The present invention relates to a cutter holding assembly for a machining tool, and more particularly to a cutter holding assembly which has a holder and a cutter connected with each other firmly and tightly.
A conventional cutter holding assembly has a holder, a cutter, and a fastener. The cutter surrounds a front end of the holder, and is fixed on the holder via the fastener mounted through the cutter and screwed with the holder. To prevent the cutter from rotating relative to the holder, two positioning blocks are respectively mounted in diametrically opposite sides of the holder, protrude from an end surface of the holder, and are respectively inserted into and engage with two positioning recesses formed in diametrically opposite sides of the cutter. A width of each positioning recess is slightly larger than a width of each positioning block for easily inserting the positioning blocks into the positioning recesses. For example, if the width of each positioning block is 15.9 millimeters, the width of each positioning recess will be 16.4 millimeters. Because of assembly gaps formed between the positioning recesses and the positioning blocks, the conventional cutter holding assembly has poor balance and vibration problem during rapid spinning. Machining accuracy of the machining tool is reduced.
To overcome the shortcomings, the present invention tends to provide a cutter holding assembly to mitigate or obviate the aforementioned problems.
The main objective of the present invention is to provide a cutter holding assembly that has a tightening positioning assembly to reduce an assembly gap formed between the holder and the cutter to improve precision of machining. The cutter holding assembly has a holder, a cutter, and a tightening positioning assembly. The holder has an end surface and a first positioning recess recessed in the holder and having an opening formed in the end surface of the holder. The cutter is connected to the holder by a fastener and has an end abutting the end surface of the holder and a second positioning recess recessed in the end of the cutter near the holder. The tightening positioning assembly is mounted in the first positioning recess of the holder and the second positioning recess of the cutter and has a positioning block, two tightening elements, and an adjusting element.
The positioning block is mounted in the first positioning recess of the holder and the second positioning recess of the cutter and has an outer surface, two opposite side surfaces, two tightening grooves formed in the positioning block, and an adjusting hole. Each tightening groove has a respective side opening, and the side openings of the two tightening grooves are respectively formed in the two opposite side surfaces of the positioning block. The adjusting hole is recessed in the outer surface of the positioning block, is located between the two tightening grooves, and communicates with the two tightening grooves. The two tightening elements are respectively mounted in the two tightening grooves of the positioning block. The adjusting element is mounted in the adjusting hole of the positioning block, is connected with the positioning block by a threaded connection, and has a conical abutting surface formed around the adjusting element and having diameters gradually decreasing. The abutting surface of the adjusting element selectively abuts the tightening elements.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
The holder 10 has an end surface 11, a connecting portion 13, and a first positioning recess 12. The connecting portion 13 is circular and protrudes from the end surface 11 of the holder 10. The connecting portion 13 has a threaded hole 132 axially formed in the connecting portion 13. The first positioning recess 12 is radially recessed in the holder 10 and has an opening formed in the end surface 11 of the holder 10.
The cutter 20 surrounds the connecting portion 13 of the holder 10, has an end abutting the end surface 11 of the holder 10, and is connected to the holder 10 by a fastener 25. The fastener 25 is mounted through an axis of the cutter 20 and is screwed with the threaded hole 132 of the connecting portion 13. The cutter 20 has a second positioning recess 22 recessed in the end of the cutter 20 near the holder 10. The second positioning recess 22 of the cutter 20 is aligned with the first positioning recess 12 of the holder 10. The cutter 20 may be a milling cutter having replaceable blades. The cutter 20 has multiple blade seats 23 formed on an end of the cutter 20 away from the holder 10 and arranged around the cutter 20 at angular intervals. Each blade seat 23 has a blade 24 fixed thereon by a fastening element.
