First-entry trocar system

Abstract
A surgical access system comprises a trocar, an insufflating optical obturator slidably insertable into the trocar, and a laparoscope slidably insertable into the obturator. A distal end of the obturator comprises a tip, at least a portion of which comprises a wall with a generally uniform thickness comprising a transparent material. At least one vent hole disposed at the obturator tip is fluidly connected to a gas flow channel defined by an interior surface of the obturator and the laparoscope, which is fluidly connected to an insufflation gas inlet disposed at a proximal end of the trocar. Improved optical characteristics of the trocar system permit precise and accurate visual placement thereof into a body cavity. Accordingly the access system is suitable as a first entry surgical access system. Embodiments of the trocar access are also useful for drug delivery, and/or for fluid and/or tissue aspiration.
Description
BACKGROUND
1. Technical Field

This disclosure is generally directed to surgical access devices, and more particularly, to a first-entry surgical access system.


2. Description of the Related Art

Trocars are used for instrument access to body cavities in minimally invasive surgery, for example, laparoscopic surgery. In laparoscopic surgery of the organs of the abdomen, the abdomen is typically inflated or insufflated with an insufflation gas, for example, carbon dioxide, which lifts the abdominal wall away from the internal organs, thereby facilitating access to the organs, a condition referred to as pneumoperitoneum. Inserting trocars into an abdomen under pneumoperitoneum is relatively easy. Because the abdominal wall is distended away from the internal organs by the pressure of the insufflation gas, inadvertent damage to the organs during insertion is reduced. Before pneumoperitoneum is established, however, the abdominal wall through which the trocar is to be inserted contacts the internal organs directly. Consequently, inserting the first trocar, referred to as first entry, carries an increased risk of damaging the internal organs directly beneath the entry point.


SUMMARY OF THE INVENTION

A surgical access system comprises a trocar, an insufflating optical obturator slidably insertable into the trocar, and a laparoscope slidably insertable into the obturator. A distal end of the obturator comprises a tip, at least a portion of which comprises a wall with a generally uniform thickness comprising a transparent material. At least one vent hole disposed at the obturator tip is fluidly connected to a gas flow channel defined by an interior surface of the obturator and the laparoscope, which is fluidly connected to an insufflation gas inlet disposed at a proximal end of the trocar. Improved optical characteristics of the trocar system permit precise and accurate visual placement thereof into a body cavity. Accordingly the access system is suitable as a first entry surgical access system. Embodiments of the trocar access are also useful for drug delivery, and/or for fluid and/or tissue aspiration.


Some embodiments provide a bladeless trocar that permits visualization of body tissue fibers as they are being separated, thereby permitting a controlled traversal across a body wall. Some embodiments provide a bladeless trocar that accommodates a conventional laparoscope. Some embodiments provide a trocar that enables insufflation of a body cavity and contemporaneous visualization thereof through the distal tip of the obturator.


Some embodiments provide a surgical access system comprising: a tubular trocar comprising a longitudinal axis, a proximal end, a distal end, an elongate cannula, and a seal assembly disposed at a proximal end of the cannula; an insufflating obturator slidably insertable into the trocar, the obturator comprising a longitudinal axis, a proximal end, a distal end, a tubular shaft, a tip disposed at the distal end of the shaft, at least one vent hole disposed on the tip, and a handle disposed at the proximal end of the shaft; and a fluid inlet disposed at a proximal end of the access system. At least a portion of the obturator tip comprises a wall comprises a transparent material with a substantially uniform thickness, the obturator slidably receives a laparoscope into the obturator shaft, and an interior surface of the obturator shaft and tip, and an outer surface of an inserted laparoscope together define a insufflation gas flow channel fluidly connecting the at least one vent hole to the fluid inlet.


In some embodiments, the seal assembly comprises a septum seal and a duckbill valve.


In some embodiments, the fluid inlet is disposed on the proximal end of the trocar.


In some embodiments, the obturator tip is bladeless. In some embodiments, the wall of the obturator tip is not greater than about 0.65 mm thick. In some embodiments, the obturator tip has a substantially uniform wall thickness. In some embodiments, the obturator shaft and tip are unitary. In some embodiments, the obturator tip comprises at least one of polymer, polycarbonate, polysulfone, PEEK, polyether block amide (PEBAX®), polyester, copolyester, and acrylic.


In some embodiments, the obturator tip comprises a single vent hole. In some embodiments, the at least one vent hole is at least one of circular, oval, elliptical, tear-drop shaped, slot shaped, slit shaped, chevron shaped, triangular, rectangular, rhomboid, and polygonal.


Some embodiments further comprise a depth indicator on the obturator tip. In some embodiments, the depth indicator comprises at least one of indicia disposed in a bore of the at least one vent hole, and indicia disposed proximate to the at least one vent hole.


In some embodiments, the obturator further comprises at least one laparoscope stop disposed on at least one of the interior surface of the obturator tip and the interior surface of the obturator shaft. In some embodiments, the interior surface of the obturator tip comprises a non-circular transverse cross section.


In some embodiments, the obturator accommodates laparoscopes with varying diameters. In some embodiments, the obturator tip accommodates a distal end of the laparoscope.


In some embodiments, at least one opening perforates the obturator shaft.


In some embodiments, a cross-sectional area of the insufflation gas flow channel is at least about 1.6 mm2. In some embodiments, a flow rate through the access system is at least about 3.5 L/min at an insufflator setting of about 1.6-2 KPa.


Some embodiments further comprise a laparoscope.


Some embodiments further comprise at least one of a gas flow indicator, an audible gas flow indicator, and a visual gas flow indicator.


Some embodiments provide a method for accessing a targeted body region, the method comprising: inserting a laparoscope into the surgical access system, wherein the obturator is inserted into the trocar; contacting the obturator tip with a body wall; advancing access system through the body wall; observing a position of the obturator tip through the laparoscope; and terminating advancement of the trocar system when the obturator tip is observed to reach a targeted body region.


In some embodiments, the targeted body region is a body cavity.


In some embodiments, observing the position of the obturator tip comprises observing the position of the at least one vent hole.


Some embodiments further comprise coupling the gas inlet of the surgical access system to a source of insufflation gas. Some embodiments further comprise at least one of delivering a medicament through the at least one vent hole to the targeted body region; delivering a fluid; aspirating a fluid; and withdrawing tissue.


Some embodiments further comprise removing the obturator from the trocar.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a front view and FIG. 1B is a side view of an embodiment of a surgical access system comprising a trocar, an insufflating optical obturator, and a laparoscope. FIG. 1C is a front cross-sectional view and FIG. 1D is a side cross-sectional view a distal end of the insufflating optical obturator illustrated in FIGS. 1A and 1B with a laparoscope inserted therein. FIG. 1E is a top view of a transverse cross section of a tip of the insufflating optical obturator illustrated in FIGS. 1A-1D.



FIG. 2A is a side cross-sectional view and FIG. 2B is a front cross-sectional view of a distal end of another embodiment of an insufflating optical obturator with a laparoscope inserted therein. FIG. 2C is a top view of a transverse cross-section of a tip of the insufflating optical obturator and laparoscope illustrated in FIGS. 2A and 2B.



FIG. 3A is a longitudinal cross-section of another embodiment of an insufflating optical obturator. FIG. 3B is a detailed cross section of a handle of the insufflating optical obturator illustrated in FIG. 3A.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS


FIGS. 1A and 1B are front and side views of an embodiment of a surgical access or trocar system 1000, which is suitable, for example, as a first entry trocar system. The illustrated embodiment is suitable, for example, as a 5-mm trocar system, as well as for trocar systems of other sizes. The illustrated access system 1000 comprises a trocar 1100, an obturator 1200, and a laparoscope 1300.


The trocar 1100 comprises a longitudinal axis, a proximal end, and a distal end. The proximal end is disposed proximal to a user, for example, a surgeon, during use. Conversely, the distal end is disposed away from the user during use. The obturator 1100 comprises a tubular cannula 1110 and a trocar seal assembly 1120 disposed at the proximal end of the cannula 1110. In the illustrated embodiment, the seal assembly 1120 comprises a fluid inlet comprising a Luer fitting 1122 and a stopcock 1124. In other embodiments, the fluid inlet has a different configuration and/or is disposed on another component, for example, on the obturator 1100.


In the illustrated embodiment, the obturator 1200 is an insufflating optical obturator, as will be described in greater detail below. The obturator 1200 comprises a longitudinal axis, a proximal end, and a distal end. The obturator 1200 comprises an elongate shaft 1210, which is dimensioned for slidable insertion into and removal from the tubular cannula 1110 of the trocar, a tip 1220 disposed at the distal end of the shaft 1210, and a handle 1230 disposed at the proximal end of the shaft 1210. In some embodiments, the obturator tip 1220 is a bladeless tip. In other embodiments, the tip 1220 has another configuration useful for traversing and/or penetrating body tissue, for example, a sharp tip, a pointed tip, a pyramidal tip, a bladed tip, a conical tip, and/or a tip comprising one or more sharp edges or sharpened edges. In other embodiments, the tip 1220 is a radiused blunt tip, which is advantageous for traversing an existing body orifice, and/or relatively soft or fatty tissue.


