Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst

Information

  • Patent Grant
  • 9511353
  • Patent Number
    9,511,353
  • Date Filed
    Thursday, June 6, 2013
    11 years ago
  • Date Issued
    Tuesday, December 6, 2016
    8 years ago
Abstract
The effect of firing (calcination) cycle on metallic substrates in ZPGM catalyst systems is disclosed. ZPGM catalyst samples with washcoat and overcoat are separately fired in a normal, slow and fast firing cycles to determine the optimal firing cycling that may provide an enhanced catalyst performance, as well as the minimal loss of washcoat adhesion from the samples.
Description
BACKGROUND

1. Technical Field


This disclosure relates generally to ZPGM catalyst systems, and, more particularly, to firing (calcination) effect on ZPGM catalyst coated on metallic substrates.


2. Background Information


The catalytic properties of ZPGM catalyst systems may significantly depend on the structure of a precursor and its preparation method. Under some conditions, high dispersion metal components systems may be obtained by thermal decomposition (calcination) of precursor material. For this reason, calcination (firing) process may be an important step in the process of catalyst activation.


Calcination may have an effect on physiochemical properties and catalytic activity within a catalyst system. Noble metals such as Pt, Pd, and Rh, amongst others may have shown high activity for hydrocarbon combustion and tolerance to moisture, but due to their resource scarcity and high cost may have encountered limits in practical applications. ZPGM catalyst systems may be an alternative due to their cost and resistance to poisoning. However, single component transition metal oxides may have a low thermal stability and activity which may be increased by doping the transition metal oxide catalyst with metal oxides.


As calcination cycling may affect the crystalline phase, crystallite size and/or the surface area of the active phase, an optimal calcination cycling may be needed for enhanced catalyst performance and activity, which may also provide additional savings in energy and cost in the preparation of ZPGM catalyst systems.


SUMMARY

The present disclosure may provide a calcination or firing cycle for enhanced performance and activity of ZPGM catalyst systems on metallic substrates.


Compositions of ZPGM catalyst systems may include any suitable combination of a substrate, a washcoat, and an overcoat which includes copper (Cu), cerium (Ce), and other metal combinations for catalysts that may be practically free of platinum group metals to form mixed phase of metal oxide and spinel catalysts.


A calcination cycle may be provided employing samples of varied substrate geometry and cells per square inch (CPSI). Samples may be prepared using any suitable synthesis method as known in current art, such as co-precipitation or impregnation methods, amongst others. Catalyst samples may be subjected to a calcination cycle employing a plurality of calcinating equipment such as a static furnace, amongst others after drying process at room temperature. Both washcoat and overcoat of catalytic samples may separately go through a calcination cycle which may include the application of normal, slow and fast firing cycles. The time required for the normal firing cycle may be used to determine cycle times required for the slow and fast firing cycles respectively.


The catalyst samples may be subsequently characterized using any suitable analysis, such as elemental mass balance analysis, which may provide profiles of the effect of calcination ramp on catalyst performance, activity and washcoat adhesion (WCA) according to principles in present disclosure.


The determination of an optimal firing, calcination cycling, may provide savings on energy and cost in the preparation of ZPGM catalyst systems.


Numerous objects and advantages of the present disclosure may be apparent from the detailed description that follows and the drawings which illustrate the embodiments of the present disclosure, and which are incorporated herein by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting embodiments of the present disclosure are described by way of example with reference to the accompanying figures which are schematic and are not intended to be drawn to scale. Unless indicated as representing the background art, the figures represent aspects of the disclosure.



FIG. 1 shows a temperature profile for a washcoat (WC) and an overcoat (OC) calcined in a bench reactor using a fast firing cycle, according to an embodiment.



FIG. 2 illustrates elemental mass balance analysis for an OC under a fast firing cycle, according to an embodiment.



FIG. 3 presents elemental mass balance analysis for an OC under a slow firing cycle, according to an embodiment.



FIG. 4 depicts effect of calcination ramp on catalyst performance under exhaust lean condition, according to an embodiment.



FIG. 5 shows effect of calcination ramp on WCA loss of ZPGM samples, according to an embodiment.



FIG. 6 presents activity for ZPGM catalyst sample on metallic substrate, according to an embodiment.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, which are not to scale or to proportion, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings and claims, are not meant to be limiting. Other embodiments may be used and/or and other changes may be made without departing from the spirit or scope of the present disclosure.


Definitions


As used here, the following terms have the following definitions:


“Washcoat” may refer to at least one coating including at least one oxide solid that may be deposited on a substrate.


“Overcoat” may refer to at least one coating that may be deposited on at least one washcoat layer.


“Zero platinum group (ZPGM) catalyst” may refer to a catalyst completely or substantially free of platinum group metals.


“Conversion” may refer to the chemical alteration of at least one material into one or more other materials.


“Calcination” may refer to a thermal treatment process applied to solid materials, in presence of air, to bring about a thermal decomposition, phase transition, or removal of a volatile fraction at temperatures below the melting point of the solid materials.


Description of the Drawings


Various example embodiments of the present disclosure are described more fully with reference to the accompanying drawings in which some example embodiments of the present disclosure are shown. Illustrative embodiments of the present disclosure are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments of the present disclosure. This disclosure however, may be embodied in many alternate forms and should not be construed as limited to only the embodiments set forth herein.


