The present invention relates to a firefighting apparatus, such as a fire truck, a trailer or other vehicles, and more particularly to a firefighting apparatus with a ladder mounted recovery winch.
There are a variety of fire trucks and rescue vehicles that include aerial ladders to assist in the fighting of fires. These aerial ladders usually are mounted on a frame or chassis of a fire truck. The ladder can be raised from a generally horizontal position to an angled position so that the ladder extends updwardly from the frame. The ladder can be extended and retracted to achieve varying heights for rescue operations and/or for the application of firefighting fluids.
Generally, aerial ladder trucks are used to fight fires from elevated positions or to rescue victims trapped in burning buildings. Some aerial ladder trucks also can be outfitted with a roof ventilating lance that is operably coupled to a cable. The lance can be dropped with a system of pulleys to ventilate a roof of a burning building. Such a roof ventilating lance is disclosed in U.S. Pat. No. 6,298,945 to Anders, which is hereby incorporated by reference. Although this construction allows roof ventilation, it is not suitable for many other operations.
Occasionally, aerial ladder trucks are the first on the scene at an emergency location, such as the location of a traffic accident, a boating accident, a plane accident, a man-made or natural disaster, and/or a terrorist attack, where large objects and their orientations impede the rescue or application of care to victims. While aerial ladder trucks can provide their typical support at the emergency location, such as elevated fire suppression and/or providing an evacuation or rescue “bridge,” such trucks are not well suited for other types of recovery and/or rescue operations.
Thus, while aerial ladder trucks are currently available and helpful in a variety of situations, there remains room for improvement in their function, operation and utilization.
A firefighting or rescue apparatus including a ladder to which a recovery winch is operably mounted is provided. The winch can be used in conjunction with the ladder to move, upright, lift or otherwise manipulate objects at an emergency location. As but one example, where an aerial ladder fire truck is dispatched to an emergency location, such as a traffic accident, the ladder and recovery winch can be utilized to move or upright overturned vehicles. This can enable first responders to quickly provide care to and/or to rescue occupants of the vehicles—even when a tow truck is not yet at the emergency location.
In one embodiment, the winch is mounted to a base section of an extendable ladder, which includes one or more retractable and extendable ladder sections. The base can be in the form of a boom joined with a turntable rotatably mounted on the firefighting or rescue apparatus.
In another embodiment, a ladder section, for example the fly section, can include a pulley detachably mounted to the ladder distal from the winch. The pulley can be located generally above the winch when the ladder is oriented in a raised, non-horizontal position. The pulley can suspend a cable, extending from the winch, so that the cable further extends downward, generally vertically from the pulley. An attachment element can be secured to the end of the cable. The attachment element can be in the form of a hook, clamp, tongs or other apparatus attachable to a target object to enable a force to be transmitted from the cable and through the attachment element to move the object.
In yet another embodiment, the pulley can be detachably mounted to the ladder so that after performing an operation with the winch, the pulley can be removed, and the ladder can be lowered to a generally horizontal stored position without the pulley interfering with or damaging a cab of the firefighting apparatus, over which a portion of the ladder is positioned.
In even another embodiment, the firefighting apparatus can be in the form of a fire truck, including a cab, a forward portion, a rearward portion and opening sides. The winch can be mounted to the base or boom in a location so that when the ladder is in the generally horizontal stored mode, the winch is immediately rearward of the cab. In this location, the winch can be generally out of the way, so that it does not interfere with the lowering of the ladder to the generally horizontal stored mode.
In a further embodiment, the ladder, frame of the apparatus and/or winch can include a control in communication with the winch for its operation, for example, uptake of cable onto the spool of the winch, or let out of the cable from the spool.
In even a further embodiment, the control can be a remote control that is remote from the winch. The remote control can be coupled to at least one of the frame of the apparatus and the winch with a cord having a length that enables a user to operate the remote control while in plain view of the object to be moved. Alternatively, the remote control can operate and communicate with the winch wirelessly, utilizing radio frequency, infrared, cellular or other communication modes.
In still a further embodiment, the winch can be mounted to the underside of the base section and/or boom, distal from a turntable to which the base section and/or boom are attached. Due to this fixed mounting to the base section and/or boom, the winch generally moves wherever the ladder moves. Optionally, when mounted to the ladder, the detachable pulley also moves with the ladder. Accordingly, the winch and pulley are positioned automatically with the ladder when the ladder is oriented in a desired configuration relative to a target object to be moved using the winch.