The trocar 1100 and obturator 1200 independently comprise any suitable material. Those skilled in the art will understand that different components of the trocar 1100 and/or obturator 1200 comprise different materials in some embodiments. Suitable materials include, for example, at least one of a polymer, metal, ceramic, and the like. Suitable polymers include engineering polymers, polycarbonate, polysulfone, PEEK, polyether block amide (PEBAX®), polyester, copolyester, acrylic, and the like. Some embodiments of the trocar 1100 and/or obturator 1100 further comprise a composite, for example, a fiber-reinforced polymer. In some embodiments, a stronger material permits reducing a wall thickness of a component without reducing the strength thereof. For example, some embodiments of a metal or composite obturator shaft 1210 are thinner than a corresponding polymer version, thereby increasing the diameter of a lumen thereof without increasing the outer diameter. As discussed in detail below, increasing lumen diameter improves gas flow through the device.


For example, in some embodiments, obturator shaft 1210 comprises a metal tube, for example, a stainless steel tube, with a polycarbonate tip 1220 insert molded onto the tube. In some embodiments, the metal tube has a wall thickness as thin as about 0.003″ (about 0.076 mm). An metal obturator shaft 1210 with an inside diameter of about 0.235″ (about 6 mm) and an outside diameter of about 0.241″ (about 6 mm) provides an acceptable insufflation gas flow rate. The relationship between gas flow rate and component dimensions and configurations is discussed in detail below.


Embodiments of the cannula 1110 typically comprise a rigid material. Some embodiments of the obturator shaft 1210 comprise a rigid material and/or a flexible material because the obturator shaft 1210 is largely supported by the cannula 1110 during use in some embodiments.


The laparoscope 1300 comprises a proximal end and a distal end 1304 (FIGS. 1C and 1D). The laparoscope 1300 is of any suitable type, for example, comprising an eyepiece at a proximal end and an objective at a distal end thereof. The distal end 1304 of the laparoscope 1300 is dimensioned for slidable insertion into and removal from the obturator shaft 1210.



FIG. 1C is a front cross-sectional view and FIG. 1D is a side cross-sectional view of the distal end of the insufflating obturator 1200 with a laparoscope 1300 inserted therein. The illustrated embodiment depicts a bladeless obturator 1200 suitable for visualization and insufflation therewith. The device include a pair of vent holes 1222 at the distal tip 1220 of the bladeless obturator, through which an insufflating gas, such as carbon dioxide, flows into a body cavity, as discussed in greater detail below. Other embodiments comprise more or fewer vent holes 1222. For example, some embodiments of the tip 1220 of the obturator comprise a single vent hole 1222. In the illustrated embodiment, the vent holes 1222 are generally circular. In other embodiments, the vent holes 1222 have another shape, for example, oval, elliptical, tear-drop shaped, slot shaped, slit shaped, chevron-shaped, triangular, rectangular, rhomboid, polygonal, and the like. In some embodiments, at least one vent hole 1222 has a different shape from another vent hole 1222.


In some embodiments, the obturator 1200 is an optical obturator in which at least a portion of a distal end of the tip 1220 of the bladeless obturator comprises a generally transparent or translucent material, through which tissue is visualized during the insertion of the obturator 1200 through a body wall. Embodiments of the bladeless obturator 1200 are dimensioned and configured to receive therein any suitable laparoscope 1300, which typically includes an imaging element and fiber optic light fibers (not illustrated). The illustrated embodiment of the tip 1220 comprises at least one laparoscope stop 1224, which assists in positioning the laparoscope 1300 within the obturator 1200. In other embodiments one or more laparoscope stops are disposed within the obturator shaft 1210 and/or at the intersection of the shaft 1210 and tip 1220. Other embodiments do not comprise a laparoscope stop.


The illustrated embodiment of the bladeless optical insufflating obturator 1200 includes a tip 1220 configuration comprising one or more features that enhance the visualization and clarity through the tip of the obturator. The illustrated transparent tip 1220 of the obturator through which tissue is observed comprises a wall 1225, at least a portion of which has a substantially uniform thickness. The uniform wall thickness reduces distortion of an image observed through the obturator tip 1220. In some embodiments, the entire obturator tip 1220 comprises a substantially uniform wall thickness. Embodiments of bladeless optical obturators comprising non-uniform wall thicknesses typically exhibit less clear imaging through the obturator tip because the varying wall thickness distorts the image transmitted therethrough, for example, in bladeless optical obturators comprising a generally circular inner contour and a generally rectangular outer contour.



FIG. 1E is a top view of a transverse cross section of the obturator tip 1220 illustrated in FIGS. 1A-1D. In the illustrated embodiment, an inner contour 1226 of the obturator tip 1220 has a generally rectangular transverse cross section, which substantially matches an outer contour 1228 of the obturator tip, which also has a generally rectangular transverse cross section. In other embodiments, the inner and outer transverse cross-sectional contours 1226 and 1228 of the obturator tip 1220 have another shape, for example, generally elliptical, hexagonal, S-shaped, or another suitable shape. In some embodiments, a portion of an interior surface the tip 1220 at which the distal end laparoscope 1300 contacts has a contour different from a shape or contour of the distal end of the laparoscope. For example, in embodiments in which the distal end of the laparoscope 1300 is circular, the portion of the tip 1220 at which the distal end of the laparoscope 1300 contacts is not circular, thereby defining a gas flow channel therebetween, as discussed in greater detail below.


In some embodiments, at least a portion of the wall 1225 of the obturator tip 1220 comprises a thin-wall configuration. The thin-wall configuration enables light to travel through the material with reduced loss in intensity, thereby enhancing the visibility of tissue through the obturator tip 1220 as the obturator is advanced and placed into the targeted body cavity. The thin-wall configuration also reduces distortion of the image viewed through the obturator tip 1220 and maintains the color accuracy of the viewed tissue. Some embodiments of the obturators 1200 have tip wall thicknesses of from about 0.02″ (about 0.5 mm) to about 0.025″ (about 0.65 mm) for about 5-mm to 12-mm obturators. In some embodiments, the tip wall is thicker, for example, to provide additional strength.


All transparent materials have a light transmittance value of less than 100%. That is, less than 100% of the light incident on the material is transmitted directly through the material. For a given transparent material, as the wall thickness of the material increases, the amount of light that travels through the material decreases. Moreover, because the illuminating light is directed from within the obturator 1200, the light must travel through the obturator tip 1220 twice, thereby doubling the loss of light due to the transmittance characteristics or absorption of the obturator tip 1220. Embodiments of an obturator tip 1220 with a reduced wall thickness reduce the loss of light or absorption thereby, thereby improving the image of the tissue through which the obturator 1200 is advanced, and maintaining the color accuracy and fidelity of the observed tissue.


In some embodiments, the obturator shaft 1210 and tip 1220 are injection molded as a unitary or single, integral component, which, in combination with the thin-wall tip 1220, allows positioning or placing a distal end 1304 of the laparoscope (FIGS. 1C and 1D) in close proximity to and/or within the tip 1220 of the obturator. By placing the distal end 1304 of the laparoscope in close proximity to and/or within the tip 1220 of the obturator, an image produced through the laparoscope 1300 is magnified compared with an image produced by a distal end 1304 of the laparoscope 1300 positioned at a greater distance from the obturator tip 1220. For example, in some embodiments of a 5-mm bladeless optical obturator designed to accommodate laparoscopes with diameters of from about 5 mm to about 5.5 mm, the distal end of the laparoscope is positionable as close as about 0.442″ (about 11 mm) from the distal end of the obturator 1200. Some embodiments of a 12-mm bladeless optical obturator designed to accommodate about 10-mm diameter laparoscopes, permit positioning the distal end of the laparoscope as close as about 0.79″ (about 20 mm) from the distal end of the obturator 1200 or less than about 0.83″ (about 21 mm) from the distal end of the obturator 1200. In these embodiments, the magnification through the 5-mm optical obturator is greater than that for the 12-mm optical obturator.


The enhanced visibility through the tip 1220 of the obturator also enhances the visibility of the vent holes 1222 in the tip of the obturator. Consequently, in some embodiments, the vent holes 1222 are useful as markers for indicating the penetration depth of the obturator tip 1220. As the surgeon advances the trocar system 1000 through tissue, the surgeon can view the vent holes 1222 through the laparoscope 1300, thereby observing when the vent holes 1222 have traversed a body wall, such as the abdominal wall. Once the vent holes 1222 have traversed a body wall and entered a body cavity, the trocar system 1000 need not be advanced further. Accordingly, the enhanced visibility of the obturator tip 1220 permits precise placement of the access system 1000, and consequently, the trocar 1100 into a body cavity, thereby preventing the trocar 1100 from being advanced too far into the body cavity. Because the surgeon is able to precisely place the trocar system 1000 across a body wall until just the portion of the obturator tip 1200 comprising the vent holes 1222 is positioned within the body cavity, the risk of injury to internal body structures is reduced.