Preparation of Samples


A ZPGM catalyst system including a ZPGM transition metal catalyst having a metallic substrate, a washcoat (WC) and an overcoat (OC) is prepared. Metallic substrate may be used with different dimension and cell density (CPSI). Washcoat may include an oxygen storage material (OSM) and support oxide. Overcoat may include copper oxide, ceria, support oxide, and at least one OSM. The OSM is a mixture of cerium, zirconium, neodymium, and praseodymium. The support oxide may include any type of alumina or doped alumina. The OSM and the alumina may be present in WC in a ratio between 40% and about 60% by weight. The alumina and OSM included in OC are present in a ratio of about 60% to about 40% by weight. The copper (Cu) and cerium (Ce) in OC are present in about 5% to about 50% by weight or from about 10% to 16% by weight of Cu and 12% to 20% by weight of Ce. The ZPGM catalyst system may be prepared using co-milling, co-precipitation or other preparation technique known in the art. After deposition, washcoat and overcoat undergo a thermal treatment called calcination (or firing). This thermal treatment may be performed at about 300° C. to about 700° C. In some embodiments this treatment may be performed at about 550° C. The heat treatment may last from about 2 to about 6 hours. In an embodiment the treatment may last about 4 hours. However, the ramp of heating treatment may vary in some embodiments. The washcoat and overcoat loading may vary from 60 g/L to 200 g/L, separately.


Calcination (Firing) Process


The calcination process for the WC and OC of ZPGM catalyst samples may be separately examined by any suitable analytical method using a bench reactor or a static furnace as known in the art. The samples may be subjected to at least two different firing cycles, namely slow firing cycle and fast firing cycle which may be determined from a normal firing cycle. Suitable time for normal firing cycle may be selected within a range of about 5 hours to 6 hours within a temperature range from room temperature and 600° C., preferably up to 550° C. Temperature may be measured with any suitable thermocouple that may be placed at the inlet center of the sample substrate. A suitable required cycle time for the slow firing cycle may be 150% of time required for normal firing cycle and temperature range from 50° C. and 600° C., preferably up to 550° C., measured with any suitable thermocouple that may be placed at the inlet center of the sample substrate. For fast firing cycle, a suitable required time may be 50% of time required for normal firing cycle and temperature range from room temperature and 600° C., preferably up to 550° C., measured with any suitable thermocouple. For each of the firing cycles in present disclosure, calcination ramp may be between 100° C./hr to 180° C./hr.


The samples may be subsequently characterized using any suitable analytical method such as elemental mass balance analysis, which may provide catalyst performance and activity profiles in present disclosure. The catalyst samples may be tested under exhaust lean condition to obtain profiles of the effect of calcination ramp on catalyst performance, activity and WCA loss according to principles in present disclosure.


The following examples are intended to illustrate the scope of the disclosure. It is to be understood that other procedures known to those skilled in the art may alternatively be used.


Example #1
Calcination Cycling of ZPGM Catalyst Samples on Bench Reactor

Example #1 illustrates calcination cycling for the ZPGM catalyst samples on metallic substrate. The metallic substrate specification is D40 mm×L40 mm, and 100 CPSI. Washcoat contains Al2O3 with a loading of 120 g/L and overcoat contains alumina, OSM, and Cu (12.0 g/L) and Ce (14.4 g/L) as ZPGM catalyst. The total loading of overcoat is 120 g/L.


After washcoat step, samples may be dried at room temperature, they may be subjected to either normal, fast or slow firing cycling in a bench reactor. A suitable thermocouple may be placed at the inlet center of the catalyst sample substrate. Composition of gas flow may be 5% O2 in N2. For the normal firing cycle, sample is heated from room temperature to about 150° C. with temperature ramp of 120° C./hr, followed by soaking at 150° C. for about 2 hours. Then, temperature may be increased to about 550° C. with a temperature ramp of 180° C./hr, followed by soaking at 550° C. for desired treatment duration between 2 hours to 6 hours, preferably 4 hours. For the fast firing cycle, sample is heated from room temperature to about 550° C. with temperature ramp of 180° C./hr, followed by soaking at 550° C. for desired treatment duration between 2 hours to 6 hours, preferably 4 hours. For the slow firing cycle, sample is heated from room temperature to about 150° C. with temperature ramp of 120° C./hr, followed by soaking at 150° C. for about 2 hours. Then, temperature may be increased to about 300° C. with a temperature ramp of 120° C./hr, followed by soaking at 300° C. for about 2 hours. Afterwards, temperature may be increased to about 550° C. with a temperature ramp of 120° C./hr, followed by soaking at 550° C. for desired treatment duration between 2 hours to 6 hours, preferably 4 hours.


Monitoring the outlet stream products after firing of washcoat layer resulted in that no CO, CO2, HC, and NOx were detected. Only a WC weight loss was observed to be of 0.42% weight loss during slow firing cycle and of 0.44% weight loss during fast firing cycle, mostly due to the presence of water in the samples.


Subsequently, samples with overcoat may be dried at room temperature and then they may be subjected to either normal, fast or slow firing cycling in a bench reactor. A suitable thermocouple may be placed at the inlet center of the catalyst sample substrate. Composition of gas flow may be 5% O2 in N2. For the normal firing cycle, sample is heated from room temperature to about 150° C. with temperature ramp of 120° C./hr, followed by soaking at 150° C. for about 2 hours. Then, temperature may be increased to about 550° C. with a temperature ramp of 180° C./hr, followed by soaking at 550° C. for desired treatment duration between 2 hours to 6 hours, preferably 4 hours. For the fast firing cycle, sample is heated from room temperature to about 550° C. with temperature ramp of 180° C./hr, followed by soaking at 550° C. for desired treatment duration between 2 hours to 6 hours, preferably 4 hours. For the slow firing cycle, sample is heated from room temperature to about 150° C. with temperature ramp of 120° C./hr, followed by soaking at 150° C. for about 2 hours. Then, temperature may be increased to about 300° C. with a temperature ramp of 120° C./hr, followed by soaking at 300° C. for about 2 hours. Afterwards, temperature may be increased to about 550° C. with a temperature ramp of 120° C./hr, followed by soaking at 550° C. for desired treatment duration between 2 hours to 6 hours, preferably 4 hours.


