell receptacle 12 has an adjustment bolt 44, and elastomer 56, a jaw 50, and a locknut 42, the user can adjust the individual tension exerted on a shell 110 for each shell receptacle independently. This enables the fine-tuning of each shell receptacle for the specific type of ammunition it will contain and the level of retention required. Furthermore, in the event an elastomer experiences wear, the elastomer's usable life can be extended simply by tightening the associated adjustment bolt to restore the previous level of retention. At the end of the elastomer's service life, it can be readily replaced by removing the associated adjustment bolt.
In the context of the specification, the terms “rear” and “rearward,” and “front” and “forward” have the following definitions: “rear” or “rearward” means in the direction away from the muzzle of the firearm while “front” or “forward” means it is in the direction towards the muzzle of the firearm.
While a current embodiment of a firearm with shell holder has been described in detail, it should be apparent that modifications and variations thereto are possible, all of which fall within the true spirit and scope of the invention. With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.
Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3153500 | Pachmayr et al. | Oct 1964 | A |
4344528 | Perisastry et al. | Aug 1982 | A |
4852286 | Troncoso et al. | Aug 1989 | A |
4860478 | Clayton | Aug 1989 | A |
4942991 | Lyons | Jul 1990 | A |
5924613 | Johnson et al. | Jul 1999 | A |
6962278 | Obatake | Nov 2005 | B2 |
20090282718 | Bartley | Nov 2009 | A1 |
20110225864 | Pullicar et al. | Sep 2011 | A1 |
20120285066 | Chvala | Nov 2012 | A1 |
Entry |
---|
Midway USA, Mesa Tactical Sureshell Shotshell Ammunition 12 Gauge Mossberg 930 6-Round Aluminum, Sep. 26, 2011, pp. 1-6. |
Number | Date | Country | |
---|---|---|---|
20140190058 A1 | Jul 2014 | US |