In some embodiments, one or more indicia are provided on at least one vent hole 1222, thereby increasing the utility, visibility, and/or prominence of the vent holes 1222 as depth indicators. For example, in some embodiments, one or more contrasting and/or fluorescent colors are printed in the vent hole 1222 bores.


In some embodiments, one or more marker bands or indicia are disposed proximate to or near at least one vent hole 1222, for example, by printing one or more contrasting or fluorescent marker bands. The enhanced visibility through the tip 1220 of the obturator permits using the marker bands for monitoring the penetration depth of the obturator 1200. For example, in some embodiments, the marker band is highly visible through the laparoscope 1300 as a rectangular band positioned just proximal to the vent holes 1222. In other embodiments, the marker bands have another shape, for example, dots. As a surgeon advances the access system 1000 through the tissue, the surgeon can view the position of the marker band to determine when the vent holes 1222 have traversed a body wall. The enhanced visualization through the obturator tip 1220 enables precise placement of the trocar 1100 into a body cavity, thereby preventing the trocar 1100 from being advanced too far into the body cavity. Precisely placing the access system 1000 across a body wall until just the portion of the obturator tip 1220 with the vent holes 1222 is in the body cavity reduces the risk of injury to internal body structures.


Referring to FIGS. 1C and 1D, some embodiments provide a device comprising an insufflation flow path or channel 1400 defined by an inner wall of the obturator shaft 1210 and the laparoscope 1300. For example, embodiments of a 5-mm bladeless optical trocar with a 5-mm obturator are dimensioned and configured to accommodate laparoscopes with diameters of from about 5 mm to about 5.5 mm (from about 0.197″ to about 0.217″) with an insufflation flow channel 1400 extending longitudinally through the inside of the obturator between the outside wall of the laparoscope 1300 and the inside wall of the obturator shaft 1210. The insufflation flow channel 1400 is dimensioned to accommodate a suitable flow of an insufflating gas, for example, carbon dioxide. In some embodiments, a cross-sectional area of the insufflation flow channel is at least about 0.0025 in2 (about 1.6 mm2). In the illustrated embodiment, an inside diameter of the obturator shaft 1210 is larger compared with the inside diameter of the obturator shaft of a typical 5-mm optical obturator. Increasing the inside diameter of the obturator shaft 1210 defines a generally cylindrical flow channel 1400 sufficient for insufflation when either a 5-mm or 5.5-mm laparoscope 1300 is inserted into the obturator 1200. In the illustrated embodiment, an outer diameter of the obturator shaft 1210 is also increased. To accommodate the slightly larger obturator shaft 1210, in some embodiments, the inner diameter and outer diameter of the trocar cannula 1110 are also increased compared with typical a 5-mm trocar cannula.


EXAMPLE 1

A polycarbonate insufflating obturator was manufactured in which the inner diameter of the 5-mm insufflating obturator shaft was 0.235″ (6 mm), the outer diameter was 0.272″ (6.9 mm), and the wall thickness was 0.018″ (0.46 mm). The inner diameter of the mating 5-mm cannula was 0.277″ (7 mm), the outer diameter was 0.343″ (8.7 mm), and the wall thickness of the cannula was 0.033″ (0.84 mm). Based on these dimensions, the cross-sectional area of the obturator flow channel with a 5.5 mm laparoscope inserted therein was 0.0064 in2 (4.1 mm2), which provides a carbon dioxide flow rate of about 6 L/min at an insufflator pressure setting of about 1.6-2 KPa (about 12-15 Torr).


EXAMPLE 2 (COMPARATIVE EXAMPLE)

For comparison, a polycarbonate 5-mm bladeless optical trocar designed to accommodate 5-mm to 5.5-mm laparoscopes included an obturator with an inner diameter of 0.219″ (5.6 mm), an outer diameter of 0.225″ (5.7 mm), and a wall thickness of 0.003″ (0.076 mm). The mating cannula for this obturator had an inner diameter of 0.227″ (5.8 mm), an outer diameter of 0.287″ (7.3 mm), and a wall thickness of 0.03″ (0.76 mm). For comparison, the cross-sectional area of the obturator flow channel with a 5.5-mm laparoscope inserted in the obturator was 0.00068 in2 (0.44 mm2), which provides an insufficient flow of carbon dioxide through the device.


EXAMPLE 3

A 5-mm obturator is molded from polycarbonate with an inside diameter of 0.230″ (5.8 mm) and a wall thickness of 0.021″ (0.53 mm). The carbon dioxide flow rate through this obturator with a 5.5-mm laparoscope inserted therein is about 3.5 L/minute at an insufflator pressure setting of about 1.6-2 KPa (about 12-15 Torr). The increased wall thickness improves the injection molding process for manufacturing the obturator shaft.


The tip 1220 of a bladeless insufflating obturator is designed to separate and dilate tissue and muscle fibers during traversal of a body wall. Because of the dilating and separating properties of a 5-mm insufflating trocar, increasing the outer diameters of the obturator shaft 1210 and the cannula 1110, as compared with typically sized 5-mm bladeless trocars, does not adversely affect the insertion force of the trocar in the illustrated embodiment. The wall thickness of the obturator shaft 1210 is also sufficient to permit injection molding the shaft 1210 and tip 1220 as a single piece, thereby reducing the overall device cost and increasing production capacity.



FIG. 2A is a side cross-sectional view and FIG. 2B is a front cross-sectional view of a distal end of another embodiment of an insufflating optical obturator 2200 with a laparoscope 2300 inserted therein. FIG. 2C is a top view of a transverse cross section of a tip 2220 of the insufflating optical obturator 2200 and laparoscope 2300 illustrated in FIGS. 2A and 2B. The following description refers to a 12-mm obturator sized to accommodate 10-mm laparoscopes, which defines an insufflation flow channel sufficient for generating pneumoperitoneum. Those skilled in the art will understand that the illustrated embodiment is also scalable to other size trocar systems.


The illustrated 12-mm obturator also accommodates smaller laparoscopes 2300 such as 5-mm and/or 5.5-mm diameter laparoscopes. The tip 2220 of the obturator is configured such that a distal end 2304 a 5-mm to 5.5-mm laparoscope is insertable deep into a tapered portion of the obturator tip 2220, while still defining an insufflation flow channel 2400 with a sufficient minimum area for a suitable flow of carbon dioxide around the laparoscope 2300. In the illustrated embodiment, a shorter dimension or width of a generally rectangular internal surface 2226 of the tip of the obturator defines a stop for a 5-mm and/or 5.5-mm laparoscope 2300. The insufflation flow channel 2400 is defined by the area between the internal longer dimension or internal length of the internal surface 2226 of the tip and the outside wall of the laparoscope 2300, as best viewed in FIGS. 2A and 2C. The insufflation flow channel 2400 is fluidly connected to one or more vent holes 2222 disposed on the tip. The embodiment illustrated in FIG. 2A also comprises an optional stop 2224 for a 10-mm laparoscope.


Some embodiments in which distal end of the 5-mm or 5.5 mm laparoscope 2300 and the portion of the inner surface 2226 of the tip that acts as a stop therefor have similar shapes do not provide an insufflation flow channel 2400 with an sufficiently large minimum area to provide a desired insufflation gas flow. For example, inserting a round laparoscope 2300 into an obturator 2200 in which the stop portion of the inner surface 2226 has a circular transverse cross section provides only a small or even no flow channel 2400, thereby effectively isolating the vent holes 2222 from the lumen of the shaft 2210 and preventing gas flow therethrough.


The illustrated trocar system exhibits improved flexibility, versatility, and/or performance, while reducing cost and inventory requirements. Pairing a 5-mm and/or 5.5-mm laparoscope with a 12-mm obturator improves the flow rate of carbon dioxide through the obturator 2200 with the laparoscope inserted therein compared with the flow rate through the obturator 2200 with a 10-mm laparoscope inserted therein. Also, a hospital or clinic may not have any 10-mm zero-degree laparoscopes readily available, whereas many facilities have 5-mm and/or 5.5-mm zero-degree laparoscopes readily available. Another advantage is that the distal end of a 5-mm or 5.5-mm laparoscope is closer to the distal end of the obturator tip 2200 compared with a 10-mm laparoscope, thereby providing a magnified image. For example, in the illustrated embodiment, the distal end of a 5-mm or 5.5-mm laparoscope is positioned at about 0.430″ (about 11 mm) from the distal end of the tip 2200 of the obturator, while the distal end of a 10-mm laparoscope is positioned at about 0.790″ (about 20 mm) from the distal end of the tip 3220 of the obturator.