Monitoring the outlet stream products after firing of overcoat layer resulted in that CO2, HC, and NOx were detected. However, no CO was detected. An OC weight loss was observed to be of 2.3% weight loss during slow firing cycle and of 2.0% weight loss during fast firing cycle. From the above, the WC and OC weight loss is the same regardless of the firing ramp cycle. Therefore, the firing ramp cycle may not affect WC and OC weight loss.



FIG. 1 shows temperature profile 100 for catalyst of example #1 calcined in a bench reactor, employing a fast firing cycle. Graph 102 (solid line) is for WC firing cycle and graph 104 (dash line) is for OC firing cycle. As may be seen in graph 102, consistent with the result of the monitoring of the fast firing cycle of WC layer no exotherm was detected. In graph 104, during fast firing cycle of OC layer, CO2, HC, and NOx may be detected as indicated by the OC exothermic reaction that may occur at temperatures in between the range of 200° C. to 300° C., after approximately 1.5 hours of calcination time.



FIG. 2 illustrates elemental mass balance analysis 200 for catalyst of example #1 calcined in a bench reactor, employing a fast firing cycle, according to an embodiment. Concentration of CO2, HC, and NOx may be seen in CO2 concentration graph 202, HC concentration graph 204, and NOx concentration graph 206.


Consistent with the OC exothermic reaction that may be observed in FIG. 1, elemental mass balance analysis 200 resulted in that no CO was formed during OC firing. As may be seen in CO2 concentration graph 202, CO2 was detected at a temperature of about 250° C. in a maximum concentration of 1,400 ppm. At the same temperature, in HC concentration graph 204 may be seen that HC detected was present in a maximum concentration of about 800 ppm. CO2 and HC are combustion products of the organic compounds used for rheology adjustment during preparation of overcoat slurry, including but not limited to acetic acid, citric acid, tetraethyl ammonium hydroxide, other tetralkyl ammonium salts, ammonium acetate, and ammonium citrate.


NOx detected in a maximum concentration of about 500 ppm may come from the nitrate source of base metals used, such as Cu nitrate and Ce nitrate, as seen in NOx concentration graph 206.



FIG. 3 presents elemental mass balance analysis 300 for catalyst of example #1 calcined in a bench reactor, employing a slow firing cycle, according to an embodiment.


Concentration of CO2, HC, and NOx may be seen in CO2 concentration graph 302, HC concentration graph 304, and NOx concentration graph 306.


Consistent with the OC exothermic reaction that may be observed, elemental mass balance analysis 300 resulted in that no CO was formed during OC firing. As may be seen in CO2 concentration graph 302, CO2 was detected at a temperature of about 250° C. in a maximum concentration of 1,300 ppm. At the same temperature, in HC concentration graph 304 may be seen that HC detected was present in a maximum concentration of about 700 ppm. CO2 and HC are combustion products of the organic compounds used for rheology adjustment during preparation of overcoat slurry, including but not limited to acetic acid, citric acid, tetraethyl ammonium hydroxide, other tetralkyl ammonium salts, ammonium acetate, and ammonium citrate.


NOx detected in a maximum concentration of about 400 ppm may come from the nitrate source of base metals used, such as Cu nitrate and Ce nitrate, as seen in NOx concentration graph 306. These results show the OC exotherm does not depend on the firing ramp. The temperature of OC exotherm and the amount of exotherm does not change by varying the calcination ramp cycle.


Effect of Calcination Ramp on Catalytic Property



FIG. 4 depicts effect of calcination ramp 400 on activity of catalyst of example #1 under exhaust lean condition, according to an embodiment. Catalyst activity may be shown by HC light-off curve of catalyst of example #1 which goes under normal, fast, and slow calcination ramp in FIG. 4A. Catalyst activity graph 402 shows normal calcination ramp (dash line), catalyst activity graph 404 shows fast calcination ramp (dot dash line), and catalyst activity graph 406 shows slow calcination ramp (solid line). As may be seen in FIG. 4A, T50 of HC is about 338° C. for all three calcination cycles. Therefore, the firing cycles applied may have no effect on the HC conversion of the catalyst samples.


Catalyst activity may be shown by CO light-off curve of catalyst of example #1 which goes under normal, fast, and slow calcination ramp in FIG. 4B. Catalyst activity graph 408 shows normal calcination ramp (dash line), catalyst activity graph 410 shows fast calcination ramp (dot line), and catalyst activity graph 412 shows slow calcination ramp (solid line). As may be seen in FIG. 4B, T50 of CO is about 203° C. for all three calcination cycles. Therefore, the firing cycles applied may have no effect on the sample catalyst activity in CO conversion.



FIG. 5 shows effect of calcination ramp 500 on WCA loss of samples of example #1 which goes under normal, fast, and slow calcination ramp, according to an embodiment. Bar graph 502 shows WCA loss of catalyst of example #1 with normal calcination ramp. Bar graph 504 shows WCA loss of catalyst of example #1 with fast calcination ramp and bar graph 506 shows WCA loss of catalyst of example #1 with slow calcination ramp on catalyst samples. As may be seen, after firing cycles were applied, catalyst samples showed WCA loss in a range of about 4% to 5%, which also indicates that the variation of firing cycles may have no effect of WCA loss.


Example #2
Calcination Cycling of ZPGM Catalyst Samples in Static Furnace

Example #2 illustrates calcination cycling for the ZPGM catalyst samples on metallic substrate. The metallic substrate specification is D40 mm×L90 mm, and 300 CPSI. Washcoat contains Al2O3 with a loading of 120 g/L and overcoat contains alumina, oxygen storage material, and Cu (12.0 g/L) and Ce (14.4 g/L) as ZPGM catalyst. The total loading of overcoat is 120 g/L.