With reference to
With reference to
With reference to
The two tightening elements 33 are respectively mounted in the two tightening grooves 312 of the positioning block 31. The adjusting element 35 is mounted in the adjusting hole 314 of the positioning block 31 and is connected with the positioning block 31 by a threaded connection. The adjusting element 35 has a conical abutting surface 353 formed around the adjusting element 35 and having diameters gradually decreasing. The abutting surface 353 of the adjusting element 35 selectively abuts the two tightening elements 33. The abutting surface 353 of the adjusting element 35 pushes the two tightening elements 33 to move opposite to each other while the adjusting element 35 is axially moving relative to the positioning block 31. The adjusting element 35 is cylindrical, and has an abutting segment and a threaded segment 355. The abutting segment of the adjusting element 35 corresponds to the two tightening grooves 312 in position. The abutting segment has diameters gradually decreasing to form the abutting surface 353 of the adjusting element 35. The threaded segment 355 has a thread formed around the threaded segment 355, and is connected with the positioning block 31 by the threaded connection.
Preferably, the adjusting element 35 has a socket 352 formed in an end of the adjusting element 35 away from the positioning block 31. The adjusting element 35 can be rotated by a tool inserted in the socket 352 of the adjusting element 35. The diameters of the abutting surface 353 gradually decrease from an end of the abutting surface 353 near the outer surface of the positioning block 31. The abutting segment of the adjusting element 35 is an annular groove radially recessed in the adjusting element 35. The threaded segment 355 is adjacent to an end of the abutting segment of the adjusting element 35 away from the outer surface of the positioning block 31.
The two tightening elements 33 may be round pins, respectively. The two tightening grooves 312 are recessed in and longitudinally extend from an end of the positioning block 31 near the cutter 20, and each tightening groove 312 has a respective end opening formed in the end of the positioning block 31 near the cutter 20 and a respective side opening formed in a respective side surface of the positioning block 31. Each tightening groove 312 has an inner diameter being larger than a diameter of each tightening element 33. A width of the side opening of each tightening groove 312 is smaller than the diameter of each tightening element 33. The two tightening elements 33 are respectively inserted into the two tightening grooves 312 from the end openings thereof. The two tightening elements 33 are engaged in the annular groove formed in the abutting segment of the adjusting element 35 and selectively protrude from the side openings of the two tightening grooves 312.
With reference to
With reference to
With reference to
With reference to
In another embodiment of the present invention, the positioning block 31 is fixed in the second positioning recess 22 of the cutter 20 and is inserted in the first positioning recess 12 of the holder 10. The two tightening elements 33 and the adjusting element 35 are mounted in the positioning block 31 that is mounted in the first positioning recess 12 of the holder 10. The two tightening elements 33 are pushed by the adjusting element 35 to tightly abut against the opposite side surfaces of the first positioning recess 12 of the holder 10, whereby the holder 10 and the cutter 20 can be firmly connected with each other.
Number | Name | Date | Kind |
---|---|---|---|
1363310 | Christopher | Dec 1920 | A |
2612376 | Wollner | Sep 1952 | A |
2656193 | Irrgang | Oct 1953 | A |
3339458 | Thurston | Sep 1967 | A |
3819193 | Kyriakou | Jun 1974 | A |
3969034 | Gaul | Jul 1976 | A |
4575292 | Pape | Mar 1986 | A |
4884483 | Keim | Dec 1989 | A |
4945793 | von Haas | Aug 1990 | A |
5245896 | Erickson | Sep 1993 | A |
5542792 | Krueger | Aug 1996 | A |
5595540 | Rivin | Jan 1997 | A |
5845912 | Grupa | Dec 1998 | A |
6386806 | Planche | May 2002 | B1 |
8584556 | Heinloth | Nov 2013 | B2 |
20020057951 | Silver | May 2002 | A1 |
20050117988 | Stojanovski | Jun 2005 | A1 |
20080185792 | Hopfner | Aug 2008 | A1 |
20090256318 | Stolz | Oct 2009 | A1 |
20090279973 | Erickson | Nov 2009 | A1 |
20110262232 | Chen | Oct 2011 | A1 |
20150330434 | Stjernstedt | Nov 2015 | A1 |
20180009042 | Chen | Jan 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20210354214 A1 | Nov 2021 | US |