FIG. 3A is a longitudinal cross-section of another embodiment of an insufflating obturator 3200 and FIG. 3B is a detailed longitudinal cross section of a proximal end thereof. The insufflating obturator 3200 comprises a shaft 3210, a tip 3220, and a handle 3230. The handle 3230 comprises a funneled entry 3232 disposed at a proximal end thereof. A seal assembly 3240 is disposed distally thereof. Accordingly, the seal assembly 3240 is spaced from and/or recessed from the proximal end of the obturator 3200, thereby encasing the seal assembly 3240 within the handle 3230. Thus, in the illustrated embodiment, the seal assembly 3240 is protected from direct user contact and/or manipulation. In some embodiments in which a seal assembly 3240 is disposed at the proximal end of the obturator 3200 and externally accessible, one or more components of the seal assembly 3240 are vulnerable to inadvertent deformation, for example, during placement of the trocar system, which can cause loss of pneumoperitoneum. Furthermore, in some embodiments, the seal assembly 3240 is vulnerable to deliberate and/or inadvertent removal and/or loss. The illustrated seal assembly 3240 seals with instruments of varying diameters as well as providing a zero seal in the absence of an instrument. Again, using a 12-mm obturator as an illustrative example, the seal assembly 3240 seals with any of 5-mm laparoscopes, 5.5-mm laparoscopes, and/or 10-mm laparoscopes, thereby preventing leakage of carbon dioxide from the proximal end of the obturator 3200.


In the illustrated embodiment of the obturator 3200, at least one opening 3206 perforates the shaft 3210, fluidly connecting the interior or lumen with the exterior thereof. When inserted into a suitable trocar, for example, embodiments of the trocar 1110 illustrated in FIGS. 1A and 1B, the at least one opening 3206 fluidly connects the interior or lumen of the obturator 3200 to the fluid inlet 1122, thereby permitting fluid flow from the fluid inlet 1122, through the openings 3210, and out the vent holes 3222. Some embodiments of the obturator 3200 comprise a single opening perforating the shaft. In some embodiments, the opening or openings 3206 independently have another shape, for example, circular, oval, elliptical, tear-drop shaped, slot shaped, slit shaped, chevron-shaped, triangular, rectangular, rhomboid, polygonal, and the like.


Referring to FIG. 3B, which is a detailed longitudinal cross section of the proximal end of the obturator 3200 illustrated in FIG. 3A, the illustrated seal assembly 3240 comprises an internal septum seal 3242 and an internal duckbill valve 3244 disposed at the proximal end of the obturator shaft 3210. The septum seal 3242 prevents carbon dioxide from leaking from the obturator 3200 when a laparoscope 3300 is inserted therein. The duckbill valve 3244 prevents carbon dioxide from leaking in the absence of a laparoscope 3300, for example, when the laparoscope 3300 is withdrawn from the obturator 3200 or not used at all. The illustrated embodiment also comprises a sleeve 3246 disposed proximally of the septum seal 3242, which prevents and/or reduces inversion of the septum seal 3242 on withdrawal of the laparoscope 3300 therefrom. The septum seal 3242 and the duckbill valve 3444 are disposed between the obturator shaft 3210 and the obturator handle 3230 in the illustrated embodiment. The obturator handle 3230 comprises a funneled entry 3232 at its proximal end leading into a guide channel 3234, which guides or directs the laparoscope 3300 into the obturator 3200. Some embodiments of the obturator handle 3230 comprise a space in the guide channel 3234 sufficient to permit at least some septum seal 3234 inversion during laparoscope 3300 withdrawal without binding the laparoscope 3300. For example, in some embodiments, the diameter of the cap guide channel 3234 is larger than the diameter of the laparoscope plus the thickness of the inverted septum seal, which is sufficient to prevent binding or lock-up of the laparoscope 3300 during withdrawal from the obturator 3200.


In some embodiments, at least one of the septum seal 3242 and duckbill valve 3244 is treated by a chlorination process, which reduces friction when inserting, rotating, and/or withdrawing the laparoscope 3300, which typically has a polished surface that generates high friction with septum seals 3242 and duckbill valves 3244. In some embodiments, at least one of the septum seal 3242 and duckbill valve 3244 is coated or treated with one or more other anti-friction materials and/or coatings, such as silicone oil, silicone emulsion, parylene, polytetrafluoroethylene (Teflon®), and/or treated by plasma etching.


An embodiment of a method for using the surgical access or trocar system refers to the embodiment 1000 illustrated in FIGS. 1A-1E, although the method is applicable to any of the embodiments discussed herein. In the method, the bladeless obturator 1200 is first inserted through the trocar seal 1120 and cannula 1110 of the trocar. A laparoscope 1300 is then inserted into the proximal end of the bladeless obturator 1200 and advanced to the stop 1224 or tip 1220 of the obturator. An endoscopic video camera (not illustrated) is attached to the proximal end of the laparoscope 1300 and the access system 1000 is then axially advanced by a surgeon through a body wall. As the surgeon advances the access system 1000 through the body wall, the surgeon visualizes the tissue as it is being separated, for example, using a video monitor connected to the endoscopic video camera. The surgeon can also readily determine when the body wall has been traversed by observing the distal end of the obturator 1200 entering the body cavity. As discussed above, the distal end of the obturator 1200 includes insufflation vent holes 1222 through which an insufflation gas may flow from the obturator 1200 and into a body cavity.


In another embodiment, the optical access system 1000 accesses a targeted body area or region under laparoscopic guidance as discussed above, then is used to administer a medicament under vision. In some embodiments, the medicament is delivered through the stopcock 1124 and Luer fitting 1122, through the obturator 1200, and out through the vent holes 1222 disposed at the tip 1220 of the obturator. The term “vent hole” is used here for consistency. Those skilled in the art will understand that in some embodiments, gas need not be delivered through the vent holes. Instead, the vent holes are used for another purpose, for example, for delivering a fluid, aspirating a fluid, withdrawing tissue, and/or as a gauge for placing the device, as discussed above. The trocar 1100, in this embodiment, is rigid, semi-rigid, or flexible. Some embodiments of the obturator 1200 comprise a single vent hole 1222. In some embodiments, the vent hole 1222 is disposed at the distal end of the tip 1220, generally along the longitudinal axis of the obturator 1200, which permits a more precise delivery of the medicament. The access system 1000 is suitable, for example, for rapidly accessing a trauma site and for rapidly delivering a medicament through the obturator under vision to the trauma site. In some embodiments, the obturator 1200 is usable in this application either with or without a trocar 1100. In embodiments that do not include a trocar, the obturator 1200 comprises a fluid inlet, for example, a Luer fitting, disposed at or near the proximal end of the obturator 1200, for example, at the handle 1230. The fluid inlet is fluidly connected to the vent hole 1222 through the lumen of the obturator shaft 1210. These embodiments of the trocar system 1100 are also useful for accessing a targeted body area under vision using an inserted laparoscope, then withdrawing a body fluid sample and/or a soft tissue sample through the vent or aspiration hole 1222 of the obturator, for example, for pathology analysis, without a cannula.


In some embodiments, the access system 1000 further comprises an insufflator comprising a gas flow alarm (not illustrated). In some embodiments, a source of insufflation gas, for example, an insufflator, is connected to the Luer fitting 1122, the stopcock valve 1124 opened, and the insufflation gas flow activated, for example, a carbon dioxide flow. When the tip 1220 of the obturator is placed in tissue such as the abdominal wall, the gas flow is blocked by the tissue, which in turn activates a gas flow obstruction alarm of the insufflator. The gas flow obstruction alarm will continue as the trocar is advanced through the tissue until the vent holes 1222 in the tip of the obturator are positioned within a hollow body cavity, at which point, carbon dioxide automatically starts flowing into the cavity and the gas flow obstruction alarm on the insufflator deactivates, thereby serving as an audible indicator that the distal tip 1222 of the obturator is properly positioned within the body cavity.


Some embodiments of the access system 1000 further comprise an integral audible indicator (not illustrated), which indicates gas flow, for example, carbon dioxide, through the device. The audible indicator produces a sound, for example, a high-pitched tone, for example, by mechanically modulating the gas flow through the device. In some embodiments, the audible indicator is disposed in the trocar 1100. In some embodiments in which the audible indicator is integral to the trocar seal 1120, the audible indicator is positioned within and/or integrated with the stopcock Luer fitting 1122. In other embodiments, the audible indicator is disposed in the obturator 1200. In yet other embodiments, the audible indicator is a detachable component, for example, disposed between and fluidly connecting the stopcock Luer fitting 1122 and the insufflation tubing.


In some embodiments, the access system 1000 comprising the audible indicator is connected to an insufflator and the carbon dioxide gas flow activated. When the tip 1220 of the obturator is placed in tissue, such as the abdominal wall, the tissue blocks gas flow through the device. As the tip 1220 is advanced though the tissue, the gas flow remains blocked until the vent holes 1222 in the tip of the obturator reach the targeted body cavity. When the vent holes 1222 are positioned within the body cavity, the carbon dioxide automatically starts flowing into the cavity. The gas flow activates the audible indicator, thereby creating a high-pitched tone, which signals that the distal tip 1220 of the obturator is properly positioned within the body cavity.