After washcoat and overcoat process, samples may be dried at room temperature, they may be subjected to either normal or slow firing cycling in a static furnace under air flow. For the normal firing cycle, sample is heated from room temperature to about 150° C. with temperature ramp of 120° C./hr, followed by soaking at 150° C. for about 2 hours. Then, temperature may be increased to about 550° C. with a temperature ramp of 180° C./hr, followed by soaking at 550° C. for desired treatment duration between 2 hours to 6 hours, preferably 4 hours. For the slow firing cycle, sample is heated from room temperature to about 150° C. with temperature ramp of 120° C./hr, followed by soaking at 150° C. for about 2 hours. Then, temperature may be increased to about 300° C. with a temperature ramp of 120° C./hr, followed by soaking at 300° C. for about 2 hours. Afterwards, temperature may be increased to about 550° C. with a temperature ramp of 120° C./hr, followed by soaking at 550° C. for desired treatment duration between 2 hours to 6 hours, preferably 4 hours.



FIG. 6 presents effect of calcination ramp 600 on activity of catalyst example #2 under exhaust lean condition, according to an embodiment. Catalyst activity may be shown by HC light-off curve of catalyst of example #2 which goes under normal and slow calcination ramp. Catalyst activity graph 602 shows normal calcination ramp (solid line), and catalyst activity graph 604 shows slow calcination ramp (dash line). As may be seen in FIG. 6, T50 of HC is about 319° C. for sample treated by normal and slow firing cycle; therefore the normal and slow firing cycles applied may have no effect on the activity in HC conversion of the catalyst samples. Additionally to HC conversion, WCA loss may be examined. During normal calcination cycle, catalyst samples showed a WCA loss of about 4.2% and during slow calcination cycle, samples showed a WCA loss of about 4.6%. It may be observed that using a slower calcination cycle for samples OC may not influence the catalyst WCA and activity.


As seen from example #1 and example #2, WC and OC weight loss may be minimal during the calcination cycle and may not depend on the ramp of calcination cycle. The temperature and amount of the exothermic reaction that was observed during the calcination cycle may not depend on the ramp of calcination cycle. The calcination cycle may not affect the catalyst activity and washcoat adhesion. These results may be applied for different size and cell density of metallic substrates.


While various aspects and embodiments have been disclosed, other aspects and embodiments may be contemplated. The various aspects and embodiments disclosed here are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims
  • 1. A method of controlling a firing cycle for use with catalytics, comprising: providing at least one substrate;depositing a washcoat suitable for deposition on the substrate, the washcoat comprising at least one oxide solid further comprising at least one carrier metal oxide;calcinating the washcoat through at least one first heating and at least one second heating;depositing an overcoat suitable for deposition on the substrate, the overcoat comprising at least one oxygen storage material and at least one ZPGM catalyst;wherein the at least one ZPGM catalyst comprises at least one compound having the formula AB2O4, wherein each of A and B is selected from the group consisting of at least one of copper and cerium; andwherein one of the at least one carrier metal oxide is a mixed metal oxide.
  • 2. The method of claim 1, wherein the mixed metal oxide is selected from the group consisting of TiO2, doped TiO2, Ti1-xNbxO2, SiO2, alumina, doped alumina, ZrO2, doped ZrO2 , Nb2O5-ZrO2 , Nb2O5-ZrO2-CeO2, and combinations thereof.
  • 3. The method of claim 1, wherein the at least one ZPGM catalyst comprises about 12.0g/L of copper and about 14.4 g/L of cerium.
  • 4. The method of claim 1, wherein the mixed metal oxide has a concentration of about 120 g/L.
  • 5. The method of claim 1, wherein the at least one first heating is from about room temperature to about 150° C.
  • 6. The method of claim 5, wherein the rate of the at least one first heating is about 120° C/hr.
  • 7. The method of claim 5, wherein the temperature of about 150° C. is held for about 2 hours.
  • 8. The method of claim 1, wherein the at least one second heating is to about 550° C.
  • 9. The method of claim 5, wherein the rate of the at least one second heating is about 180° C/hr.
  • 10. The method of claim 5, wherein the temperature of about 550° C. is held for about 4 hours.
  • 11. The method of claim 1, wherein the at least one second heating is to about 300° C.
  • 12. The method of claim 11, wherein the rate of the at least one second heating is about 120° C/hr.
  • 13. The method of claim 11, wherein the temperature of about 300° C. is held for about 2 hours.
  • 14. The method of claim 1, further comprising at least one third heating, wherein the at least one third heating is to about 550° C.
  • 15. The method of claim 14, wherein the rate of the at least one third heating is about 120° C/hr.
  • 16. The method of claim 14, wherein the temperature of about 550° C. is held for about 4 hours.
  • 17. The method of claim 1, wherein the at least one substrate may be selected from the group consisting of cordierite, zeolite, and combinations thereof.
  • 18. The method of claim 1, further comprising calcinating the overcoat through at least one first heating and at least one second heating.
  • 19. A method of controlling a firing cycle for use with catalytics, comprising: providing at least one substrate;depositing a washcoat suitable for deposition on the substrate, the washcoat comprising at least one oxide solid further comprising at least one carrier metal oxide;calcinating the washcoat through at least one heating, wherein the at least one heating is from about room temperature to about 550° C. and wherein the temperature of about 550° C. is held for about 4 hours;depositing an overcoat suitable for deposition on the substrate, the overcoat comprising at least one oxygen storage material and at least one ZPGM catalyst;wherein the at least one ZPGM catalyst comprises at least one compound having the formula AB2O4, wherein each of A and B is selected from the group consisting of at least one of copper and cerium; andwherein one of the at least one carrier metal oxide is a mixed metal oxide.
  • 20. The method of claim 19, further comprising calcinating the overcoat through at least one heating, wherein the at least one heating is from about room temperature to about 550° C. and wherein the temperature of about 550° C. is held for about 4 hours.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 61/791,721, filed Mar. 15, 2013, titled Methods for Oxidation and Three-way ZPGM Catalyst Systems and Apparatus Comprising Same and to U.S. Provisional Application No. 61/791,838, filed Mar. 15, 2013, titled Oxidation Catalyst Systems Compositions and Methods Thereof, and U.S. Provisional Application No. 61/791,963, filed Mar. 15, 2013, titled System and Method for Two Way ZPGM Oxidation Catalyst Systems and U.S. Provisional Application No. 61/792,071, filed Mar. 15, 2013, titled ZPGM Catalyst Systems and Methods of Making Same, and U.S. Provisional Application No. 61/792,215, filed Mar. 15, 2013, titled ZPGM TWC Systems Compositions and Methods Thereof, the entireties of which are incorporated herein by reference as if set forth herein.