The present invention provides a simple and effective construction that can enable a firefighting or rescue apparatus, such as a fire truck, to serve multiple functions. Where an aerial firefighting apparatus is dispatched to an emergency location, which does not necessarily require an aerial ladder, the recovery winch and ladder herein can be used to move extremely heavy objects at the scene. In cases where vehicles, trucks, boats or other objects are overturned or otherwise obstructing the rescue of victims or impairing provision of care, the ladder and winch can be used to move those objects. Likewise, where heavy debris or other structures impair access to victims or structures, the recovery winch and system can be used to move those objects—even well before a tow truck arrives at the location.
These and other objects, advantages, and features of the invention will be more fully understood and appreciated by reference to the description of the current embodiments and the drawings.
Before the embodiments of the invention are explained in detail, it is to be understood that the invention is not limited to the details of operation or to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention may be implemented in various other embodiments and of being practiced or being carried out in alternative ways not expressly disclosed herein. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof. Further, enumeration may be used in the description of various embodiments. Unless otherwise expressly stated, the use of enumeration should not be construed as limiting the invention to any specific order or number of components. Nor should the use of enumeration be construed as excluding from the scope of the invention any additional steps or components that might be combined with or into the enumerated steps or components.
A current embodiment of an aerial firefighting apparatus is illustrated in
The frame 30 of the fire truck 10 can be mounted to a chassis which can be further mounted to multiple wheels 32. The wheels can be attached to conventional front and rear axles, which are further attached to the chassis of the truck. The fire truck can be mobilized via an internal combustion engine which drives the wheels via a transmission.
The fire truck 10 can include one or more internal electronic or computer controls that can operate the engine, transmission, or steering control mechanism to enable the front wheels to be steered upon transport to an emergency location. As used herein, an emergency location can be a scene of a traffic accident, a boating accident, a plane accident, a man-made or natural disaster, and/or a terrorist attack, or any other location where one or more victims' lives are endangered or otherwise compromised.
The frame 30 can include a forward portion 31 and a rearward portion 33 located at opposite ends of the fire truck 10. Generally the rear wheels 32 and their axle are located in the rearward portion 33 of the fire truck 10. The front or steering wheels 32 can be located in the forward portion 31 of the fire truck. The frame 30 in the forward portion 31 can include a cab 34. The cab 34 can house occupants, such as firefighters or rescue personnel, as they are transported to and from an emergency location. The cab 34 can include conventional controls, such as a steering mechanism and various displays inside the cab to monitor and evaluate the operation of the vehicle 10. The cab can terminates a distance of several feet rearward of the front wheels 32, or generally forward of the pump controls and/or rearward portion 33 of the fire truck 10.
On the frame, behind the cab 34 a pump control panel 36 can be mounted. Under or behind the pump control panel 36, one or more pumps (not shown) can be mounted. These pumps can be mounted to the frame. Generally, the pumps can be in fluid communication with a firefighting fluid tank (not shown) mounted to the frame in the rearward portion 33 and/or a source of firefighting fluid external to the truck, such as a fire hydrant. The pumps also can be in fluid communication with one or more hoses or waterways 47 as described below. The pumps can be configured to convey firefighting fluid from the external source or the tank to the waterways 47 in a forced manner so that the firefighting fluid can be applied to a fire.
The frame 30 also can include lockers 38 mounted rearward of the pump control panel 36, generally in the rearward portion 33 of the fire truck 10. The lockers optionally can be located on and accessible from the first 35A and second 35B sides of the fire truck, and can be sized and configured to store supplies and equipment useful for easy access at an emergency location.
As shown in
As mentioned above, the frame 30 can include a first side 35A and a second side 35B located opposite one another. Generally, the turntable 40 can rotate the ladder 50, optionally when it is out of its generally horizontal stored position, outward beyond one of the sides 35A or 35B and at an angle transverse to the longitudinal axis LA.
The ladder 50 can include multiple ladder sections and booms that can be extended and retracted, and/or raised and lowered. As shown in
The booms and ladder sections can be movably joined with one another so that the entire ladder 50 can be extended and retracted by moving the booms 51, 52 and respective ladder sections 51A and 52A relative to one another. As an example, the first base or base boom 51 is movably and telescopingly joined with the second base (or fly boom) 52. The fly boom is generally fixedly joined with the second ladder section 52A so that the fly boom and the ladder section 52A move together, with the ladder section 52A supported by the fly boom. The first ladder section 51A can be fixedly joined with the base boom 51, so that the two move together. Generally, the first ladder section 51A and second ladder section 52A can be placed adjacent one another so that they also telescope and/or move relative to one another, optionally when the fly boom moves relative to the base boom.