Some embodiments of the access system 1000 further comprise a visual indicator (not illustrated), for example, a flow sight that indicates carbon dioxide flow through the device. Suitable visual indicators include a flapper, a rotor, and/or an oscillating ball. In some embodiments, the visual indicator is integral to the trocar seal 1120, for example, positioned within and/or integrated with the stopcock Luer fitting 1122. In other embodiments, the visual indicator is disposed within the proximal portion of the obturator 1200. In other embodiments, the visual indicator is a detachable component disposed between the Luer fitting 1122 and the insufflation tubing.


In an embodiment of a method for using the trocar system comprising the integral visual indicator, the trocar system is connected to an insufflator and the carbon dioxide gas flow activated. When the tip 1220 of the obturator is placed in tissue, such as the abdominal wall, the gas flow is blocked. As the tip 1220 is advanced though tissue, the gas flow remains blocked until the vent holes 1222 in the tip of the obturator enter the targeted body cavity. When the vent holes 1222 are positioned within the body cavity, the carbon dioxide automatically flows into the body cavity. The gas flow causes movement of the visual flow indicator, thereby indicating that the distal tip of the obturator is properly positioned within the body cavity.


Some embodiments of the access system 1000 comprise an electronic gas flow indicator. An output of the gas flow indicator is, for example, audible and/or visible.


While certain embodiments have been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope thereof as defined by the following claims.

Claims
  • 1. A surgical access system comprising: an insufflating optical obturator comprising: a tubular obturator shaft having a longitudinal axis, a proximal end and a distal end;an obturator tip disposed at the distal end of the shaft, the obturator tip having an inner surface that defines an inner contour and an outer surface that defines an outer contour, the obturator tip having a wall and a wall thickness defined between the inner surface and the outer surface, the wall of the obturator tip comprising a transparent material;at least one vent hole disposed on the tip; anda first laparoscope stop is disposed within the obturator shaft and at an intersection of the obturator shaft and obturator tip and wherein in transverse cross-section of the inner surface of the tip, the tip has a cross-section having two oppositely disposed sides having a longer dimension interconnected by two oppositely disposed sides having a shorter dimension and the shorter dimension of the inner surface of the obturator tip defines a second laparoscope stop, the insufflating optical obturator being configured to slidably receive a laparoscope into the obturator shaft and advanced to the first or second laparoscope stop.
  • 2. The surgical access system of claim 1 wherein the obturator shaft includes at least one opening that perforates the obturator shaft and fluidly connects an inner lumen of the obturator shaft with its exterior.
  • 3. The surgical access system of claim 1 further including a laparoscope having a longitudinal axis, a distal end, and a transverse cross section at the distal end of the laparoscope that is circular in shape; the distal end of the laparoscope is configured to contact the second laparoscope stop defining a gas flow channel between the laparoscope and the inner contour of the obturator tip.
  • 4. The surgical access system of claim 1 wherein the two oppositely disposed longer dimension sides are outwardly curved.
  • 5. The surgical access system of claim 1 further comprising: a tubular trocar comprising a longitudinal axis, a proximal end, a distal end, an elongate cannula, and a seal assembly disposed at a proximal end of the cannula; a fluid inlet disposed at a proximal end of the access system;the obturator slidably insertable into the proximal end of the cannula and through the seal assembly, the at least one vent hole disposed on the tip in fluid communication with the fluid inlet;a laparoscope, the obturator being sized and configured to receive the laparoscope having a distal end; andwherein the obturator is configured such that a gas flow channel is defined between the longer dimension of the inner surface of the tip and an outer surface of the laparoscope inserted into the obturator abutting the first or second laparoscope stop.
  • 6. The surgical access system of claim 5 wherein the at least one vent hole is at a location distal to a point of contact between the distal end of the laparoscope and the inner surface of the obturator tip.
  • 7. The surgical access system claim 5 wherein the seal assembly comprises a septum seal and a duckbill valve.
  • 8. The surgical access system of claim 5 wherein the at least one vent hole is positioned between the second laparoscope stop and a distal most end of the obturator tip.
  • 9. The surgical access system of claim 5 wherein the first laparoscope stop is elongate and parallel to and offset with the longitudinal axis of the obturator.
  • 10. The surgical access system of claim 5 wherein a cross-sectional area of the gas flow channel is at least about 1.6 mm2.
  • 11. The surgical access system of claim 5 wherein a flow rate through the gas flow channel is at least 3.5 L/min at an insufflator pressure of 1.6-2 KPa.
  • 12. The surgical access system of claim 11 further comprising a gas flow alarm configured to indicate that gas flow is blocked.
  • 13. The surgical access system of claim 5 further comprising an audible indicator configured to indicate gas flowing through the gas flow channel.
  • 14. The surgical access system of claim 13 wherein the audible indicator produces a sound by mechanically modulating gas flow.
  • 15. The surgical access system of claim 13 wherein the audible indicator is positioned within a Luer fitting connected to the seal assembly disposed at the proximal end of the cannula.
  • 16. The surgical access system of claim 13 further comprising a gas flow alarm configured to indicate that gas flow is blocked.
  • 17. The surgical access system of claim 1 wherein the wall thickness is not greater than about 0.65 mm thick.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 16/028,701 filed Jul. 6, 2018 entitled “First-entry trocar system” which is a continuation of U.S. patent application Ser. No. 15/064,049 filed Mar. 8, 2016 entitled “First-entry trocar system” which is a continuation of U.S. patent application Ser. No. 13/962,557 filed Aug. 8, 2013 now U.S. Pat. No. 9,314,266 issued on Apr. 19, 2016 entitled “First-entry trocar system” which is a continuation of U.S. patent application Ser. No. 13/940,707 filed Jul. 12, 2013 now U.S. Pat. No. 9,358,040 issued on Jun. 7, 2016 entitled “First-entry trocar system” which is a continuation of application of U.S. patent application Ser. No. 12/569,652 filed on Sep. 29, 2009 now U.S. Pat. No. 8,506,520 issued on Aug. 13, 2013 entitled “Trocar system with laparoscope and gas channel” which claims priority to and benefit of U.S. Provisional Patent Application No. 61/101,061 filed on Sep. 29, 2008 entitled “First entry trocar system” the entire disclosures of all of these applications are incorporated by reference in their entireties herein.