US Referenced Citations (290)
Number Name Date Kind
3284370 Alan et al. Nov 1966 A
3473987 Sowards Oct 1969 A
3493325 Roth Feb 1970 A
3896616 Keith et al. Jul 1975 A
3904553 Campbell et al. Sep 1975 A
4029738 Courty et al. Jun 1977 A
4062810 Vogt et al. Dec 1977 A
4113921 Goldstein et al. Sep 1978 A
4188309 Volker et al. Feb 1980 A
4199328 Cole et al. Apr 1980 A
4261862 Kinoshita et al. Apr 1981 A
4274981 Suzuki et al. Jun 1981 A
4297150 Sims et al. Oct 1981 A
4297328 Ritscher et al. Oct 1981 A
4414023 Aggen et al. Nov 1983 A
4629472 Haney, III et al. Dec 1986 A
4661329 Suzuki et al. Apr 1987 A
4673556 McCabe et al. Jun 1987 A
4790982 Yoo et al. Dec 1988 A
4797329 Kilbane et al. Jan 1989 A
4885269 Cyron Dec 1989 A
4891050 Bowers et al. Jan 1990 A
4892562 Bowers et al. Jan 1990 A
4906443 Gandhi et al. Mar 1990 A
5034020 Epperly et al. Jul 1991 A
5063193 Bedford et al. Nov 1991 A
5157007 Domesle et al. Oct 1992 A
5162284 Soled et al. Nov 1992 A
5168836 Kraus Dec 1992 A
5175132 Ketcham et al. Dec 1992 A
5182249 Wang et al. Jan 1993 A
5203166 Miller Apr 1993 A
5238898 Han et al. Aug 1993 A
5266083 Peter-Hoblyn et al. Nov 1993 A
5364517 Dieckmann et al. Nov 1994 A
5371056 Leyrer et al. Dec 1994 A
5404841 Valentine Apr 1995 A
5501714 Valentine et al. Mar 1996 A
5535708 Valentine Jul 1996 A
5580553 Nakajima Dec 1996 A
5584894 Peter-Hoblyn et al. Dec 1996 A
5658543 Yoshida et al. Aug 1997 A
5693106 Peter-Hoblyn et al. Dec 1997 A
5708233 Ochi et al. Jan 1998 A
5721188 Sung et al. Feb 1998 A
5732548 Peter-Hoblyn et al. Mar 1998 A
5743922 Peter-Hoblyn et al. Apr 1998 A
5747410 Muramatsu et al. May 1998 A
5749928 Epperly et al. May 1998 A
5809774 Peter-Hoblyn et al. Sep 1998 A
5809775 Tarabulski et al. Sep 1998 A
5819529 Peter-Hoblyn et al. Oct 1998 A
5868421 Eyrainer Feb 1999 A
5879645 Park et al. Mar 1999 A
5898015 Yokoi et al. Apr 1999 A
5921080 Ulmet et al. Jul 1999 A
5924280 Tarabulski Jul 1999 A
5939354 Golden Aug 1999 A
5965099 Hartweg et al. Oct 1999 A
5968462 Suzuki Oct 1999 A
5968464 Peter-Hoblyn et al. Oct 1999 A
5976475 Peter-Hoblyn et al. Nov 1999 A
5977017 Golden Nov 1999 A
6003303 Peter-Hoblyn et al. Dec 1999 A
6023928 Peter-Hoblyn et al. Feb 2000 A
6051040 Peter-Hoblyn et al. Apr 2000 A
6063350 Tarabulski et al. May 2000 A
6124130 Olson Sep 2000 A
6129834 Peters et al. Oct 2000 A
6203770 Peter-Hoblyn et al. Mar 2001 B1
6232253 Narula et al. May 2001 B1
6279603 Czarnik et al. Aug 2001 B1
6293096 Khair et al. Sep 2001 B1
6352955 Golden Mar 2002 B1
6361754 Peter-Hoblyn et al. Mar 2002 B1
6372686 Golden Apr 2002 B1
6395244 Hartweg et al. May 2002 B1
6444178 Haratweg et al. Sep 2002 B1
6468941 Bortun et al. Oct 2002 B1
6531425 Golden Mar 2003 B2
6576587 Labarge et al. Jun 2003 B2
6605264 Bortun et al. Aug 2003 B2
6624113 Labarge et al. Sep 2003 B2
6632557 Curelop et al. Oct 2003 B1
6652829 Barnes et al. Nov 2003 B2
6696389 Boegner et al. Feb 2004 B1
6747180 Ostgard et al. Jun 2004 B2
6774080 LaBarge et al. Aug 2004 B2
6858193 Ruwisch et al. Feb 2005 B2
6915629 Szymkowics Jul 2005 B2
6938411 Hoffmann et al. Sep 2005 B2
6948926 Valentine et al. Sep 2005 B2
7014825 Golden Mar 2006 B2
7129194 Baca et al. Oct 2006 B2
7374729 Chen et al. May 2008 B2
7393809 Kim Jul 2008 B2
7485273 Gandhi et al. Feb 2009 B2
7563744 Klein et al. Jul 2009 B2
7576029 Saito et al. Aug 2009 B2
7641875 Golden Jan 2010 B1
7749472 Chen et al. Jul 2010 B2
7772147 Collier et al. Aug 2010 B2
7785544 Alward et al. Aug 2010 B2
7803338 Socha et al. Sep 2010 B2
7875250 Nunan Jan 2011 B2
7875573 Beutel et al. Jan 2011 B2
7943104 Kozlov et al. May 2011 B2
8080494 Yasuda et al. Dec 2011 B2
8148295 Augustine Apr 2012 B2
8158551 Verdier et al. Apr 2012 B2
8168125 Choi May 2012 B2
8242045 Kulkarni et al. Aug 2012 B2
8318629 Alive et al. Nov 2012 B2
8802582 Malyala et al. Aug 2014 B2
8845987 Nazarpoor et al. Sep 2014 B1
8853121 Nazarpoor et al. Oct 2014 B1
8858903 Nazarpoor Oct 2014 B2
20010001354 Peter-Hoblyn et al. May 2001 A1
20020001554 Czarnik et al. Jan 2002 A1
20020042341 Golden Apr 2002 A1
20020114746 Roark et al. Aug 2002 A1