Further optionally, the second ladder section 52A moves with the fly boom 52 and relative to the first ladder section upon extension of the ladder. The fly boom 52 also can retract into (or on) the base boom, with the second section overlapping the first ladder section more in the process. Even further optionally, the ladder sections can be coupled to one another so that as the ladder 50 generally extends, the ladder section 52A moves relative to section 51A and optionally relative to the base boom 51.
As illustrated, the base section 51, also referred to as base or boom, can be fixedly and pivotally mounted to the turntable 40. The base boom 51 can pivot up and down about an axis that is generally horizontal. As shown in
As shown in
As mentioned above, the base 51 can be in the form of a boom. The ladder section 52 can be mounted to it in a fixed manner, utilizing mounting brackets 52M. The base 51 also can include a second boom or fly boom 52 telescopingly mounted relative thereto. The second boom 52 can generally extend and retract from the base boom 51. The ladder section 52A can be mounted to the secondary boom 52 in a fixed manner, utilizing mounting brackets 53M.
As shown in
Optionally, the base can include multiple climbing rungs if desired so that it can itself function as a ladder. Again, as shown the rungs can be absent from the base so that the base does not extend but instead the ladder sections 51A and 52A extend relative to one another without the section 51A extending relative to the base boom.
The ladder, base and secondary boom generally include one or more waterways 47 mounted thereto. These waterways are operable to transfer a continuous supply of firefighting fluid to the water outlet 48 which is generally in the form of a nozzle. Generally the waterway receives pressurized firefighting fluid from a pump or storage tank on the frame 30. More particularly, the nozzle 48 assists in pressurizing and/or shaping the continuous stream of firefighting fluid from the waterway 47 toward a fire in a burning building, in a vehicle or elsewhere. Generally, the waterway can include multiple rigid, tubular sections that telescope and slide relative to one another. Optionally, the waterways can become progressively smaller, closer to the water outlet 48.
The waterways 47 can be disposed along and extend the length of the ladder 50. The waterways are maintained in close proximity to (and usually under) the ladder sections 51A and 52A, even as the ladder 50 is moved between extended and retracted positions. The telescoping tubular sections of the waterways can cooperate with one another to provide a continuous fluid passageway along the length of the ladder 50.
As illustrated in
Optionally, the ladder support 55 is mounted directly to the chassis 33B of the frame 30 in a rigid supportive manner. This is so that the immense weight of the ladder 50 can be supported without resting on other structural components of the vehicle, such as the cab 34 or the forward portion 31 of the truck in general. The ladder support 55 supports the ladder 50 and in particular the base 51, so that it is elevated a preselected distance above the cab 34 when the ladder is in the generally horizontal stored position.
As shown in
As shown in FIGS. 1 and 5-8, a recovery winch 60 is mounted directly on the lower or base 51, which again optionally can be in form a boom as described above. The winch 60 can include a spool upon which a cable 64 is wound. As used herein, a cable can be a multiple metal stranded conventional cable, a chain, a rope, a web, a cord or any other elongated element that can be placed under tension to transfer a force to an object. Generally, the winch 60 is operable so that it can uptake the cable 64 and apply a tension or force via the attachment element 66 to anything to which the attachment element is connected. The winch 60 also is operable to unspool or let out the cable 64 so that the attachment element can be lowered to a desired position.
The winch can be an electrically operated winch. In such a case, the winch can be in electrical communication with the fire truck's electrical system. Of course, the winch can be any hydraulic, pneumatic or other winch as desired, depending on the application. Where the winch electrically coupled to the truck's electrical system, the winch can be operated by a controller, which as illustrated is in the form of a remote control 62. The remote control 62 can be mounted on the rearward portion 33 of the truck or frame as shown in
The winch can be of a variety of load capacities, which can depend on the application and the configuration of the ladder and/or base. Optionally, the winch can be a 3,000 pound winch commercially available from Warn Industries Inc., of Clackamas, Oreg. Of course, other heavier or lighter winches, for example, 1,000 pound winches or 10,000 pound winches can be substituted therefor, again depending on the particular construction of the ladder or base 51 as well as the applications in which the winch will be utilized.