US Referenced Citations (342)
Number Name Date Kind
RE682 Peale Apr 1859 E
184573 Becker Nov 1876 A
207932 Alvord Sep 1878 A
224513 Burdon Feb 1880 A
396754 Mayfield Jan 1889 A
764322 Wiegand Jul 1904 A
1147408 Kelis Jul 1915 A
1672258 Hippenmeyer Jun 1928 A
1727495 Wappler Sep 1929 A
1845727 Slaughter Feb 1932 A
2024069 Sharp Dec 1935 A
2102274 Larimore Dec 1937 A
2189343 Fritz Feb 1940 A
2301338 Smith Nov 1942 A
2434594 Schultz Jan 1948 A
2441143 Gracey May 1948 A
2646701 Lietin Jul 1953 A
2699770 Fourestier et al. Jan 1955 A
2764148 Sheldon Sep 1956 A
2764149 Sheldon Sep 1956 A
2769355 Henry Nov 1956 A
2877368 Sheldon Mar 1959 A
2932294 Fourestier et al. Apr 1960 A
3005468 Erwin et al. Oct 1961 A
3021834 Sheldon Feb 1962 A
3033226 Allen May 1962 A
3042022 Sheldon Jul 1962 A
3224320 Knudsen Dec 1965 A
3277922 Eisel Oct 1966 A
3279460 Sheldon Oct 1966 A
3357433 Fourestier et al. Dec 1967 A
3385553 Braun May 1968 A
3417745 Sheldon Dec 1968 A
3437747 Sheldon Apr 1969 A
3459189 Alley et al. Aug 1969 A
3556085 Takahashi Jan 1971 A
3613684 Sheridan Oct 1971 A
3653338 Sauey Apr 1972 A
3791379 Storz Feb 1974 A
3817251 Hasson Jun 1974 A
3821956 Gordhamer Jul 1974 A
3870036 Fiore Mar 1975 A
3961621 Northeved Jun 1976 A
3971385 Corbett Jul 1976 A
3994287 Turp Nov 1976 A
3994301 Agris Nov 1976 A
4028987 Wilson Jun 1977 A
4112932 Chiulli Sep 1978 A
4126291 Gilbert et al. Nov 1978 A
4150929 Brandt Apr 1979 A
4168882 Hopkins Sep 1979 A
4180068 Jacobsen et al. Dec 1979 A
4191191 Auburn Mar 1980 A
4222375 Martinez Sep 1980 A
4248214 Hannah et al. Feb 1981 A
4254762 Yoon Mar 1981 A
4269192 Matsuo May 1981 A
4274771 Nishimura Jun 1981 A
4285618 Shanley Aug 1981 A
4299230 Kubota Nov 1981 A
4311138 Sugarman Jan 1982 A
4319563 Kubota Mar 1982 A
4356826 Kubota Nov 1982 A
4386179 Sterling May 1983 A
4414966 Stednitz Nov 1983 A
4429856 Jackson Feb 1984 A
4436519 O'Neill Mar 1984 A
4493444 Del Bon et al. Jan 1985 A
4498902 Ash et al. Feb 1985 A
4524805 Hoffman Jun 1985 A
4535773 Yoon Aug 1985 A
4535808 Hoffman Aug 1985 A
4537593 Alchas Aug 1985 A
4567882 Heller Feb 1986 A
4601710 Moll Jul 1986 A
4607619 Seike et al. Aug 1986 A
4750877 McFarlane Jun 1988 A
4762130 Fogarty et al. Aug 1988 A
4779613 Hashiguchi et al. Oct 1988 A
4803999 Liegner Feb 1989 A
4813400 Washizuka et al. Mar 1989 A
4850393 Lashomb Jul 1989 A
4869717 Adair Sep 1989 A
4895431 Tsujiuchi et al. Jan 1990 A
4901142 Ikuno et al. Feb 1990 A
4956143 McFarlane Sep 1990 A
4959067 Muller Sep 1990 A
4972827 Kishi et al. Nov 1990 A
4978350 Wagenknecht Dec 1990 A
5017057 Kruygor May 1991 A
5030210 Alchas Jul 1991 A
5041100 Rowland et al. Aug 1991 A
5057082 Burchetts, Jr. Oct 1991 A
5066288 Deniego et al. Nov 1991 A
5098379 Conway Mar 1992 A
5098388 Kulkashi et al. Mar 1992 A
5104316 Mc Spadden Apr 1992 A
5104388 Quackenbush Apr 1992 A
5104389 Deem et al. Apr 1992 A
5114407 Burbank May 1992 A
5116547 Tsukahara et al. May 1992 A
5144942 Decarie et al. Sep 1992 A
5147376 Pianetti Sep 1992 A
5159920 Condon et al. Nov 1992 A
5163941 Garth et al. Nov 1992 A
5178186 Levasseur Jan 1993 A
5186972 Williams et al. Feb 1993 A
5197955 Stephens et al. Mar 1993 A
5207656 Kranys May 1993 A
5217441 Shichman Jun 1993 A
5221163 Nishimura Jun 1993 A
5240397 Fay et al. Aug 1993 A
5246425 Hunsberger et al. Sep 1993 A
5250068 Ideguchi et al. Oct 1993 A
5256149 Banik et al. Oct 1993 A
5258003 Ciaglia Nov 1993 A
5269316 Spitainy Dec 1993 A
5271380 Riek et al. Dec 1993 A
5279567 Ciaglia et al. Jan 1994 A
5288290 Brody Feb 1994 A
5290276 Sewell Mar 1994 A
5290585 Elton Mar 1994 A
5300033 Miller May 1994 A
5334150 Kaali Aug 1994 A
5342382 Brinkerhoff Aug 1994 A
5350364 Stephens et al. Sep 1994 A
5366446 Tai et al. Nov 1994 A
5370624 Edwards et al. Dec 1994 A
5372588 Fahey Dec 1994 A
5374253 Burns, Sr. et al. Dec 1994 A
5380291 Kaali Jan 1995 A
5387197 Smith Feb 1995 A
5389077 Melinyshin et al. Feb 1995 A
5391153 Haber et al. Feb 1995 A
5391248 Brain Feb 1995 A
5392766 Masterson et al. Feb 1995 A
5405328 Vidal et al. Apr 1995 A
5407427 Zhu et al. Apr 1995 A
5431151 Riek et al. Jul 1995 A
5441041 Sauer et al. Aug 1995 A
5443484 Kirsch et al. Aug 1995 A
5445615 Yoon et al. Aug 1995 A
5454791 Tovey et al. Oct 1995 A
5478329 Temamian Dec 1995 A
5480410 Cuschieri et al. Jan 1996 A
5510065 McFarlane Apr 1996 A
5540711 Kieturakis et al. Jul 1996 A
5542845 Jenkins Aug 1996 A
5549546 Schneider et al. Aug 1996 A
5551947 Kaai Sep 1996 A
5562696 Nobles et al. Oct 1996 A
5569291 Privitera Oct 1996 A
5569292 Scwemberger Oct 1996 A
5577993 Zhu et al. Nov 1996 A
5591186 Wurster et al. Jan 1997 A
5591192 Privitera et al. Jan 1997 A
5593402 Patrick Jan 1997 A
5603720 Kieturakis Feb 1997 A
5609562 Kaali Mar 1997 A
5609604 Schwemberger et al. Mar 1997 A
5613954 Nelson et al. Mar 1997 A
5622462 Gakhar et al. Apr 1997 A
5630805 Temamian May 1997 A
5634908 Loomas Jun 1997 A
5658236 Sauer Aug 1997 A
5662615 Blake, III Sep 1997 A
5662673 Kieturakis Sep 1997 A
5676611 Foster Oct 1997 A
5685820 Riek et al. Nov 1997 A
5695462 Sutou et al. Dec 1997 A
5697947 Wolf Dec 1997 A
5720730 Blake, III Feb 1998 A
5720761 Kaali Feb 1998 A
5735867 Golser et al. Apr 1998 A
5738628 Sierocuk Apr 1998 A
5743881 Demco Apr 1998 A
5746734 Domandy, Jr. et al. May 1998 A
5752970 Yoon et al. May 1998 A
5759185 Grinberg Jun 1998 A
5779697 Glowa et al. Jul 1998 A
5785693 Halninig Jul 1998 A
5792112 Hart et al. Aug 1998 A
5797888 Yoon et al. Aug 1998 A
5797944 Nobeles et al. Aug 1998 A
5817061 Goodwin et al. Oct 1998 A
5817062 Flom et al. Oct 1998 A
5836957 Shulz Nov 1998 A
5842971 Yoon Dec 1998 A
5860996 Urban et al. Jan 1999 A
5865809 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876202 Berlin Mar 1999 A
5882340 Yoon Mar 1999 A
5884639 Chen Mar 1999 A
5891013 Thompson Apr 1999 A
5893865 Swindle Apr 1999 A
5904699 Schwemberger et al. May 1999 A
5913818 Co et al. Jun 1999 A
5922351 Daher Jul 1999 A
5924452 Szpapa et al. Jul 1999 A
5941852 Dunlap et al. Aug 1999 A
5957884 Hooven Sep 1999 A
5957888 Hinchliffe Sep 1999 A
5968060 Kellogg Oct 1999 A
5976079 Volz et al. Nov 1999 A
5976168 Chin Nov 1999 A
5980809 Crain et al. Nov 1999 A
5984941 Wilson Nov 1999 A
6001084 Riek Dec 1999 A
6007481 Riek Dec 1999 A
6007544 Kim Dec 1999 A
6019776 Preissman Feb 2000 A
6024551 Yamaguchi Feb 2000 A
6030406 Davis Feb 2000 A
6043310 Liu et al. Mar 2000 A
6053194 Nelson et al. Apr 2000 A
6068637 Popov et al. May 2000 A
6077481 Ichida et al. Jun 2000 A
6092551 Bennett Jul 2000 A
6168355 Wardell Jan 2001 B1
6179528 Wardell Jan 2001 B1
6203559 Davis Mar 2001 B1
6203745 Wachsmann et al. Mar 2001 B1
6221061 Engelson et al. Apr 2001 B1
6228059 Astarita May 2001 B1
6228063 Aboul-Hosn May 2001 B1
6270484 Yoon Aug 2001 B1
6302873 Moenning Oct 2001 B1
6319266 Stellon Nov 2001 B1
6346074 Roth Feb 2002 B1
6355014 Zadno-Azizi et al. Mar 2002 B1
6387043 Yoon May 2002 B1
6462111 Singh et al. Oct 2002 B1
6468228 Topel et al. Oct 2002 B1
6478806 McFarlane Nov 2002 B2
6508759 Taylor et al. Jan 2003 B1
6520939 Lafontaine Feb 2003 B2
6579298 Bruneau et al. Jun 2003 B1
6656160 Taylor et al. Dec 2003 B1
6656198 Tsonton et al. Dec 2003 B2
6685630 Sauer et al. Feb 2004 B2
6764107 Obahi et al. Jul 2004 B1
6770731 Mason et al. Aug 2004 B2
6835201 O'Heeron Dec 2004 B2
6884253 McFarlane Apr 2005 B1
6887194 Hart et al. May 2005 B2
6902541 McNally et al. Jun 2005 B2
6939296 Ewers et al. Sep 2005 B2
7008979 Schottman et al. Mar 2006 B2
7037303 Beaufore et al. May 2006 B2
7056294 Khairkhahan et al. Jun 2006 B2
7056329 Kerr Jun 2006 B2
7070586 Hart et al. Jul 2006 B2
7182752 Stubbs Feb 2007 B2
7344519 Wing et al. Mar 2008 B2
7370709 Williamson, Jr. May 2008 B2
7470255 Sterns et al. Dec 2008 B2
7563250 Wenchell Jul 2009 B2
7686823 Pingleton et al. Mar 2010 B2