20020131914 Sung Sep 2002 A1
20030092566 Inoue et al. May 2003 A1
20030109047 Valentine Jun 2003 A1
20030126789 Valentine et al. Jul 2003 A1
20030148235 Valentine et al. Aug 2003 A1
20030185722 Toyoda Oct 2003 A1
20030198582 Golden Oct 2003 A1
20030221360 Brown et al. Dec 2003 A1
20040018939 Chigapov et al. Jan 2004 A1
20040033175 Ohno et al. Feb 2004 A1
20040048125 Curlop et al. Mar 2004 A1
20040087439 Hwang et al. May 2004 A1
20040098905 Valentine et al. May 2004 A1
20040151647 Wanninger et al. Aug 2004 A1
20040166035 Noda et al. Aug 2004 A1
20040172876 Sprague et al. Sep 2004 A1
20040254062 Crocker et al. Dec 2004 A1
20050095188 Matsumoto et al. May 2005 A1
20050132674 Toyoda et al. Jun 2005 A1
20050145827 McCabe et al. Jul 2005 A1
20050160663 Valentine Jul 2005 A1
20050160724 Valentine et al. Jul 2005 A1
20050164139 Valentine et al. Jul 2005 A1
20050188605 Valentine et al. Sep 2005 A1
20050197244 L'vovich et al. Sep 2005 A1
20050207956 Vierheilig Sep 2005 A1
20050217751 Valentine et al. Oct 2005 A1
20050227867 Chen et al. Oct 2005 A1
20050265920 Ercan et al. Dec 2005 A1
20060081922 Golden Apr 2006 A1
20060100097 Chigapov et al. May 2006 A1
20060120936 Alive et al. Jun 2006 A1
20060166816 Zhang et al. Jul 2006 A1
20060223694 Gandhi et al. Oct 2006 A1
20060228283 Malyala et al. Oct 2006 A1
20060254535 Valentine et al. Nov 2006 A1
20060260185 Valentine et al. Nov 2006 A1
20060292342 Ohno et al. Dec 2006 A1
20070015656 Valentine et al. Jan 2007 A1
20070209272 Valentine Sep 2007 A1
20070283681 Makkee et al. Dec 2007 A1
20080072705 Chaumonnot et al. Mar 2008 A1
20080075646 Mussmann et al. Mar 2008 A1
20080119353 Jia et al. May 2008 A1
20080125308 Fujdala et al. May 2008 A1
20080166282 Golden et al. Jul 2008 A1
20080190099 Yezerets et al. Aug 2008 A1
20080210184 Valentine et al. Sep 2008 A1
20080226524 Alive et al. Sep 2008 A1
20090004083 Valentine et al. Jan 2009 A1
20090134365 Sasaki et al. May 2009 A1
20090220697 Addiego Sep 2009 A1
20090274903 Addiego Nov 2009 A1
20090304566 Golden et al. Dec 2009 A1
20090324468 Golden et al. Dec 2009 A1
20090324469 Golden et al. Dec 2009 A1
20090324470 Alamdari et al. Dec 2009 A1
20100062293 Triantafyllopoulos et al. Mar 2010 A1
20100111796 Caudle et al. May 2010 A1
20100152032 Galligan Jun 2010 A1
20100168449 Grey et al. Jul 2010 A1
20100180581 Grubert et al. Jul 2010 A1
20100184590 Althofer et al. Jul 2010 A1
20100193104 Ryu et al. Aug 2010 A1
20100229533 Li et al. Sep 2010 A1
20100233045 Kim et al. Sep 2010 A1
20100240525 Golden et al. Sep 2010 A1
20100266473 Chen et al. Oct 2010 A1
20100290964 Southward et al. Nov 2010 A1
20100293929 Zhan et al. Nov 2010 A1
20100316545 Alive et al. Dec 2010 A1
20100316547 Justice et al. Dec 2010 A1
20110053763 Verdier et al. Mar 2011 A1
20110150742 Han et al. Jun 2011 A1
20110239626 Makkee et al. Oct 2011 A1
20120015801 Deprez et al. Jan 2012 A1
20120039775 Schirmeister et al. Feb 2012 A1
20120183447 Kwan et al. Jul 2012 A1
20130012378 Meyer et al. Jan 2013 A1
20130058848 Nunan et al. Mar 2013 A1
20130115144 Golden et al. May 2013 A1
20130130032 Kuo et al. May 2013 A1
20130172177 Domke et al. Jul 2013 A1
20130189173 Hilgendorff Jul 2013 A1
20130236380 Golden et al. Sep 2013 A1
20130323145 Tran et al. Dec 2013 A1
20140271384 Nazarpoor et al. Sep 2014 A1
20140271387 Nazarpoor Sep 2014 A1
20140271388 Nazarpoor et al. Sep 2014 A1
20140271390 Nazarpoor Sep 2014 A1
20140271391 Nazarpoor Sep 2014 A1
20140271392 Nazarpoor Sep 2014 A1
20140271393 Nazarpoor Sep 2014 A1
20140271425 Nazarpoor Sep 2014 A1
20140274662 Nazarpoor Sep 2014 A1
20140274674 Nazarpoor et al. Sep 2014 A1
20140274675 Nazarpoor Sep 2014 A1
20140274677 Nazarpoor Sep 2014 A1
20140274678 Nazarpoor Sep 2014 A1
20140298714 Sprague Oct 2014 A1
20140301906 Hatfield Oct 2014 A1
20140301909 Nazarpoor Oct 2014 A1
20140301926 Hatfield Oct 2014 A1
20140301931 Nazarpoor Oct 2014 A1
20140302983 Nazarpoor Oct 2014 A1
20140334978 Hatfield Nov 2014 A1
20140334989 Nazarpoor et al. Nov 2014 A1
20140334990 Nazarpoor Nov 2014 A1
20140335625 Hatfield Nov 2014 A1