Returning to
The winch 60 also can be mounted distal from the turntable 40 and distal from the upper end 58 of the base 51. Generally, the mounting plate 63 and winch 60 can be mounted about midway between the turntable 40 and the upper end 58 of the base 51. The winch 60 also can be located so that when the ladder is lowered, the winch 60 is situated rearward of the ladder support 55 and also rearward of the cab 34 in the generally horizontal stored position. This configuration is helpful in that the winch is tucked in and under the ladder without interfering or damaging the cab 34 or the rearward portion of the vehicle, and without interfering with the resting or seating of the ladder on the support 55.
As shown in
The cable 64 can extend over and wrap at least partially around the pulley 70. As shown in
Referring to
As shown in
Although shown with a cord 62C, the remote control 62 can be outfitted with a wireless transmitter and/or receiver that can cooperatively send and receive signals to and from the winch 60 to thereby operate the winch. Of course, in some applications an untethered remote control 62 might be disadvantageous in that it can lead to a loss of the remote control. For this reason, the cord 62C is usually included in the system. Where the cord is not included the remote control can operate and communicate with the winch wirelessly, utilizing radio frequency, infrared, cellular or other communication modes.
As shown in
Optionally, the locked mode can be overridden by manual operation of the control 62A in certain circumstances. In some uses, the control 62A can simply be a switch. An operator can move the switch from the locked mode to another position corresponding to the unlocked mode. The other control 62B can generally operate the uptake and let out of the cable 64 relative to the winch. Additional controls may be included on the remote control 62 as desired.
Operation of the aerial firefighting or rescue apparatus of the current embodiments will now be described. The firefighting apparatus 10, optionally in the form of an aerial fire truck, can be used to fight fires in a building or other structure. In some circumstances, however, the truck 10 may be dispatched to and arrive at an emergency location where access to an elevated position is unneeded. In this case, the ladder 10 can double as a crane or boom to move, lift, upright or otherwise manipulate target objects.
As illustrated in
Optionally, before the ladder is raised to the position shown in
After the attachment element 66 is satisfactorily attached to the target object to achieve the desired movement, the user 100 can operate the remote control 62 to operate the winch. Generally, the controls can be manually manipulated to uptake the cable 64 with the winch 60. This in turn results in a force F in the form of a tension within the cable 64. The force F is transferred to the target object 105 via the attachment element, as illustrated a hook 66. Upon sufficient application of the force F the target object can be up-righted as shown in the direction of the arrow.
As mentioned above, the remote control 62 can be tethered via a cord 62C to the frame 30 and in an electrical communication with the winch 60. The cord 62C can be of a sufficient length so that the user 100 can manually operate the remote control 62 while in direct view of the target object 105. This can enable the user 100 to make fine adjustments to and monitor the progress of the application of force F via the cable 64.
After the target object is up-righted or otherwise moved, the attachment element 66 can be disconnected from it. And after all target objects at a particular emergency location are moved using the ladder mounted recovery winch 60, the pulley 70 can be removed and the winch spooled to uptake the cable 64. The ladder can then be moved from its raised position to the generally horizontal stored position as shown in
Directional terms, such as “vertical,” “horizontal,” “top,” “bottom,” “upper,” “lower,” “inner,” “inwardly,” “outer” and “outwardly,” are used to assist in describing the invention based on the orientation of the embodiments shown in the illustrations. The use of directional terms should not be interpreted to limit the invention to any specific orientations.
The above description is that of current embodiments of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. This disclosure is presented for illustrative purposes and should not be interpreted as an exhaustive description of all embodiments of the invention or to limit the scope of the claims to the specific elements illustrated or described in connection with these embodiments. For example, and without limitation, any individual elements of the described invention may be replaced by alternative elements that provide substantially similar functionality or otherwise provide adequate operation. This includes, for example, presently known alternative elements, such as those that might be currently known to one skilled in the art, and alternative elements that may be developed in the future, such as those that one skilled in the art might, upon development, recognize as an alternative. Further, the disclosed embodiments include a plurality of features that are described in concert and that might cooperatively provide a collection of benefits. The present invention is not limited to only those embodiments that include all of these features or that provide all of the stated benefits, except to the extent otherwise expressly set forth in the issued claims. Any reference to claim elements in the singular, for example, using the articles “a,” “an,” “the” or “said,” is not to be construed as limiting the element to the singular. Any reference to claim elements as “at least one of X, Y and Z” is meant to include any one of X, Y or Z individually, and any combination of X, Y and Z, for example, X, Y, Z; X, Y; X, Z ; and Y, Z.
Number | Date | Country | |
---|---|---|---|
61973501 | Apr 2014 | US |