7708713 Albrecht et al. May 2010 B2
7758603 Taylor et al. Jul 2010 B2
7794644 Taylor et al. Sep 2010 B2
7811253 Hart et al. Oct 2010 B2
7942862 Hart et al. May 2011 B2
7947058 Kahle et al. May 2011 B2
8007477 Johnson et al. Aug 2011 B2
8028395 Taylor et al. Oct 2011 B2
8075530 Taylor et al. Dec 2011 B2
8105285 Hart et al. Jan 2012 B2
8128590 Albrecht et al. Mar 2012 B2
8152828 Taylor et al. Apr 2012 B2
8267952 Kahle et al. Sep 2012 B2
8282663 Smith Oct 2012 B2
8292853 Hart et al. Oct 2012 B2
8317815 Mastri et al. Nov 2012 B2
8377090 Taylor et al. Feb 2013 B2
8382663 Taylor Feb 2013 B2
8506520 Kahle Aug 2013 B2
8517977 Taylor et al. Aug 2013 B2
8608768 Taylor et al. Dec 2013 B2
8608769 Kahle Dec 2013 B2
8636759 Pingleton et al. Jan 2014 B2
8961493 Hart et al. Feb 2015 B2
20020013597 McFarlane Jan 2002 A1
20020026207 Stellon et al. Feb 2002 A1
20020133188 O'Heeron et al. Sep 2002 A1
20020183715 Mantel et al. Dec 2002 A1
20020183775 Tsonton et al. Dec 2002 A1
20030023201 Aboul-Hosn Jan 2003 A1
20030032755 Gomey et al. Feb 2003 A1
20030059263 Chen Mar 2003 A1
20030187471 Cooper Oct 2003 A1
20040015185 Ewers et al. Jan 2004 A1
20040082969 Kerr Apr 2004 A1
20040093000 Kerr May 2004 A1
20040093018 Johnson et al. May 2004 A1
20040106942 Taylor et al. Jun 2004 A1
20040108623 Deeter et al. Jun 2004 A1
20040167559 Taylor et al. Aug 2004 A1
20040199127 Jensen et al. Oct 2004 A1
20040204671 Stubbs et al. Oct 2004 A1
20040230155 Blanco et al. Nov 2004 A1
20040230217 O'Heeroon Nov 2004 A1
20040254517 Quiroz-Mercado et al. Dec 2004 A1
20050033237 Fentress et al. Feb 2005 A1
20050033246 Ahlberg et al. Feb 2005 A1
20050038466 O'Heeron et al. Feb 2005 A1
20050059865 Kahle Mar 2005 A1
20050065543 Kahle et al. Mar 2005 A1
20050107803 Guanche May 2005 A1
20050107816 Pingleton et al. May 2005 A1
20050113533 Shaikh et al. May 2005 A1
20050149094 Kasahara et al. Jul 2005 A1
20050149096 Hilal et al. Jul 2005 A1
20050159711 Kathrani et al. Jul 2005 A1
20050216028 Hart et al. Sep 2005 A1
20050227610 Zukor et al. Oct 2005 A1
20050273133 Shluzas et al. Dec 2005 A1
20050283122 Nordgren Dec 2005 A1
20050288622 Albrecht et al. Dec 2005 A1
20060030755 Ewers et al. Feb 2006 A1
20060041270 Lenker et al. Feb 2006 A1
20060030870 Staudner Mar 2006 A1
20060047284 Gresham Mar 2006 A1
20060058570 Rapach et al. Mar 2006 A1
20060074374 Gresham Apr 2006 A1
20060118189 Trekulve et al. Jun 2006 A1
20060224174 Smith et al. Oct 2006 A1
20060264991 Johnson Nov 2006 A1
20070027453 Hart et al. Feb 2007 A1
20070075465 Taylor et al. Apr 2007 A1
20070088277 McGinley Apr 2007 A1
20070239108 Albrecht et al. Oct 2007 A1
20080065021 Jenkins et al. Mar 2008 A1
20080086074 Taylor et al. Apr 2008 A1
20080086093 Steppe et al. Apr 2008 A1
20090030375 Franer et al. Jan 2009 A1
20090137943 Steams et al. May 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090281500 Acosta et al. Nov 2009 A1
20100025045 Lake et al. Feb 2010 A1
20140114339 Pingleton et al. Apr 2014 A1
Foreign Referenced Citations (67)
Number Date Country
1 006 811 Dec 1994 BE
2 170 841 Sep 1997 CA
0365049 Dec 1922 DE
1616107 Apr 1971 DE
2218901 Oct 1973 DE
2538758 Mar 1977 DE
2929233 Jan 1980 DE
2922239 Dec 1980 DE
4020956 Jan 1991 DE
4133073 Apr 1992 DE
4035146 May 1992 DE
4116648 Nov 1992 DE
29503750 Apr 1995 DE
29521431 Apr 1997 DE
19541041 May 1997 DE
19718086 Nov 1998 DE
19819432 Nov 1999 DE
0135364 Mar 1985 EP
0135364 Mar 1986 EP
0312787 Apr 1989 EP
0347140 Dec 1989 EP
0369936 May 1990 EP
0369937 May 1990 EP
0474124 Mar 1992 EP
0548612 Jun 1993 EP
0556056 Aug 1993 EP
0664992 Aug 1995 EP
0724864 Aug 1996 EP
1074224 Feb 2001 EP
1582158 Oct 2005 EP
2229897 Sep 2010 EP
2233090 Sep 2010 EP
1370580 Aug 1964 ER
2 124 970 Feb 1984 GB
186 005 Sep 1992 GB
2 313 316 Nov 1997 GB
408127661 May 1996 JP
09-173342 Jul 1997 JP
2001-137253 May 2001 JP
0942730 Jul 1982 SU
1328658 Aug 1987 SU
1329769 Aug 1987 SU
WO 199325148 Dec 1993 WO
WO 199833536 Feb 1994 WO
WO 199411040 May 1994 WO
WO 9601074 Jan 1996 WO
WO 199601132 Jan 1996 WO
WO 199610361 Apr 1996 WO
WO 199740758 Nov 1997 WO
WO 199902089 Jan 1999 WO
WO 199915084 Apr 1999 WO
WO 2000018306 Apr 2000 WO
WO 2000054648 Sep 2000 WO
WO 200101847 Jan 2001 WO
WO 200101871 Jan 2001 WO
WO 2001008563 Feb 2001 WO
WO 2002001998 Jan 2002 WO
WO 2001008563 Feb 2002 WO
WO 2002034108 May 2002 WO
WO 2002041795 May 2002 WO
WO 2003026512 Apr 2003 WO
WO 2003032819 Apr 2003 WO
WO 2003096879 Nov 2003 WO
WO 2004037097 May 2004 WO
WO 2004093699 Nov 2004 WO
WO 2005063134 Jul 2005 WO
WO 2007093957 Aug 2007 WO
Non-Patent Literature Citations (74)
Entry
U.S. Appl. No. 10/745,262; filed Dec. 23, 2003; Title: “Catheter With Conduit Traversing Tip” (abandoned).
Co-Pending U.S. Appl. No. 12//50,3/2, filed Mar. 30, 2010, title: “Bladeless Obturator”.
Co-Pending U.S. Appl. No. 11/549,872, filed Oct. 16, 2006, title: “Surgical Devices, Systems and Methods Thereof Having Gel Material, Gel Coatings, or Gel Lubricants”.
Co-Pending U.S. Appl. No. 13/565,972, filed Aug. 3, 2012, title: “Bladeless Optical Obturator”.
Co-Pending U.S. Appl. No. 13/356,260, filed Jan. 23, 2012, title: “Insufflating Optical Surgical Instrument”.
Co-Pending U.S. Appl. No. 13/078,750, filed Apr. 1, 2011 title “Surgical Access Apparatus and Method”.
Co-Pending U.S. Appl. No. 12/569,652, filed Sep. 29, 2009; title “First-Entry Trocar System”.
Co-Pending U.S. Appl. No. 12/359,964, filed Jan. 26, 2009, title: “Insufflating Access System”.
Co-Pending U.S. Appl. No. 13/462,330, filed May 2, 2012, title: “Low-Profile Surgical Universal Access Port”.
Co-Pending U.S. Appl. No. 13/411,244, filed Mar. 2, 2012, title: “Blunt Tip Obturator”.
Co-Pending U.S. Appl. No. 13/586,825, filed Aug. 15, 2012, title: “Blunt Tip Obturator”.
Co-Pending U.S. Appl. No. 11/868,883, filed Oct. 8, 2007; Title: “Visual Insufflation Port”.
International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US04/032346, dated May 20, 2008.
International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2005/022716 dated Nov. 22, 2005.
International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2006/060013, dated Apr. 24, 2008.
International Bureau of WIPO, The International Preliminary Report on Patentability for International Application No. PCT/US2009/058792, titled First Entry Trocar System, dated Mar. 29, 2011.
International Bureau of WIPO, The International Preliminary Report on Patentability for International Application No. PCT/US2007/080724, titled “Visual Insufflation Port”, dated Apr. 7, 2009.
International Bureau of WIPO, The International Preliminary Report on Patentability for International Application No. PCT/US2009/32026, titled “Insufflating Access System”, dated Jul. 27, 2010.
International Bureau of WIPO, The International Preliminary Report on Patentability for International Application No. PCT/US2004/000695, titled “Surgical Access Apparatus and Method”, dated Jul. 22, 2005.
International Bureau of WIPO, The International Preliminary Report on Patentability for International Application No. PCT/US2004/04883, titled “Surgical Access Apparatus and Method”, dated Sep. 9, 2005.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2004/000695, titled “Surgical Access Apparatus and Method”, dated Jan. 12, 2005.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2004/04883, titled “Surgical Access Apparatus and Method”, dated Mar. 31, 2005.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2002/06759, titled “Bladeless Obturator”, dated Jul. 12, 2002.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2005/022716, titled “Insufflating Optical Surgical instrument”, dated Nov. 22, 2005.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US04/32346, titled Bladeless Optical Obturator, dated May 20, 2008.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2009/32026, titled “Insufflating Access System”, dated Mar. 23, 2009.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2007/080724, titled “Visual Insufflation Port”, dated Apr. 16, 2008.