20140335626 Hatfield Nov 2014 A1
20140336038 Nazarpoor et al. Nov 2014 A1
20140336044 Nazarpoor et al. Nov 2014 A1
20140336045 Nazarpoor et al. Nov 2014 A1
20140356243 Nazarpoor Dec 2014 A1
20140357475 Nazarpoor et al. Dec 2014 A1
20140357479 Nazarpoor et al. Dec 2014 A1
20140360164 Sprague et al. Dec 2014 A1
20140364303 Hatfield Dec 2014 A1
20150004709 Nazarpoor Jan 2015 A1
20150005157 Nazarpoor et al. Jan 2015 A1
20150005158 Nazarpoor et al. Jan 2015 A1
20150005159 Nazarpoor Jan 2015 A1
20150017082 Nazarpoor Jan 2015 A1
20150018202 Nazarpoor et al. Jan 2015 A1
20150018203 Nazarpoor et al. Jan 2015 A1
20150018204 Nazarpoor et al. Jan 2015 A1
20150018205 Nazarpoor et al. Jan 2015 A1
20150031268 Waites et al. Jan 2015 A1
20150050742 Nazarpoor Feb 2015 A1
20150051067 Nazarpoor et al. Feb 2015 A1
20150105242 Nazarpoor et al. Apr 2015 A1
20150105243 Nazarpoor et al. Apr 2015 A1
20150105245 Nazarpoor et al. Apr 2015 A1
20150105246 Nazarpoor et al. Apr 2015 A1
20150105247 Nazarpoor et al. Apr 2015 A1
20150147239 Launois et al. May 2015 A1
20150147251 Nazarpoor et al. May 2015 A1
20150148215 Nazarpoor May 2015 A1
20150148216 Nazarpoor et al. May 2015 A1
20150148220 Nazarpoor May 2015 A1
20150148222 Nazarpoor May 2015 A1
20150148223 Nazarpoor et al. May 2015 A1
20150148224 Nazarpoor et al. May 2015 A1
20150148225 Nazarpoor et al. May 2015 A1
20150182951 Nazarpoor Jul 2015 A1
20150182954 Nazarpoor Jul 2015 A1
20150196902 Golden et al. Jul 2015 A1
20150238940 Nazarpoor et al. Aug 2015 A1
20150238941 Nazarpoor et al. Aug 2015 A1
20150258496 Hatfield et al. Sep 2015 A1
20150290627 Nazarpoor et al. Oct 2015 A1
20150290630 Nazarpoor Oct 2015 A1
20150352494 Hatfield et al. Dec 2015 A1
20150352529 Nazarpoor et al. Dec 2015 A1
20150352531 Hatfield et al. Dec 2015 A1
20150352532 Hatfield et al. Dec 2015 A1
20150352533 Hatfield et al. Dec 2015 A1
20160023188 Nazarpoor Jan 2016 A1
20160030885 Hatfield Feb 2016 A1
20160047751 Pless et al. Feb 2016 A1
20160082422 Nazarpoor Mar 2016 A1
20160121304 Nazarpoor May 2016 A1
20160121308 Nazarpoor et al. May 2016 A1
20160121309 Nazarpoor et al. May 2016 A1
20160136617 Nazarpoor et al. May 2016 A1
20160136618 Nazarpoor et al. May 2016 A1
20160136619 Nazarpoor et al. May 2016 A1
20160136620 Nazarpoor et al. May 2016 A1
20160136621 Nazarpoor et al. May 2016 A1
Foreign Referenced Citations (49)
Number Date Country
644637 Aug 1984 CH
102172527 Sep 2011 CN
102371153 Mar 2012 CN
0022349 Jan 1981 EP
0450897 Oct 1991 EP
0541271 May 1993 EP
0605142 Jul 1994 EP
0 814 241 Dec 1997 EP
1121981 Aug 2001 EP
1232790 Aug 2002 EP
1 256 382 Nov 2002 EP
1656993 May 2006 EP
2441510 Apr 2012 EP
62-20613 Jan 1987 JP
4-215853 Aug 1992 JP
09-271665 Oct 1997 JP
4144174 Sep 2008 JP
2013-27858 Feb 2013 JP
404146 Dec 2014 PL
WO 9007561 Jul 1990 WO
WO 9411467 May 1994 WO
WO 9502655 Jan 1995 WO
WO 9704045 Feb 1997 WO
WO 9709523 Mar 1997 WO
WO 9728358 Aug 1997 WO
WO 9736676 Oct 1997 WO
WO 9822209 May 1998 WO
WO 9828070 Jul 1998 WO
WO 0030739 Jun 2000 WO
WO 0075643 Dec 2000 WO
WO 0185876 Nov 2001 WO
WO 03068363 Aug 2003 WO
WO 2004058641 Jul 2004 WO
WO 2008099847 Aug 2008 WO
WO 2009139860 Nov 2009 WO
WO 2010029431 Mar 2010 WO
WO 2011068509 Jun 2011 WO
WO 2012093600 Jul 2012 WO
WO 2012166514 Dec 2012 WO
WO 2013004814 Jan 2013 WO
WO 2013028575 Feb 2013 WO
WO 2013044115 Mar 2013 WO
WO 2013068243 May 2013 WO
WO 2013121112 Aug 2013 WO
WO 2013153081 Oct 2013 WO
WO 2014194101 Dec 2014 WO
WO 2015199687 Dec 2015 WO
WO 2015199688 Dec 2015 WO
WO 2016039747 Mar 2016 WO
Non-Patent Literature Citations (35)
Entry
Alini, S. et al., Development of new catalysts for N2O-decomposition from adipic acid plant, Applied Catalysis B: Environmental, 70, (2007) 323-329.
Azad et al. Examining the Cu-Mn-O Spinel System as an Oxygen Carrier in Chemical Looping Combustion, Energy Technology, vol. 1, Issue 1, (2013) 59-69.
Barrett, E. P. et al., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. A. Chem. Soc. (1951) 73, 373-380.
Brunaubr, S. et al., Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 1938, 60, 309-319.
Bugarski, Aleksandar, Exhaust Aftertreatment Technologies for Curtailment of Diesel Particulate Matter and Gaseous Emissions, Disesel Aerosols and Gases in Underground Metal and Nonmetal Mines. Power Point Presentation. 14th U.S./North American Mine Ventilation Symposium, Salt Lake City, Utah, Jun. 17, 2012. Slides 1-44. http://www.cdc.gov/niosh/mining/use.
D. Panayotov, “Interaction Between No, Co and O2 on gamma-Al203-Supported Copper-Manganese Oxides”, 1996, React.Kinet.Catal.Lett. vol. 58, No. 1, 73-78.
Extended European Search Report for corresponding European Application No. 09770546.1 dated Sep. 26, 2012, 6 pages.
Extended European Search Report for corresponding European Application No. 09770547.9 dated Dec. 7, 2012, 5 pages.
Hayes et al., “Introduction to Catalytic Combustion”, pp. 310-313, 1997 OPA (Overseas Publishers Association).
He, H. et al., An investigation of NO/CO reaction over perovskite-type oxide La0.8Ce0.2B0.4Mn0.6O3 (B=Cu or Ag) catalysts synthesized by reverse microemulsion, Catalysis Today, vol. 126 (2007) 290-295.
International Preliminary Report on Patentability (Chapter II) from International Application No. PCT/US2009/003800, dated May 11, 2010.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2009/003799, dated Oct. 8, 2009.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2009/003800 dated Oct. 22, 2009.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/030597 dated Aug. 13, 7014.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/033041 dated Aug. 20, 2014.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/037452 dated Sep. 15, 2014.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/044221, dated Oct. 3, 2014.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/044222 dated Oct. 3, 2014.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/046512 dated Apr. 6, 2015.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/054874, dated Nov. 13, 2014.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/055063 dated Nov. 24, 2014.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/067541 dated Feb. 4, 2015.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/067569, dated Apr. 3, 2015.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/067589, dated Feb. 10, 2015.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2015/025267 dated Jul. 2, 2015.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2015/025299 dated Jul. 2, 2015.
Ishizaki, K. et al., A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment, SAE Technical Paper, (2012) http://papers.sae.org/2012-01-0365/.
K. S. Abdel Halim et al. “Catalytic Oxidation of CO Gas over Nanocrystallite CuxMn1-xFe2O4”, Feb. 26, 2008, Top Catalyst (2008) 47:66-72.
Kucharczyk, B. et al., Partial substitution of lanthanum with silver in the LaMnO3 perovskite: Effect of the modification on the activity of monolithic catalysts in the reactions of methane and carbon oxide oxidation, Applied Catalysis A: General, vol. 335 (2008) 28-36.
Mestres, L. et al., Phase Diagram at Low Temperature of the System ZrO2/Nb2O5, Z.Anorg. Alig. Chem., vol. 627 (2001) 294-298.
Papavasilious et al., “Combined Steam reforming of methanol over Cu-Mn spinel oxide catalysts”, Journal of Catalysis 251 (2007) 7-20.
Reddy et al., Selective Ortho-Methylation of Phenol with Methanol over Copper Manganese Mixed-Oxide Spinel Catalysts, Journal of Catalysis, vol. 243 (2006) 278-291.
Suh, J. K. et al., Characterization of transition metal-impregnated La-Al complex oxides for catalytic combustion, Microporous Materials (1995) 657-664.
Tanaka et al., “Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels”, Applied Catalysis A: General 279 (2005) 59-66.
Wei, P. et al., In situ high-temperature X-ray and neutron diffraction of Cu-Mn oxide phases, J. Mater Sci. (2010) 45: 1056-1064.
Related Publications (1)
Number Date Country
20140274663 A1 Sep 2014 US
Provisional Applications (5)
Number Date Country
61791721 Mar 2013 US
61791838 Mar 2013 US
61791963 Mar 2013 US
61792071 Mar 2013 US
61792215 Mar 2013 US