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority dated May 27, 2009, for International Application No. PCT/US2009/037863, titled “Instrument Seal with Inverting Shroud”, dated May 27, 2009.
The International Searching Authority, The International Search Report and the Written Opinion for International Application No. PCT/US2009/058792, titled “First Entry Trocar System”, dated Dec. 23, 2009.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2012/036119, title “Low-Profile Surgical Universal Access Port”, dated Nov. 7, 2012.
European Patent Office, Supplementary European Search Report for European Patent Application No. EP 04 70 1731 based on International Application No. PCT/US2004/000695, titled “Surgical Access Apparatus and Method”, dated Apr. 11, 2007.
European Patent Office, Supplementary European Search Report for European Patent Application No. EP 02706494.8, titled “Bladeless Obturator”, dated Jun. 24, 2008.
European Patent Office, Supplementary European Search Report for European Patent Application No. EP 03753017.7, titled “Blunt Tip Obturator”, dated Nov. 21, 2008.
European Patent Office, Supplementary European Search Report for European Patent Application No. EP 04712378, titled “Surgical Access Apparatus and Method”, dated May 19, 2008.
European Patent Office, Supplementary European Search Report for European Patent Application No. EP 07843973.4, titled “Visual Insufflation Port” dated Oct. 4, 2008.
European Patent Office, Supplementary European Search Report for European Patent Application No. EP 04793965.7, titled “Bladeless Optical Obturator”, dated Apr. 16, 2010.
European Patent Office, Supplementary European Search Report for European Patent Application No. EP 11154547.1, titled “Blunt Tip Obturator”, dated Mar. 22, 2011.
European Patent Office, European Search Report for European Application No. 11191191.3, titled “Bladeless Obturator” dated Feb. 29, 2012.
European Patent Office, European Search Report for European Application No. 11191179.8, titled “Biadeless Obturator”, dated Feb. 21, 2012.
European Patent Office, European Search Report for European Application No. 11191193.9, titled “Bladeless Obturator”, dated Mar. 5, 2012.
European Patent Office, European Search Report for European Application No. 11191187.1, titled Bladeless Obturator, dated Feb. 23, 2012.
European Patent Office, European Search Report for European Application No. 11191184.8, titled “Bladeless Obturator”, dated Feb. 23, 2012.
European Patent Office, European Search Report for European Application No. 11191189.7, titled “Bladeless Obturator”, dated Feb. 24, 2012.
European Patent Office, European Search Report for European Application No. 11191175.6, titled “Bladeless Obturator”, dated Feb. 21, 2012.
European Patent Office, European Search Report for European Application No. 047017314, titled “Surgical Access Apparatus and Method”, dated Mar. 30, 2007.
Taut, Inc., ADAPT-Asymmetrical Dilating Access Port, Geneva Illinois.
Karl Storz, The Kari Storz Ternamian EndoTIP (TM) System, date: Aug. 27, 2001.
Karl Storz, Zerocart Trocar with eccentric tip, Recklinghausen, Germany, date Mar. 7, 2001.
Ethicon Endo-Surgery, Inc., Endopath Minimally Invasive Access, date: 2001.
European Patent Office, Invitation to Pay Additional Fees for International Application No. PCT/US2012/036119, titled “Low-Profile Surgical Universal Access Port”, dated Jul. 13, 2012.
European Patent Office, European Search Report for European Application No. 12187933, titled “Insufflating Optical Surgical Instrument”, dated Nov. 20, 2012.
European Patent Office, European Search Report for European Application No. 12187929, titled “Insufflating Optical Surgical Instrument”, dated Nov. 20, 2012.
European Patent Office, European Search Report for European Application No. 12186716.2, titled “Bladeless Optical Obturator”, dated Mar. 7, 2013.
European Patent Office, European Search Report for European Application No. 12186717.0, titled “Bladeless Optical Obturator”, dated Mar. 7, 2013.
European Patent Office, European Search Report for European Application No. 12186712.1, titled “Bladeless Optical Obturator”, dated Mar. 7, 2013.
European Patent Office, European Search Report for European Application No. 12186720.4, titled “Bladeless Optical Obturator”, dated Mar. 7, 2013.
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2013/023458 titled “Adaptable Obturalor for Various Sized Trocars”, dated Mar. 19, 2013.
European Patent Office, European Search Report tor European Application No. 12186722.0, titled “Bladeless Optical Obturator”, dated Mar. 20, 2013.
European Patent Office, European Search Report for European Application No. 12186721.2, titled “Bladeless Optical Obturator”, dated Mar. 22, 2013.
European Patent Office, European Search Report tor European Application No. 12186723.8, titled “Bladeless Optical Obturator”, dated Mar. 22, 2013.
European Patent Office, European Communication pursuant to Article 94(3) EPC for European Patent Application No. 12186717.0, titled “Bladeless Optical Obturator”, dated Mar. 26, 2013.
European Patent Office, European Search Report for European Application No. 15163037.3, titled “Bladeless Optical Obturator” dated Jul. 30, 2015 (7 pgs.).
Yang, Guoqing, Hong Jun, Zhu, Linbo, Li Baotong, Xiong Meihua, and Wang Fei, Chinese Journal of Mechanical Engineering, (vol. 26, No. 3, 2013), Three-Dimensional Finite Element Analysis of the Mechanical Properties of Helical Threat Connection, Received Jun. 7, 2012, Revised Jan. 28, 2013, Accepted Feb. 27, 2013.
International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2005/022716, dated Jan. 18, 2007, 2 pgs.
International. Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2006/060013, dated Apr. 24, 2008, 16 pgs.
European Patent Office, Invitation to Pay Additional Fees for International Application No. PCT/US2012/036119, titled “Low-Profile Surgical Universal Access Port”, dated Jul. 13, 2012, 7 pgs.
European Patent Office, European Search Report for European Patent No. 15184957, titled “Insufflating Optical Surgical Instrument,” dated Dec. 1, 2015, 5 pgs.
European Patent Office, European Search Report for European Patent No. 15185511.1, titled “Visual Insufflation Port,” dated Jan. 14, 2016, 4 pgs.
European Patent Office, European Search Report for European Patent No. 18155145.8, titled “First Entry Trocar System,” dated Apr. 9, 2018, 6 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18186509.8, titled “Insufflating Optical Surgical Instrument,” dated Jan. 4, 2019, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 19175227.8, titled “First Entry Trocar System,” dated Jul. 30, 2019, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 19189275.1, titled “Visual Insufflation Port,” dated Oct. 29, 2019, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 20185935.2, titled “Insufflating Optical Surgical Instrament,” dated Nov. 4, 2020, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 20208082.6, titled “First Entry Trocar System,” dated Feb. 11, 2021, 6 pgs.
Related Publications (1)
Number Date Country
20210085366 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
61101061 Sep 2008 US
Continuations (5)
Number Date Country
Parent 16028701 Jul 2018 US
Child 17113412 US
Parent 15064049 Mar 2016 US
Child 16028701 US
Parent 13962557 Aug 2013 US
Child 15064049 US
Parent 13940707 Jul 2013 US
Child 13962557 US
Parent 12569652 Sep 2009 US
Child 13940707 US